Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/04/27 10:31
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 4 removed)
Details
- Page properties
-
- Content
-
... ... @@ -16,33 +16,22 @@ 16 16 == 1.1 What is LoRaWAN Pressure Sensor == 17 17 18 18 19 -((( 20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 21 -))) 19 +The Dragino PS-LB series sensors are **(% style="color:blue" %)LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 22 22 23 -((( 24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 25 -))) 21 +The PS-LB series sensors include **(% style="color:blue" %)Thread Installation Type**(%%) and **(% style="color:blue" %)Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 26 26 27 -((( 28 28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 32 PS-LB supports BLE configure and wireless OTA update which make user easy to use. 33 -))) 34 34 35 -((( 36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 -))) 27 +PS-LB is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 38 38 39 -((( 40 40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 41 -))) 42 42 43 43 [[image:1675071321348-194.png]] 44 44 45 45 34 + 46 46 == 1.2 Features == 47 47 48 48 ... ... @@ -58,25 +58,23 @@ 58 58 * Uplink on periodically 59 59 * Downlink to change configure 60 60 * 8500mAh Battery for long term use 61 -* Controllable 3.3v,5v and 12v output to power external sensor 62 62 63 63 64 - 65 65 == 1.3 Specification == 66 66 67 67 68 -(% style="color:#037691" %) **Micro Controller:**55 +**(% style="color:#037691" %)Micro Controller:** 69 69 70 70 * MCU: 48Mhz ARM 71 71 * Flash: 256KB 72 72 * RAM: 64KB 73 73 74 -(% style="color:#037691" %) **Common DC Characteristics:**61 +**(% style="color:#037691" %)Common DC Characteristics:** 75 75 76 76 * Supply Voltage: 2.5v ~~ 3.6v 77 77 * Operating Temperature: -40 ~~ 85°C 78 78 79 -(% style="color:#037691" %) **LoRa Spec:**66 +**(% style="color:#037691" %)LoRa Spec:** 80 80 81 81 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 82 82 * Max +22 dBm constant RF output vs. ... ... @@ -83,19 +83,19 @@ 83 83 * RX sensitivity: down to -139 dBm. 84 84 * Excellent blocking immunity 85 85 86 -(% style="color:#037691" %) **Current Input Measuring :**73 +**(% style="color:#037691" %)Current Input Measuring :** 87 87 88 88 * Range: 0 ~~ 20mA 89 89 * Accuracy: 0.02mA 90 90 * Resolution: 0.001mA 91 91 92 -(% style="color:#037691" %) **Voltage Input Measuring:**79 +**(% style="color:#037691" %)Voltage Input Measuring:** 93 93 94 94 * Range: 0 ~~ 30v 95 95 * Accuracy: 0.02v 96 96 * Resolution: 0.001v 97 97 98 -(% style="color:#037691" %) **Battery:**85 +**(% style="color:#037691" %)Battery:** 99 99 100 100 * Li/SOCI2 un-chargeable battery 101 101 * Capacity: 8500mAh ... ... @@ -103,13 +103,12 @@ 103 103 * Max continuously current: 130mA 104 104 * Max boost current: 2A, 1 second 105 105 106 -(% style="color:#037691" %) **Power Consumption**93 +**(% style="color:#037691" %)Power Consumption** 107 107 108 108 * Sleep Mode: 5uA @ 3.3v 109 109 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 110 110 111 111 112 - 113 113 == 1.4 Probe Types == 114 114 115 115 === 1.4.1 Thread Installation Type === ... ... @@ -129,7 +129,6 @@ 129 129 * Connector Type: Various Types, see order info 130 130 131 131 132 - 133 133 === 1.4.2 Immersion Type === 134 134 135 135 ... ... @@ -139,22 +139,25 @@ 139 139 * Measuring Range: Measure range can be customized, up to 100m. 140 140 * Accuracy: 0.2% F.S 141 141 * Long-Term Stability: ±0.2% F.S / Year 127 +* Overload 200% F.S 128 +* Zero Temperature Drift: ±2% F.S) 129 +* FS Temperature Drift: ±2% F.S 142 142 * Storage temperature: -30℃~~80℃ 143 -* Operating temperature: 0℃~~5 0℃131 +* Operating temperature: -40℃~~85℃ 144 144 * Material: 316 stainless steels 145 145 146 146 147 - 148 148 == 1.5 Probe Dimension == 149 149 150 150 151 151 139 + 152 152 == 1.6 Application and Installation == 153 153 154 154 === 1.6.1 Thread Installation Type === 155 155 156 156 157 -(% style="color:blue" %) **Application:**145 +**(% style="color:blue" %)Application:** 158 158 159 159 * Hydraulic Pressure 160 160 * Petrochemical Industry ... ... @@ -172,7 +172,7 @@ 172 172 === 1.6.2 Immersion Type === 173 173 174 174 175 -(% style="color:blue" %) **Application:**163 +**(% style="color:blue" %)Application:** 176 176 177 177 Liquid & Water Pressure / Level detect. 