Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/04/27 10:31
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 4 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Edwin1 +XWiki.Xiaoling - Content
-
... ... @@ -16,33 +16,22 @@ 16 16 == 1.1 What is LoRaWAN Pressure Sensor == 17 17 18 18 19 -((( 20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 21 -))) 19 +The Dragino PS-LB series sensors are **(% style="color:blue" %)LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 22 22 23 -((( 24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 25 -))) 21 +The PS-LB series sensors include **(% style="color:blue" %)Thread Installation Type**(%%) and **(% style="color:blue" %)Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 26 26 27 -((( 28 28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 32 PS-LB supports BLE configure and wireless OTA update which make user easy to use. 33 -))) 34 34 35 -((( 36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 -))) 27 +PS-LB is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 38 38 39 -((( 40 40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 41 -))) 42 42 43 43 [[image:1675071321348-194.png]] 44 44 45 45 34 + 46 46 == 1.2 Features == 47 47 48 48 ... ... @@ -58,24 +58,23 @@ 58 58 * Uplink on periodically 59 59 * Downlink to change configure 60 60 * 8500mAh Battery for long term use 61 -* Controllable 3.3v,5v and 12v output to power external sensor 62 62 63 63 64 64 == 1.3 Specification == 65 65 66 66 67 -(% style="color:#037691" %) **Micro Controller:**55 +**(% style="color:#037691" %)Micro Controller:** 68 68 69 69 * MCU: 48Mhz ARM 70 70 * Flash: 256KB 71 71 * RAM: 64KB 72 72 73 -(% style="color:#037691" %) **Common DC Characteristics:**61 +**(% style="color:#037691" %)Common DC Characteristics:** 74 74 75 75 * Supply Voltage: 2.5v ~~ 3.6v 76 76 * Operating Temperature: -40 ~~ 85°C 77 77 78 -(% style="color:#037691" %) **LoRa Spec:**66 +**(% style="color:#037691" %)LoRa Spec:** 79 79 80 80 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 81 81 * Max +22 dBm constant RF output vs. ... ... @@ -82,19 +82,19 @@ 82 82 * RX sensitivity: down to -139 dBm. 83 83 * Excellent blocking immunity 84 84 85 -(% style="color:#037691" %) **Current Input Measuring :**73 +**(% style="color:#037691" %)Current Input Measuring :** 86 86 87 87 * Range: 0 ~~ 20mA 88 88 * Accuracy: 0.02mA 89 89 * Resolution: 0.001mA 90 90 91 -(% style="color:#037691" %) **Voltage Input Measuring:**79 +**(% style="color:#037691" %)Voltage Input Measuring:** 92 92 93 93 * Range: 0 ~~ 30v 94 94 * Accuracy: 0.02v 95 95 * Resolution: 0.001v 96 96 97 -(% style="color:#037691" %) **Battery:**85 +**(% style="color:#037691" %)Battery:** 98 98 99 99 * Li/SOCI2 un-chargeable battery 100 100 * Capacity: 8500mAh ... ... @@ -102,7 +102,7 @@ 102 102 * Max continuously current: 130mA 103 103 * Max boost current: 2A, 1 second 104 104 105 -(% style="color:#037691" %) **Power Consumption**93 +**(% style="color:#037691" %)Power Consumption** 106 106 107 107 * Sleep Mode: 5uA @ 3.3v 108 108 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm ... ... @@ -136,8 +136,11 @@ 136 136 * Measuring Range: Measure range can be customized, up to 100m. 137 137 * Accuracy: 0.2% F.S 138 138 * Long-Term Stability: ±0.2% F.S / Year 127 +* Overload 200% F.S 128 +* Zero Temperature Drift: ±2% F.S) 129 +* FS Temperature Drift: ±2% F.S 139 139 * Storage temperature: -30℃~~80℃ 140 -* Operating temperature: 0℃~~5 0℃131 +* Operating temperature: -40℃~~85℃ 141 141 * Material: 316 stainless steels 142 142 143 143 ... ... @@ -145,12 +145,13 @@ 145 145 146 146 147 147 139 + 148 148 == 1.6 Application and Installation == 149 149 150 150 === 1.6.1 Thread Installation Type === 151 151 152 152 153 -(% style="color:blue" %) **Application:**145 +**(% style="color:blue" %)Application:** 154 154 155 155 * Hydraulic Pressure 156 156 * Petrochemical Industry ... ... @@ -168,7 +168,7 @@ 168 168 === 1.6.2 Immersion Type === 169 169 170 170 171 -(% style="color:blue" %) **Application:**163 +**(% style="color:blue" %)Application:** 172 172 173 173 Liquid & Water Pressure / Level detect. 