<
From version < 51.1 >
edited by Edwin Chen
on 2023/03/13 14:56
To version < 42.16 >
edited by Xiaoling
on 2023/01/31 16:11
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.Xiaoling
Content
... ... @@ -16,33 +16,22 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 -(((
20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 -)))
19 +The Dragino PS-LB series sensors are **(% style="color:blue" %)LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
22 22  
23 -(((
24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 -)))
21 +The PS-LB series sensors include **(% style="color:blue" %)Thread Installation Type**(%%) and **(% style="color:blue" %)Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
26 26  
27 -(((
28 28  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 32  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 -)))
34 34  
35 -(((
36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 -)))
27 +PS-LB is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
38 38  
39 -(((
40 40  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 -)))
42 42  
43 43  [[image:1675071321348-194.png]]
44 44  
45 45  
34 +
46 46  == 1.2 ​Features ==
47 47  
48 48  
... ... @@ -58,24 +58,23 @@
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * 8500mAh Battery for long term use
61 -* Controllable 3.3v,5v and 12v output to power external sensor
62 62  
63 63  
64 64  == 1.3 Specification ==
65 65  
66 66  
67 -(% style="color:#037691" %)**Micro Controller:**
55 +**(% style="color:#037691" %)Micro Controller:**
68 68  
69 69  * MCU: 48Mhz ARM
70 70  * Flash: 256KB
71 71  * RAM: 64KB
72 72  
73 -(% style="color:#037691" %)**Common DC Characteristics:**
61 +**(% style="color:#037691" %)Common DC Characteristics:**
74 74  
75 75  * Supply Voltage: 2.5v ~~ 3.6v
76 76  * Operating Temperature: -40 ~~ 85°C
77 77  
78 -(% style="color:#037691" %)**LoRa Spec:**
66 +**(% style="color:#037691" %)LoRa Spec:**
79 79  
80 80  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
81 81  * Max +22 dBm constant RF output vs.
... ... @@ -82,19 +82,19 @@
82 82  * RX sensitivity: down to -139 dBm.
83 83  * Excellent blocking immunity
84 84  
85 -(% style="color:#037691" %)**Current Input Measuring :**
73 +**(% style="color:#037691" %)Current Input Measuring :**
86 86  
87 87  * Range: 0 ~~ 20mA
88 88  * Accuracy: 0.02mA
89 89  * Resolution: 0.001mA
90 90  
91 -(% style="color:#037691" %)**Voltage Input Measuring:**
79 +**(% style="color:#037691" %)Voltage Input Measuring:**
92 92  
93 93  * Range: 0 ~~ 30v
94 94  * Accuracy: 0.02v
95 95  * Resolution: 0.001v
96 96  
97 -(% style="color:#037691" %)**Battery:**
85 +**(% style="color:#037691" %)Battery:**
98 98  
99 99  * Li/SOCI2 un-chargeable battery
100 100  * Capacity: 8500mAh
... ... @@ -102,7 +102,7 @@
102 102  * Max continuously current: 130mA
103 103  * Max boost current: 2A, 1 second
104 104  
105 -(% style="color:#037691" %)**Power Consumption**
93 +**(% style="color:#037691" %)Power Consumption**
106 106  
107 107  * Sleep Mode: 5uA @ 3.3v
108 108  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
... ... @@ -136,8 +136,11 @@
136 136  * Measuring Range: Measure range can be customized, up to 100m.
137 137  * Accuracy: 0.2% F.S
138 138  * Long-Term Stability: ±0.2% F.S / Year
127 +* Overload 200% F.S
128 +* Zero Temperature Drift: ±2% F.S)
129 +* FS Temperature Drift: ±2% F.S
139 139  * Storage temperature: -30℃~~80℃
140 -* Operating temperature: 0℃~~50
131 +* Operating temperature: -40℃~~85℃
141 141  * Material: 316 stainless steels
142 142  
143 143  
... ... @@ -145,12 +145,13 @@
145 145  
146 146  
147 147  
139 +
148 148  == 1.6 Application and Installation ==
149 149  
150 150  === 1.6.1 Thread Installation Type ===
151 151  
152 152  
153 -(% style="color:blue" %)**Application:**
145 +**(% style="color:blue" %)Application:**
154 154  
155 155  * Hydraulic Pressure
156 156  * Petrochemical Industry
... ... @@ -168,7 +168,7 @@
168 168  === 1.6.2 Immersion Type ===
169 169  
170 170  
171 -(% style="color:blue" %)**Application:**
163 +**(% style="color:blue" %)Application:**
172 172  
173 173  Liquid & Water Pressure / Level detect.