178 178 ... ... @@ -191,9 +191,9 @@ 191 191 == 1.7 Sleep mode and working mode == 192 192 193 193 194 -(% style="color:blue" %) **Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.182 +**(% style="color:blue" %)Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 195 195 196 -(% style="color:blue" %) **Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.184 +**(% style="color:blue" %)Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 197 197 198 198 199 199 == 1.8 Button & LEDs == ... ... @@ -203,17 +203,20 @@ 203 203 204 204 205 205 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 206 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action** 207 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 208 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 194 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action** 195 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|((( 196 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **(% style="color:blue" %)blue led** (%%)will blink once. 197 + 209 209 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 210 210 ))) 211 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 212 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 213 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 200 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|((( 201 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:#037691" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 202 + 203 +**(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network. 204 + 214 214 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 215 215 ))) 216 -|(% style="width:1 67px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red"%)**Redled**(%%)will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.207 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 217 217 218 218 219 219 ... ... @@ -241,6 +241,8 @@ 241 241 == 1.11 Mechanical == 242 242 243 243 235 + 236 + 244 244 [[image:1675143884058-338.png]] 245 245 246 246 ... ... @@ -255,9 +255,10 @@ 255 255 == 2.1 How it works == 256 256 257 257 258 -The PS-LB is configured as (% style="color:#037691" %) **LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.251 +The PS-LB is configured as **(% style="color:#037691" %)LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 259 259 260 260 254 + 261 261 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 262 262 263 263 ... ... @@ -270,7 +270,7 @@ 270 270 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 271 271 272 272 273 -(% style="color:blue" %) **Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.267 +**(% style="color:blue" %)Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB. 274 274 275 275 Each PS-LB is shipped with a sticker with the default device EUI as below: 276 276 ... ... @@ -281,38 +281,48 @@ 281 281 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 282 282 283 283 284 -(% style="color:blue" %) **Register the device**278 +**(% style="color:blue" %)Register the device** 285 285 286 286 [[image:1675144099263-405.png]] 287 287 288 288 289 -(% style="color:blue" %) **Add APP EUI and DEV EUI**283 +**(% style="color:blue" %)Add APP EUI and DEV EUI** 290 290 291 291 [[image:1675144117571-832.png]] 292 292 293 293 294 -(% style="color:blue" %) **Add APP EUI in the application**288 +**(% style="color:blue" %)Add APP EUI in the application** 295 295 296 296 297 297 [[image:1675144143021-195.png]] 298 298 299 299 300 -(% style="color:blue" %) **Add APP KEY**294 +**(% style="color:blue" %)Add APP KEY** 301 301 302 302 [[image:1675144157838-392.png]] 303 303 304 -(% style="color:blue" %) **Step 2:**(%%) Activate on PS-LB298 +**(% style="color:blue" %)Step 2:**(%%) Activate on PS-LB 305 305 306 306 307 307 Press the button for 5 seconds to activate the PS-LB. 308 308 309 -(% style="color:green" %) **Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.303 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:blue" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. **(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network. 310 310 311 311 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 312 312 313 313 308 + 314 314 == 2.3 Uplink Payload == 315 315 311 + 312 +Uplink payloads have two types: 313 + 314 +* Distance Value: Use FPORT=2 315 +* Other control commands: Use other FPORT fields. 316 + 317 +The application server should parse the correct value based on FPORT settings. 318 + 319 + 316 316 === 2.3.1 Device Status, FPORT~=5 === 317 317 318 318 ... ... @@ -323,8 +323,8 @@ 323 323 324 324 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 325 325 |(% colspan="6" %)**Device Status (FPORT=5)** 326 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**| (% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**327 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version| (% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT330 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2** 331 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT 328 328 329 329 Example parse in TTNv3 330 330 ... ... @@ -331,11 +331,11 @@ 331 331 [[image:1675144504430-490.png]] 332 332 333 333 334 -(% style="color:#037691" %) **Sensor Model**(%%): For PS-LB, this value is 0x16338 +**(% style="color:#037691" %)Sensor Model**(%%): For PS-LB, this value is 0x16 335 335 336 -(% style="color:#037691" %) **Firmware Version**(%%): 0x0100, Means: v1.0.0 version340 +**(% style="color:#037691" %)Firmware Version**(%%): 0x0100, Means: v1.0.0 version 337 337 338 -(% style="color:#037691" %) **Frequency Band**:342 +**(% style="color:#037691" %)Frequency Band**: 339 339 340 340 *0x01: EU868 341 341 ... ... @@ -366,7 +366,7 @@ 366 366 *0x0e: MA869 367 367 368 368 369 -(% style="color:#037691" %) **Sub-Band**:373 +**(% style="color:#037691" %)Sub-Band**: 370 370 371 371 AU915 and US915:value 0x00 ~~ 0x08 372 372 ... ... @@ -375,7 +375,7 @@ 375 375 Other Bands: Always 0x00 376 376 377 377 378 -(% style="color:#037691" %) **Battery Info**:382 +**(% style="color:#037691" %)Battery Info**: 379 379 380 380 Check the battery voltage. 