174 174 ... ... @@ -187,9 +187,9 @@ 187 187 == 1.7 Sleep mode and working mode == 188 188 189 189 190 -(% style="color:blue" %) **Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.182 +**(% style="color:blue" %)Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 191 191 192 -(% style="color:blue" %) **Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.184 +**(% style="color:blue" %)Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 193 193 194 194 195 195 == 1.8 Button & LEDs == ... ... @@ -199,19 +199,23 @@ 199 199 200 200 201 201 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 202 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action** 203 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 204 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 194 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action** 195 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|((( 196 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **(% style="color:blue" %)blue led** (%%)will blink once. 197 + 205 205 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 206 206 ))) 207 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 208 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 209 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 200 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|((( 201 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:#037691" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 202 + 203 +**(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network. 204 + 210 210 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 211 211 ))) 212 -|(% style="width:1 67px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red"%)**Redled**(%%)will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.207 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 213 213 214 214 210 + 215 215 == 1.9 Pin Mapping == 216 216 217 217 ... ... @@ -236,6 +236,8 @@ 236 236 == 1.11 Mechanical == 237 237 238 238 235 + 236 + 239 239 [[image:1675143884058-338.png]] 240 240 241 241 ... ... @@ -250,9 +250,10 @@ 250 250 == 2.1 How it works == 251 251 252 252 253 -The PS-LB is configured as (% style="color:#037691" %) **LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.251 +The PS-LB is configured as **(% style="color:#037691" %)LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 254 254 255 255 254 + 256 256 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 257 257 258 258 ... ... @@ -265,7 +265,7 @@ 265 265 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 266 266 267 267 268 -(% style="color:blue" %) **Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.267 +**(% style="color:blue" %)Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB. 269 269 270 270 Each PS-LB is shipped with a sticker with the default device EUI as below: 271 271 ... ... @@ -276,38 +276,48 @@ 276 276 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 277 277 278 278 279 -(% style="color:blue" %) **Register the device**278 +**(% style="color:blue" %)Register the device** 280 280 281 281 [[image:1675144099263-405.png]] 282 282 283 283 284 -(% style="color:blue" %) **Add APP EUI and DEV EUI**283 +**(% style="color:blue" %)Add APP EUI and DEV EUI** 285 285 286 286 [[image:1675144117571-832.png]] 287 287 288 288 289 -(% style="color:blue" %) **Add APP EUI in the application**288 +**(% style="color:blue" %)Add APP EUI in the application** 290 290 291 291 292 292 [[image:1675144143021-195.png]] 293 293 294 294 295 -(% style="color:blue" %) **Add APP KEY**294 +**(% style="color:blue" %)Add APP KEY** 296 296 297 297 [[image:1675144157838-392.png]] 298 298 299 -(% style="color:blue" %) **Step 2:**(%%) Activate on PS-LB298 +**(% style="color:blue" %)Step 2:**(%%) Activate on PS-LB 300 300 301 301 302 302 Press the button for 5 seconds to activate the PS-LB. 303 303 304 -(% style="color:green" %) **Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.303 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:blue" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. **(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network. 305 305 306 306 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 307 307 308 308 308 + 309 309 == 2.3 Uplink Payload == 310 310 311 + 312 +Uplink payloads have two types: 313 + 314 +* Distance Value: Use FPORT=2 315 +* Other control commands: Use other FPORT fields. 316 + 317 +The application server should parse the correct value based on FPORT settings. 318 + 319 + 311 311 === 2.3.1 Device Status, FPORT~=5 === 312 312 313 313 ... ... @@ -318,8 +318,8 @@ 318 318 319 319 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 320 320 |(% colspan="6" %)**Device Status (FPORT=5)** 321 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**| (% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**322 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version| (% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT330 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2** 331 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT 323 323 324 324 Example parse in TTNv3 325 325 ... ... @@ -326,11 +326,11 @@ 326 326 [[image:1675144504430-490.png]] 327 327 328 328 329 -(% style="color:#037691" %) **Sensor Model**(%%): For PS-LB, this value is 0x16338 +**(% style="color:#037691" %)Sensor Model**(%%): For PS-LB, this value is 0x16 330 330 331 -(% style="color:#037691" %) **Firmware Version**(%%): 0x0100, Means: v1.0.0 version340 +**(% style="color:#037691" %)Firmware Version**(%%): 0x0100, Means: v1.0.0 version 332 332 333 -(% style="color:#037691" %) **Frequency Band**:342 +**(% style="color:#037691" %)Frequency Band**: 334 334 335 335 *0x01: EU868 336 336 ... ... @@ -361,7 +361,7 @@ 361 361 *0x0e: MA869 362 362 363 363 364 -(% style="color:#037691" %) **Sub-Band**:373 +**(% style="color:#037691" %)Sub-Band**: 365 365 366 366 AU915 and US915:value 0x00 ~~ 0x08 367 367 ... ... @@ -370,7 +370,7 @@ 370 370 Other Bands: Always 0x00 371 371 372 372 373 -(% style="color:#037691" %) **Battery Info**:382 +**(% style="color:#037691" %)Battery Info**: 374 374 375 375 Check the battery voltage. 