174 174  
... ... @@ -187,9 +187,9 @@
187 187  == 1.7 Sleep mode and working mode ==
188 188  
189 189  
190 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
182 +**(% style="color:blue" %)Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
191 191  
192 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
184 +**(% style="color:blue" %)Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
193 193  
194 194  
195 195  == 1.8 Button & LEDs ==
... ... @@ -199,19 +199,23 @@
199 199  
200 200  
201 201  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
202 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
203 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
204 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
194 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action**
195 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
196 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **(% style="color:blue" %)blue led** (%%)will blink once.
197 +
205 205  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
206 206  )))
207 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
208 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
209 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
200 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
201 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:#037691" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
202 +
203 +**(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
204 +
210 210  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
211 211  )))
212 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
207 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
213 213  
214 214  
210 +
215 215  == 1.9 Pin Mapping ==
216 216  
217 217  
... ... @@ -236,6 +236,8 @@
236 236  == 1.11 Mechanical ==
237 237  
238 238  
235 +
236 +
239 239  [[image:1675143884058-338.png]]
240 240  
241 241  
... ... @@ -250,9 +250,10 @@
250 250  == 2.1 How it works ==
251 251  
252 252  
253 -The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
251 +The PS-LB is configured as **(% style="color:#037691" %)LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
254 254  
255 255  
254 +
256 256  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
257 257  
258 258  
... ... @@ -265,7 +265,7 @@
265 265  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
266 266  
267 267  
268 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
267 +**(% style="color:blue" %)Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
269 269  
270 270  Each PS-LB is shipped with a sticker with the default device EUI as below:
271 271  
... ... @@ -276,38 +276,48 @@
276 276  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
277 277  
278 278  
279 -(% style="color:blue" %)**Register the device**
278 +**(% style="color:blue" %)Register the device**
280 280  
281 281  [[image:1675144099263-405.png]]
282 282  
283 283  
284 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
283 +**(% style="color:blue" %)Add APP EUI and DEV EUI**
285 285  
286 286  [[image:1675144117571-832.png]]
287 287  
288 288  
289 -(% style="color:blue" %)**Add APP EUI in the application**
288 +**(% style="color:blue" %)Add APP EUI in the application**
290 290  
291 291  
292 292  [[image:1675144143021-195.png]]
293 293  
294 294  
295 -(% style="color:blue" %)**Add APP KEY**
294 +**(% style="color:blue" %)Add APP KEY**
296 296  
297 297  [[image:1675144157838-392.png]]
298 298  
299 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
298 +**(% style="color:blue" %)Step 2:**(%%) Activate on PS-LB
300 300  
301 301  
302 302  Press the button for 5 seconds to activate the PS-LB.
303 303  
304 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
303 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:blue" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. **(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
305 305  
306 306  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
307 307  
308 308  
308 +
309 309  == 2.3 ​Uplink Payload ==
310 310  
311 +
312 +Uplink payloads have two types:
313 +
314 +* Distance Value: Use FPORT=2
315 +* Other control commands: Use other FPORT fields.
316 +
317 +The application server should parse the correct value based on FPORT settings.
318 +
319 +
311 311  === 2.3.1 Device Status, FPORT~=5 ===
312 312  
313 313  
... ... @@ -318,8 +318,8 @@
318 318  
319 319  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
320 320  |(% colspan="6" %)**Device Status (FPORT=5)**
321 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
322 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
330 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
331 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
323 323  
324 324  Example parse in TTNv3
325 325  
... ... @@ -326,11 +326,11 @@
326 326  [[image:1675144504430-490.png]]
327 327  
328 328  
329 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
338 +**(% style="color:#037691" %)Sensor Model**(%%): For PS-LB, this value is 0x16
330 330  
331 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
340 +**(% style="color:#037691" %)Firmware Version**(%%): 0x0100, Means: v1.0.0 version
332 332  
333 -(% style="color:#037691" %)**Frequency Band**:
342 +**(% style="color:#037691" %)Frequency Band**:
334 334  
335 335  *0x01: EU868
336 336  
... ... @@ -361,7 +361,7 @@
361 361  *0x0e: MA869
362 362  
363 363  
364 -(% style="color:#037691" %)**Sub-Band**:
373 +**(% style="color:#037691" %)Sub-Band**:
365 365  
366 366  AU915 and US915:value 0x00 ~~ 0x08
367 367  
... ... @@ -370,7 +370,7 @@
370 370  Other Bands: Always 0x00
371 371  
372 372  
373 -(% style="color:#037691" %)**Battery Info**:
382 +**(% style="color:#037691" %)Battery Info**:
374 374  
375 375  Check the battery voltage.