381 381 ... ... @@ -393,12 +393,13 @@ 393 393 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 394 394 |(% style="width:97px" %)((( 395 395 **Size(bytes)** 396 -)))|(% style="width:48px" %)**2**|(% style="width: 71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**397 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3. 4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.8IN126IN226INTpin"]]400 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1** 401 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] 398 398 399 399 [[image:1675144608950-310.png]] 400 400 401 401 406 + 402 402 === 2.3.3 Battery Info === 403 403 404 404 ... ... @@ -412,41 +412,35 @@ 412 412 === 2.3.4 Probe Model === 413 413 414 414 415 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe.420 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 416 416 417 417 418 418 For example. 419 419 420 420 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 421 -|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning** 422 -|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 423 -|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 424 -|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure 426 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning** 427 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 428 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 425 425 426 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.430 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value. 427 427 428 428 429 429 === 2.3.5 0~~20mA value (IDC_IN) === 430 430 431 431 432 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.436 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level. 433 433 434 -(% style="color:#037691" %) **Example**:438 +**(% style="color:#037691" %)Example**: 435 435 436 436 27AE(H) = 10158 (D)/1000 = 10.158mA. 437 437 438 438 439 -Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example: 440 - 441 -[[image:image-20230225154759-1.png||height="408" width="741"]] 442 - 443 - 444 444 === 2.3.6 0~~30V value ( pin VDC_IN) === 445 445 446 446 447 447 Measure the voltage value. The range is 0 to 30V. 448 448 449 -(% style="color:#037691" %) **Example**:448 +**(% style="color:#037691" %)Example**: 450 450 451 451 138E(H) = 5006(D)/1000= 5.006V 452 452 ... ... @@ -456,45 +456,27 @@ 456 456 457 457 IN1 and IN2 are used as digital input pins. 458 458 459 -(% style="color:#037691" %) **Example**:458 +**(% style="color:#037691" %)Example**: 460 460 461 -09 (H) :(0x09&0x08)>>3=1 IN1 pin is high level.460 +09 (H) :(0x09&0x08)>>3=1 IN1 pin is high level. 462 462 463 -09 (H) :(0x09&0x04)>>2=0 IN2 pin is low level.462 +09 (H) :(0x09&0x04)>>2=0 IN2 pin is low level. 464 464 465 465 466 -This data field shows if this packet is generated by (% style="color:blue" %) **Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.465 +This data field shows if this packet is generated by **(% style="color:blue" %)Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal. 467 467 468 -(% style="color:#037691" %) **Example:**467 +**(% style="color:#037691" %)Example:** 469 469 470 -09 (H) :(0x09&0x02)>>1=1 The level of the interrupt pin.469 +09 (H) :(0x09&0x02)>>1=1 The level of the interrupt pin. 471 471 472 -09 (H) :0x09&0x01=1 0x00: Normal uplink packet.471 +09 (H) :0x09&0x01=1 0x00: Normal uplink packet. 473 473 474 474 0x01: Interrupt Uplink Packet. 475 475 476 476 477 -=== (%id="cke_bm_109176S"style="display:none"%) (%%)2.3.8 Sensorvalue, FPORT~=7===476 +=== 2.3.8 Decode payload in The Things Network === 478 478 479 479 480 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %) 481 -|(% style="width:94px" %)((( 482 -**Size(bytes)** 483 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n 484 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)((( 485 -Voltage value, each 2 bytes is a set of voltage values. 486 -))) 487 - 488 -[[image:image-20230220171300-1.png||height="207" width="863"]] 489 - 490 -Multiple sets of data collected are displayed in this form: 491 - 492 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2] 493 - 494 - 495 -=== 2.3.9 Decode payload in The Things Network === 496 - 497 - 498 498 While using TTN network, you can add the payload format to decode the payload. 