376 376 ... ... @@ -388,12 +388,13 @@ 388 388 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 389 389 |(% style="width:97px" %)((( 390 390 **Size(bytes)** 391 -)))|(% style="width:48px" %)**2**|(% style="width: 71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**392 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>> ||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.8IN126IN226INTpin"]]400 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1** 401 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>path:#bat]]|(% style="width:58px" %)[[Probe Model>>path:#Probe_Model]]|0 ~~ 20mA value|[[0 ~~~~ 30v value>>path:#Voltage_30v]]|[[IN1 &IN2 Interrupt flag>>path:#Int_pin]] 393 393 394 394 [[image:1675144608950-310.png]] 395 395 396 396 406 + 397 397 === 2.3.3 Battery Info === 398 398 399 399 ... ... @@ -407,41 +407,35 @@ 407 407 === 2.3.4 Probe Model === 408 408 409 409 410 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe.420 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 411 411 412 412 413 413 For example. 414 414 415 415 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 416 -|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning** 417 -|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 418 -|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 419 -|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure 426 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning** 427 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 428 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 420 420 421 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.430 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value. 422 422 423 423 424 424 === 2.3.5 0~~20mA value (IDC_IN) === 425 425 426 426 427 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.436 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level. 428 428 429 -(% style="color:#037691" %) **Example**:438 +**(% style="color:#037691" %)Example**: 430 430 431 431 27AE(H) = 10158 (D)/1000 = 10.158mA. 432 432 433 433 434 -Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example: 435 - 436 -[[image:image-20230225154759-1.png||height="408" width="741"]] 437 - 438 - 439 439 === 2.3.6 0~~30V value ( pin VDC_IN) === 440 440 441 441 442 442 Measure the voltage value. The range is 0 to 30V. 443 443 444 -(% style="color:#037691" %) **Example**:448 +**(% style="color:#037691" %)Example**: 445 445 446 446 138E(H) = 5006(D)/1000= 5.006V 447 447 ... ... @@ -451,45 +451,27 @@ 451 451 452 452 IN1 and IN2 are used as digital input pins. 453 453 454 -(% style="color:#037691" %) **Example**:458 +**(% style="color:#037691" %)Example**: 455 455 456 -09 (H) :(0x09&0x08)>>3=1 IN1 pin is high level.460 +09 (H) :(0x09&0x08)>>3=1 IN1 pin is high level. 457 457 458 -09 (H) :(0x09&0x04)>>2=0 IN2 pin is low level.462 +09 (H) :(0x09&0x04)>>2=0 IN2 pin is low level. 459 459 460 460 461 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin**(%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.465 +This data field shows if this packet is generated by **Interrupt Pin** or not. [[Click here>>path:#Int_mod]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal. 462 462 463 -(% style="color:#037691" %) **Example:**467 +**(% style="color:#037691" %)Example:** 464 464 465 -09 (H): (0x09&0x02)>>1=1 The level of the interrupt pin. 469 +09 (H) : (0x09&0x02)>>1=1 The level of the interrupt pin. 466 466 467 -09 (H): 0x09&0x01=1 0x00: Normal uplink packet. 471 +09 (H) : 0x09&0x01=1 0x00: Normal uplink packet. 468 468 469 469 0x01: Interrupt Uplink Packet. 470 470 471 471 472 -=== (%id="cke_bm_109176S"style="display:none"%) (%%)2.3.8 Sensorvalue, FPORT~=7===476 +=== 2.3.8 Decode payload in The Things Network === 473 473 474 474 475 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %) 476 -|(% style="width:94px" %)((( 477 -**Size(bytes)** 478 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n 479 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)((( 480 -Voltage value, each 2 bytes is a set of voltage values. 