376 376  
... ... @@ -388,12 +388,13 @@
388 388  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
389 389  |(% style="width:97px" %)(((
390 390  **Size(bytes)**
391 -)))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
392 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
400 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1**
401 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
393 393  
394 394  [[image:1675144608950-310.png]]
395 395  
396 396  
406 +
397 397  === 2.3.3 Battery Info ===
398 398  
399 399  
... ... @@ -407,41 +407,35 @@
407 407  === 2.3.4 Probe Model ===
408 408  
409 409  
410 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
420 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
411 411  
412 412  
413 413  For example.
414 414  
415 415  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
416 -|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning**
417 -|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
418 -|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
419 -|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure
426 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
427 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
428 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
420 420  
421 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
430 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
422 422  
423 423  
424 424  === 2.3.5 0~~20mA value (IDC_IN) ===
425 425  
426 426  
427 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
436 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
428 428  
429 -(% style="color:#037691" %)**Example**:
438 +**(% style="color:#037691" %)Example**:
430 430  
431 431  27AE(H) = 10158 (D)/1000 = 10.158mA.
432 432  
433 433  
434 -Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
435 -
436 -[[image:image-20230225154759-1.png||height="408" width="741"]]
437 -
438 -
439 439  === 2.3.6 0~~30V value ( pin VDC_IN) ===
440 440  
441 441  
442 442  Measure the voltage value. The range is 0 to 30V.
443 443  
444 -(% style="color:#037691" %)**Example**:
448 +**(% style="color:#037691" %)Example**:
445 445  
446 446  138E(H) = 5006(D)/1000= 5.006V
447 447  
... ... @@ -451,45 +451,27 @@
451 451  
452 452  IN1 and IN2 are used as digital input pins.
453 453  
454 -(% style="color:#037691" %)**Example**:
458 +**(% style="color:#037691" %)Example**:
455 455  
456 -09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
460 +09 (H):(0x09&0x08)>>3=1    IN1 pin is high level.
457 457  
458 -09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
462 +09 (H):(0x09&0x04)>>2=0    IN2 pin is low level.
459 459  
460 460  
461 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
465 +This data field shows if this packet is generated by **(% style="color:blue" %)Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
462 462  
463 -(% style="color:#037691" %)**Example:**
467 +**(% style="color:#037691" %)Example:**
464 464  
465 -09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
469 +09 (H):(0x09&0x02)>>1=1    The level of the interrupt pin.
466 466  
467 -09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
471 +09 (H):0x09&0x01=1              0x00: Normal uplink packet.
468 468  
469 469  0x01: Interrupt Uplink Packet.
470 470  
471 471  
472 -=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 ===
476 +=== 2.3.8 ​Decode payload in The Things Network ===
473 473  
474 474  
475 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
476 -|(% style="width:94px" %)(((
477 -**Size(bytes)**
478 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n
479 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
480 -Voltage value, each 2 bytes is a set of voltage values.
481 -)))
482 -
483 -[[image:image-20230220171300-1.png||height="207" width="863"]]
484 -
485 -Multiple sets of data collected are displayed in this form:
486 -
487 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
488 -
489 -
490 -=== 2.3.9 ​Decode payload in The Things Network ===
491 -
492 -
493 493  While using TTN network, you can add the payload format to decode the payload.
494 494  
495 495  
... ... @@ -511,9 +511,9 @@
511 511  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
512 512  
513 513  
514 -(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
500 +**(% style="color:blue" %)Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
515 515  
516 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
502 +**(% style="color:blue" %)Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
517 517  
518 518  
519 519  [[image:1675144951092-237.png]]
... ... @@ -522,9 +522,9 @@
522 522  [[image:1675144960452-126.png]]
523 523  
524 524  
525 -(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
511 +**(% style="color:blue" %)Step 3:**(%%) Create an account or log in Datacake.
526 526  
527 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
513 +**(% style="color:#blue" %)Step 4:** (%%)Create PS-LB product.
528 528  
529 529  [[image:1675145004465-869.png]]
530 530  
... ... @@ -537,7 +537,7 @@
537 537  [[image:1675145029119-717.png]]
538 538  
539 539  
540 -(% style="color:blue" %)**Step 5: **(%%)add payload decode
526 +**(% style="color:blue" %)Step 5: **(%%)add payload decode
541 541  
542 542  [[image:1675145051360-659.png]]
543 543  
... ... @@ -545,6 +545,7 @@
545 545  [[image:1675145060812-420.png]]
546 546  
547 547  
534 +
548 548  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
549 549  
550 550  
... ... @@ -567,17 +567,19 @@
567 567  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
568 568  
569 569  
557 +
570 570  = 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
571 571  
572 572  
573 573  Use can configure PS-LB via AT Command or LoRaWAN Downlink.