499 499 500 500 ... ... @@ -516,9 +516,9 @@ 516 516 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 517 517 518 518 519 -(% style="color:blue" %) **Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.500 +**(% style="color:blue" %)Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time. 520 520 521 -(% style="color:blue" %) **Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:502 +**(% style="color:blue" %)Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 522 522 523 523 524 524 [[image:1675144951092-237.png]] ... ... @@ -527,9 +527,9 @@ 527 527 [[image:1675144960452-126.png]] 528 528 529 529 530 -(% style="color:blue" %) **Step 3:**(%%) Create an account or log in Datacake.511 +**(% style="color:blue" %)Step 3:**(%%) Create an account or log in Datacake. 531 531 532 -(% style="color:blue" %) **Step 4:** (%%)Create PS-LB product.513 +**(% style="color:#blue" %)Step 4:** (%%)Create PS-LB product. 533 533 534 534 [[image:1675145004465-869.png]] 535 535 ... ... @@ -542,7 +542,7 @@ 542 542 [[image:1675145029119-717.png]] 543 543 544 544 545 -(% style="color:blue" %) **Step 5: **(%%)add payload decode526 +**(% style="color:blue" %)Step 5: **(%%)add payload decode 546 546 547 547 [[image:1675145051360-659.png]] 548 548 ... ... @@ -550,6 +550,7 @@ 550 550 [[image:1675145060812-420.png]] 551 551 552 552 534 + 553 553 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 554 554 555 555 ... ... @@ -572,17 +572,19 @@ 572 572 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]] 573 573 574 574 557 + 575 575 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink = 576 576 577 577 578 578 Use can configure PS-LB via AT Command or LoRaWAN Downlink. 579 579 580 -* AT Command Connection: See [[FAQ>> ||anchor="H7.FAQ"]].563 +* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]]. 581 581 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 582 582 566 + 583 583 There are two kinds of commands to configure PS-LB, they are: 584 584 585 -* (% style="color:#037691" %)**General Commands**569 +* **General Commands**. 586 586 587 587 These commands are to configure: 588 588 ... ... @@ -594,7 +594,7 @@ 594 594 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 595 595 596 596 597 -* (% style="color:#037691" %)**Commands special design for PS-LB**581 +* **Commands special design for PS-LB** 598 598 599 599 These commands only valid for PS-LB, as below: 600 600 ... ... @@ -604,59 +604,69 @@ 604 604 605 605 Feature: Change LoRaWAN End Node Transmit Interval. 606 606 607 - (% style="color:blue" %)**AT Command: AT+TDC**591 +**AT Command: AT+TDC** 608 608 609 609 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 610 -| =(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**611 -| (% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((594 +|**Command Example**|**Function**|**Response** 595 +|AT+TDC=?|Show current transmit Interval|((( 612 612 30000 597 + 613 613 OK 599 + 614 614 the interval is 30000ms = 30s 615 615 ))) 616 -| (% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((602 +|AT+TDC=60000|Set Transmit Interval|((( 617 617 OK 604 + 618 618 Set transmit interval to 60000ms = 60 seconds 619 619 ))) 620 620 621 - (% style="color:blue" %)**Downlink Command: 0x01**608 +**Downlink Command: 0x01** 622 622 623 623 Format: Command Code (0x01) followed by 3 bytes time value. 624 624 625 -If the downlink payload=0100003C, it means set the END Node 's Transmit Interval to 0x00003C=60(S), while type code is 01.612 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 626 626 627 -* Example 1: Downlink Payload: 0100001E 628 -* Example 2: Downlink Payload: 0100003C 614 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 615 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 629 629 617 + 630 630 == 3.2 Set Interrupt Mode == 631 631 632 632 633 633 Feature, Set Interrupt mode for GPIO_EXIT. 634 634 635 - (% style="color:blue" %)**AT Command: AT+INTMOD**623 +**AT Command: AT+INTMOD** 636 636 637 637 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 638 -| =(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**639 -| (% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((626 +|**Command Example**|**Function**|**Response** 627 +|AT+INTMOD=?|Show current interrupt mode|((( 640 640 0 629 + 641 641 OK 642 -the mode is 0 =Disable Interrupt 631 + 632 +the mode is 0 = No interruption 643 643 ))) 644 -| (% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((634 +|AT+INTMOD=2|((( 645 645 Set Transmit Interval 646 -0. (Disable Interrupt), 647 -~1. (Trigger by rising and falling edge) 648 -2. (Trigger by falling edge) 649 -3. (Trigger by rising edge) 650 -)))|(% style="width:157px" %)OK 651 651 652 - (%style="color:blue"%)**Downlink Command: 0x06**637 +~1. (Disable Interrupt), 653 653 639 +2. (Trigger by rising and falling edge), 640 + 641 +3. (Trigger by falling edge) 642 + 643 +4. (Trigger by rising edge) 644 +)))|OK 645 + 646 +**Downlink Command: 0x06** 647 + 654 654 Format: Command Code (0x06) followed by 3 bytes. 