481 -))) 482 - 483 -[[image:image-20230220171300-1.png||height="207" width="863"]] 484 - 485 -Multiple sets of data collected are displayed in this form: 486 - 487 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2] 488 - 489 - 490 -=== 2.3.9 Decode payload in The Things Network === 491 - 492 - 493 493 While using TTN network, you can add the payload format to decode the payload. 494 494 495 495 ... ... @@ -511,9 +511,9 @@ 511 511 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 512 512 513 513 514 -(% style="color:blue" %) **Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.500 +**(% style="color:blue" %)Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time. 515 515 516 -(% style="color:blue" %) **Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:502 +**(% style="color:blue" %)Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 517 517 518 518 519 519 [[image:1675144951092-237.png]] ... ... @@ -522,9 +522,9 @@ 522 522 [[image:1675144960452-126.png]] 523 523 524 524 525 -(% style="color:blue" %) **Step 3:**(%%) Create an account or log in Datacake.511 +**(% style="color:blue" %)Step 3:**(%%) Create an account or log in Datacake. 526 526 527 -(% style="color:blue" %) **Step 4:** (%%)Create PS-LB product.513 +**(% style="color:#blue" %)Step 4:** (%%)Create PS-LB product. 528 528 529 529 [[image:1675145004465-869.png]] 530 530 ... ... @@ -537,7 +537,7 @@ 537 537 [[image:1675145029119-717.png]] 538 538 539 539 540 -(% style="color:blue" %) **Step 5: **(%%)add payload decode526 +**(% style="color:blue" %)Step 5: **(%%)add payload decode 541 541 542 542 [[image:1675145051360-659.png]] 543 543 ... ... @@ -545,6 +545,7 @@ 545 545 [[image:1675145060812-420.png]] 546 546 547 547 534 + 548 548 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 549 549 550 550 ... ... @@ -567,17 +567,19 @@ 567 567 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]] 568 568 569 569 557 + 570 570 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink = 571 571 572 572 573 573 Use can configure PS-LB via AT Command or LoRaWAN Downlink. 574 574 575 -* AT Command Connection: See [[FAQ>> ||anchor="H7.FAQ"]].563 +* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]]. 576 576 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 577 577 566 + 578 578 There are two kinds of commands to configure PS-LB, they are: 579 579 580 -* (% style="color:#037691" %)**General Commands**569 +* **General Commands**. 581 581 582 582 These commands are to configure: 583 583 ... ... @@ -589,7 +589,7 @@ 589 589 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 590 590 591 591 592 -* (% style="color:#037691" %)**Commands special design for PS-LB**581 +* **Commands special design for PS-LB** 593 593 594 594 These commands only valid for PS-LB, as below: 595 595 ... ... @@ -599,28 +599,31 @@ 599 599 600 600 Feature: Change LoRaWAN End Node Transmit Interval. 601 601 602 - (% style="color:blue" %)**AT Command: AT+TDC**591 +**AT Command: AT+TDC** 603 603 604 604 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 605 -| =(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**606 -| (% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((594 +|**Command Example**|**Function**|**Response** 595 +|AT+TDC=?|Show current transmit Interval|((( 607 607 30000 597 + 608 608 OK 599 + 609 609 the interval is 30000ms = 30s 610 610 ))) 611 -| (% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((602 +|AT+TDC=60000|Set Transmit Interval|((( 612 612 OK 604 + 613 613 Set transmit interval to 60000ms = 60 seconds 614 614 ))) 615 615 616 - (% style="color:blue" %)**Downlink Command: 0x01**608 +**Downlink Command: 0x01** 617 617 618 618 Format: Command Code (0x01) followed by 3 bytes time value. 619 619 620 -If the downlink payload=0100003C, it means set the END Node 's Transmit Interval to 0x00003C=60(S), while type code is 01.612 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 621 621 622 -* Example 1: Downlink Payload: 0100001E 623 -* Example 2: Downlink Payload: 0100003C 614 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 615 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 624 624 625 625 626 626 == 3.2 Set Interrupt Mode == ... ... @@ -628,182 +628,162 @@ 628 628 629 629 Feature, Set Interrupt mode for GPIO_EXIT. 630 630 631 - (% style="color:blue" %)**AT Command: AT+INTMOD**623 +**AT Command: AT+INTMOD** 632 632 633 633 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 634 -| =(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**635 -| (% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((626 +|**Command Example**|**Function**|**Response** 627 +|AT+INTMOD=?