574 574  
575 -* AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
563 +* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
576 576  * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
577 577  
566 +
578 578  There are two kinds of commands to configure PS-LB, they are:
579 579  
580 -* (% style="color:#037691" %)**General Commands**
569 +* **General Commands**.
581 581  
582 582  These commands are to configure:
583 583  
... ... @@ -589,7 +589,7 @@
589 589  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
590 590  
591 591  
592 -* (% style="color:#037691" %)**Commands special design for PS-LB**
581 +* **Commands special design for PS-LB**
593 593  
594 594  These commands only valid for PS-LB, as below:
595 595  
... ... @@ -599,28 +599,31 @@
599 599  
600 600  Feature: Change LoRaWAN End Node Transmit Interval.
601 601  
602 -(% style="color:blue" %)**AT Command: AT+TDC**
591 +**AT Command: AT+TDC**
603 603  
604 604  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
605 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
606 -|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
594 +|**Command Example**|**Function**|**Response**
595 +|AT+TDC=?|Show current transmit Interval|(((
607 607  30000
597 +
608 608  OK
599 +
609 609  the interval is 30000ms = 30s
610 610  )))
611 -|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
602 +|AT+TDC=60000|Set Transmit Interval|(((
612 612  OK
604 +
613 613  Set transmit interval to 60000ms = 60 seconds
614 614  )))
615 615  
616 -(% style="color:blue" %)**Downlink Command: 0x01**
608 +**Downlink Command: 0x01**
617 617  
618 618  Format: Command Code (0x01) followed by 3 bytes time value.
619 619  
620 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
612 +If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
621 621  
622 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
623 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
614 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
615 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
624 624  
625 625  
626 626  == 3.2 Set Interrupt Mode ==
... ... @@ -628,182 +628,162 @@
628 628  
629 629  Feature, Set Interrupt mode for GPIO_EXIT.
630 630  
631 -(% style="color:blue" %)**AT Command: AT+INTMOD**
623 +**AT Command: AT+INTMOD**
632 632  
633 633  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
634 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
635 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
626 +|**Command Example**|**Function**|**Response**
627 +|AT+INTMOD=?|Show current interrupt mode|(((
636 636  0
629 +
637 637  OK
638 -the mode is 0 =Disable Interrupt
631 +
632 +the mode is 0 = No interruption
639 639  )))
640 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
634 +|AT+INTMOD=2|(((
641 641  Set Transmit Interval
642 -0. (Disable Interrupt),
643 -~1. (Trigger by rising and falling edge)
644 -2. (Trigger by falling edge)
645 -3. (Trigger by rising edge)
646 -)))|(% style="width:157px" %)OK
647 647  
648 -(% style="color:blue" %)**Downlink Command: 0x06**
637 +~1. (Disable Interrupt),
649 649  
639 +2. (Trigger by rising and falling edge),
640 +
641 +3. (Trigger by falling edge)
642 +
643 +4. (Trigger by rising edge)
644 +)))|OK
645 +
646 +**Downlink Command: 0x06**
647 +
650 650  Format: Command Code (0x06) followed by 3 bytes.
651 651  
652 652  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
653 653  
654 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
655 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
652 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
653 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
656 656  
657 657  
656 +
658 658  == 3.3 Set the output time ==
659 659  
660 660  
661 661  Feature, Control the output 3V3 , 5V or 12V.
662 662  
663 -(% style="color:blue" %)**AT Command: AT+3V3T**
662 +**AT Command: AT+3V3T**
664 664  
665 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
666 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
667 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
664 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
665 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**
666 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
668 668  0
668 +
669 669  OK
670 670  )))
671 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
671 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
672 672  OK
673 +
673 673  default setting
674 674  )))
675 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
676 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
676 676  OK
678 +
679 +
677 677  )))
678 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
681 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
679 679  OK
683 +
684 +
680 680  )))
681 681  
682 -(% style="color:blue" %)**AT Command: AT+5VT**
683 683  
684 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
685 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
686 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
688 +**AT Command: AT+5VT**
689 +
690 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
691 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**
692 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
687 687  0
694 +
688 688  OK
689 689  )))
690 -|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
697 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
691 691  OK
699 +
692 692  default setting
693 693  )))
694 -|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
702 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
695 695  OK
704 +
705 +
696 696  )))
697 -|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
707 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
698 698  OK
709 +
710 +
699 699  )))
700 700  
701 -(% style="color:blue" %)**AT Command: AT+12VT**
702 702  
703 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
704 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
705 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
714 +**AT Command: AT+12VT**
715 +
716 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
717 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response**
718 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
706 706  0
720 +
707 707  OK
708 708  )))
709 -|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
710 -|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
723 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
724 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
711 711  OK
726 +
727 +
712 712  )))
713 713  
714 -(% style="color:blue" %)**Downlink Command: 0x07**
715 715  
731 +**Downlink Command: 0x07**
732 +
716 716  Format: Command Code (0x07) followed by 3 bytes.