655 655 656 656 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 657 657 658 -* Example 1: Downlink Payload: 06000000 659 -* Example 2: Downlink Payload: 06000003 652 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 653 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 660 660 661 661 662 662 ... ... @@ -665,69 +665,87 @@ 665 665 666 666 Feature, Control the output 3V3 , 5V or 12V. 667 667 668 - (% style="color:blue" %)**AT Command: AT+3V3T**662 +**AT Command: AT+3V3T** 669 669 670 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 474px" %)671 -| =(% style="width:4px;" %)**Command Example**|=(% style="width:01px;" %)**Function**|=(% style="width:6px;" %)**Response**672 -|(% style="width:15 4px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((664 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 665 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response** 666 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)((( 673 673 0 668 + 674 674 OK 675 675 ))) 676 -|(% style="width:15 4px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((671 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)((( 677 677 OK 673 + 678 678 default setting 679 679 ))) 680 -|(% style="width:15 4px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((676 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)((( 681 681 OK 678 + 679 + 682 682 ))) 683 -|(% style="width:15 4px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((681 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)((( 684 684 OK 683 + 684 + 685 685 ))) 686 686 687 -(% style="color:blue" %)**AT Command: AT+5VT** 688 688 689 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %) 690 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response** 691 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)((( 688 +**AT Command: AT+5VT** 689 + 690 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 691 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response** 692 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)((( 692 692 0 694 + 693 693 OK 694 694 ))) 695 -|(% style="width:15 5px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((697 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)((( 696 696 OK 699 + 697 697 default setting 698 698 ))) 699 -|(% style="width:15 5px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((702 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)((( 700 700 OK 704 + 705 + 701 701 ))) 702 -|(% style="width:15 5px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((707 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)((( 703 703 OK 709 + 710 + 704 704 ))) 705 705 706 -(% style="color:blue" %)**AT Command: AT+12VT** 707 707 708 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %) 709 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response** 710 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)((( 714 +**AT Command: AT+12VT** 715 + 716 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 717 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response** 718 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|((( 711 711 0 720 + 712 712 OK 713 713 ))) 714 -|(% style="width:156px" %)AT+12VT=0|(% style="width: 199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK715 -|(% style="width:156px" %)AT+12VT=500|(% style="width: 199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((723 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK 724 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|((( 716 716 OK 726 + 727 + 717 717 ))) 718 718 719 -(% style="color:blue" %)**Downlink Command: 0x07** 720 720 731 +**Downlink Command: 0x07** 732 + 721 721 Format: Command Code (0x07) followed by 3 bytes. 722 722 723 723 The first byte is which power, the second and third bytes are the time to turn on. 724 724 725 -* Example 1: Downlink Payload: 070101F4 **~-~-->**726 -* Example 2: Downlink Payload: 0701FFFF **~-~-->**AT+3V3T=65535727 -* Example 3: Downlink Payload: 070203E8 **~-~-->**AT+5VT=1000728 -* Example 4: Downlink Payload: 07020000 **~-~-->**AT+5VT=0729 -* Example 5: Downlink Payload: 070301F4 **~-~-->**AT+12VT=500730 -* Example 6: Downlink Payload: 07030000 **~-~-->**AT+12VT=0737 +* Example 1: Downlink Payload: 070101F4 -> AT+3V3T=500 738 +* Example 2: Downlink Payload: 0701FFFF -> AT+3V3T=65535 739 +* Example 3: Downlink Payload: 070203E8 -> AT+5VT=1000 740 +* Example 4: Downlink Payload: 07020000 -> AT+5VT=0 741 +* Example 5: Downlink Payload: 070301F4 -> AT+12VT=500 742 +* Example 6: Downlink Payload: 07030000 -> AT+12VT=0 731 731 732 732 733 733 ... ... @@ -734,81 +734,33 @@ 734 734 == 3.4 Set the Probe Model == 735 735 736 736 737 - Usersneed toconfigure this parameteraccording to the type of external probe. In this way, the server candecodeaccordingto this value, and convert the current value output by the sensor into water depth or pressure value.749 +**AT Command: AT** **+PROBE** 738 738 739 -**AT Command: AT** **+PROBE** 740 - 741 -AT+PROBE=aabb 742 - 743 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters. 744 - 745 -When aa=01, it is the pressure mode, which converts the current into a pressure value; 746 - 747 -bb represents which type of pressure sensor it is. 748 - 749 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C) 750 - 751 751 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 752 -|**Command Example**|**Function**|**Response** 753 -|AT +PROBE =?|Get or Set the probe model.|0 754 -OK 755 -|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK 756 -|((( 757 -AT +PROBE =000A 752 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response** 753 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|((( 754 +0 758 758 759 - 760 -)))|Set water depth sensor mode, 10m type.|OK 761 -|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK 762 -|AT +PROBE =0000|Initial state, no settings.|OK 763 - 764 -**Downlink Command: 0x08** 765 - 766 -Format: Command Code (0x08) followed by 2 bytes. 767 - 768 -* Example 1: Downlink Payload: 080003 **~-~-->** AT+PROBE=0003 769 -* Example 2: Downlink Payload: 080101 **~-~-->** AT+PROBE=0101 770 - 771 - 772 - 773 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) == 774 - 775 - 776 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time. 777 - 778 -(% style="color:blue" %)**AT Command: AT** **+STDC** 779 - 780 -AT+STDC=aa,bb,bb 781 - 782 -(% style="color:#037691" %)**aa:**(%%) 783 -**0:** means disable this function and use TDC to send packets. 784 -**1:** means enable this function, use the method of multiple acquisitions to send packets. 785 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535 786 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120 787 - 788 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 789 -|**Command Example**|**Function**|**Response** 790 -|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18 791 791 OK 792 -|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|((( 793 -Attention:Take effect after ATZ 794 - 795 -OK 796 796 ))) 797 -|AT+STDC=0, 0,0|((( 798 -Use the TDC interval to send packets.(default) 758 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK 759 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|((( 760 +OK 799 799 800 800 801 -)))|((( 802 -Attention:Take effect after ATZ 803 - 763 +))) 764 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|((( 804 804 OK 766 + 767 + 805 805 ))) 806 806 807 - (% style="color:blue" %)**Downlink Command: 0xAE**770 +**Downlink Command: 0x08** 808 808 809 -Format: Command Code (0x08) followed by 5bytes.772 +Format: Command Code (0x08) followed by 2 bytes. 810 810 811 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->** AT+STDC=1,600,18 774 +* Example 1: Downlink Payload: 080003 -> AT+PROBE=0003 775 +* Example 2: Downlink Payload: 080101 -> AT+PROBE=0101 812 812 813 813 814 814 ... ... @@ -819,6 +819,7 @@ 819 819 820 820 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 821 821 786 + 822 822 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 823 823 824 824 [[image:1675146710956-626.png]] ... ... @@ -842,12 +842,17 @@ 842 842 843 843 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 844 844 810 + 845 845 Instruction to use as below: 846 846 847 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 848 848 849 - (% style="color:blue" %)**Step2:**(%%)Openand choose814 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 850 850 816 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 817 + 818 + 819 +**Step 2:** Open it and choose 820 + 851 851 * Product Model 852 852 * Uplink Interval 853 853 * Working Mode ... ... @@ -928,11 +928,11 @@ 928 928 = 9. Packing Info = 929 929 930 930 931 - (% style="color:#037691" %)**Package Includes**:901 +**Package Includes**: 932 932 933 933 * PS-LB LoRaWAN Pressure Sensor 934 934 935 - (% style="color:#037691" %)**Dimension and weight**:905 +**Dimension and weight**: 936 936 937 937 * Device Size: cm 938 938 * Device Weight: g ... ... @@ -945,7 +945,6 @@ 945 945 946 946 947 947 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 948 - 949 949 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 950 950 951 951
- image-20230201090514-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -560.9 KB - Content
- image-20230220171300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.0 KB - Content
- image-20230222174559-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -19.4 KB - Content
- image-20230225154759-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -468.9 KB - Content