717 717  
718 718  The first byte is which power, the second and third bytes are the time to turn on.
719 719  
720 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
721 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
722 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
723 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
724 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
725 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
737 +* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
738 +* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
739 +* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
740 +* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
741 +* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
742 +* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
726 726  
727 727  
745 +
728 728  == 3.4 Set the Probe Model ==
729 729  
730 730  
731 -Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
749 +**AT Command: AT** **+PROBE**
732 732  
733 -**AT Command: AT** **+PROBE**
734 -
735 -AT+PROBE=aabb
736 -
737 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
738 -
739 -When aa=01, it is the pressure mode, which converts the current into a pressure value;
740 -
741 -bb represents which type of pressure sensor it is.
742 -
743 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
744 -
745 745  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
746 -|**Command Example**|**Function**|**Response**
747 -|AT +PROBE =?|Get or Set the probe model.|0
748 -OK
749 -|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK
750 -|(((
751 -AT +PROBE =000A
752 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response**
753 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
754 +0
752 752  
753 -
754 -)))|Set water depth sensor mode, 10m type.|OK
755 -|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK
756 -|AT +PROBE =0000|Initial state, no settings.|OK
757 -
758 -**Downlink Command: 0x08**
759 -
760 -Format: Command Code (0x08) followed by 2 bytes.
761 -
762 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
763 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
764 -
765 -
766 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
767 -
768 -
769 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
770 -
771 -(% style="color:blue" %)**AT Command: AT** **+STDC**
772 -
773 -AT+STDC=aa,bb,bb
774 -
775 -(% style="color:#037691" %)**aa:**(%%)
776 -**0:** means disable this function and use TDC to send packets.
777 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
778 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
779 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
780 -
781 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
782 -|**Command Example**|**Function**|**Response**
783 -|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18
784 784  OK
785 -|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(((
786 -Attention:Take effect after ATZ
787 -
788 -OK
789 789  )))
790 -|AT+STDC=0, 0,0|(((
791 -Use the TDC interval to send packets.(default)
758 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
759 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
760 +OK
792 792  
793 793  
794 -)))|(((
795 -Attention:Take effect after ATZ
796 -
763 +)))
764 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
797 797  OK
766 +
767 +
798 798  )))
799 799  
800 -(% style="color:blue" %)**Downlink Command: 0xAE**
770 +**Downlink Command: 0x08**
801 801  
802 -Format: Command Code (0x08) followed by 5 bytes.
772 +Format: Command Code (0x08) followed by 2 bytes.
803 803  
804 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
774 +* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
775 +* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
805 805  
806 806  
778 +
807 807  = 4. Battery & how to replace =
808 808  
809 809  == 4.1 Battery Type ==
... ... @@ -811,6 +811,7 @@
811 811  
812 812  PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
813 813  
786 +
814 814  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
815 815  
816 816  [[image:1675146710956-626.png]]
... ... @@ -834,12 +834,17 @@
834 834  
835 835  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
836 836  
810 +
837 837  Instruction to use as below:
838 838  
839 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
840 840  
841 -(% style="color:blue" %)**Step 2:**(%%) Open it and choose
814 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
842 842  
816 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
817 +
818 +
819 +**Step 2:** Open it and choose
820 +
843 843  * Product Model
844 844  * Uplink Interval
845 845  * Working Mode
... ... @@ -920,11 +920,11 @@
920 920  = 9. ​Packing Info =
921 921  
922 922  
923 -(% style="color:#037691" %)**Package Includes**:
901 +**Package Includes**:
924 924  
925 925  * PS-LB LoRaWAN Pressure Sensor
926 926  
927 -(% style="color:#037691" %)**Dimension and weight**:
905 +**Dimension and weight**:
928 928  
929 929  * Device Size: cm
930 930  * Device Weight: g
... ... @@ -932,11 +932,11 @@
932 932  * Weight / pcs : g
933 933  
934 934  
913 +
935 935  = 10. Support =
936 936  
937 937  
938 938  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
939 -
940 940  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
941 941  
942 942  
image-20230201090514-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
image-20230222174559-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -19.4 KB
Content
image-20230225154759-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -468.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0