|Show current interrupt mode|((( 636 636 0 629 + 637 637 OK 638 -the mode is 0 =Disable Interrupt 631 + 632 +the mode is 0 = No interruption 639 639 ))) 640 -| (% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((634 +|AT+INTMOD=2|((( 641 641 Set Transmit Interval 642 -0. (Disable Interrupt), 643 -~1. (Trigger by rising and falling edge) 644 -2. (Trigger by falling edge) 645 -3. (Trigger by rising edge) 646 -)))|(% style="width:157px" %)OK 647 647 648 - (%style="color:blue"%)**Downlink Command: 0x06**637 +~1. (Disable Interrupt), 649 649 639 +2. (Trigger by rising and falling edge), 640 + 641 +3. (Trigger by falling edge) 642 + 643 +4. (Trigger by rising edge) 644 +)))|OK 645 + 646 +**Downlink Command: 0x06** 647 + 650 650 Format: Command Code (0x06) followed by 3 bytes. 651 651 652 652 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 653 653 654 -* Example 1: Downlink Payload: 06000000 655 -* Example 2: Downlink Payload: 06000003 652 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 653 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 656 656 657 657 656 + 658 658 == 3.3 Set the output time == 659 659 660 660 661 661 Feature, Control the output 3V3 , 5V or 12V. 662 662 663 - (% style="color:blue" %)**AT Command: AT+3V3T**662 +**AT Command: AT+3V3T** 664 664 665 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 474px" %)666 -| =(% style="width:4px;" %)**Command Example**|=(% style="width:01px;" %)**Function**|=(% style="width:6px;" %)**Response**667 -|(% style="width:15 4px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((664 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 665 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response** 666 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)((( 668 668 0 668 + 669 669 OK 670 670 ))) 671 -|(% style="width:15 4px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((671 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)((( 672 672 OK 673 + 673 673 default setting 674 674 ))) 675 -|(% style="width:15 4px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((676 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)((( 676 676 OK 678 + 679 + 677 677 ))) 678 -|(% style="width:15 4px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((681 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)((( 679 679 OK 683 + 684 + 680 680 ))) 681 681 682 -(% style="color:blue" %)**AT Command: AT+5VT** 683 683 684 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %) 685 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response** 686 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)((( 688 +**AT Command: AT+5VT** 689 + 690 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 691 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response** 692 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)((( 687 687 0 694 + 688 688 OK 689 689 ))) 690 -|(% style="width:15 5px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((697 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)((( 691 691 OK 699 + 692 692 default setting 693 693 ))) 694 -|(% style="width:15 5px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((702 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)((( 695 695 OK 704 + 705 + 696 696 ))) 697 -|(% style="width:15 5px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((707 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)((( 698 698 OK 709 + 710 + 699 699 ))) 700 700 701 -(% style="color:blue" %)**AT Command: AT+12VT** 702 702 703 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %) 704 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response** 705 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)((( 714 +**AT Command: AT+12VT** 715 + 716 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 717 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response** 718 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|((( 706 706 0 720 + 707 707 OK 708 708 ))) 709 -|(% style="width:156px" %)AT+12VT=0|(% style="width: 199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK710 -|(% style="width:156px" %)AT+12VT=500|(% style="width: 199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((723 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK 724 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|((( 711 711 OK 726 + 727 + 712 712 ))) 713 713 714 -(% style="color:blue" %)**Downlink Command: 0x07** 715 715 731 +**Downlink Command: 0x07** 732 + 716 716 Format: Command Code (0x07) followed by 3 bytes. 717 717 718 718 The first byte is which power, the second and third bytes are the time to turn on. 719 719 720 -* Example 1: Downlink Payload: 070101F4 **~-~-->**721 -* Example 2: Downlink Payload: 0701FFFF **~-~-->**AT+3V3T=65535722 -* Example 3: Downlink Payload: 070203E8 **~-~-->**AT+5VT=1000723 -* Example 4: Downlink Payload: 07020000 **~-~-->**AT+5VT=0724 -* Example 5: Downlink Payload: 070301F4 **~-~-->**AT+12VT=500725 -* Example 6: Downlink Payload: 07030000 **~-~-->**AT+12VT=0737 +* Example 1: Downlink Payload: 070101F4 -> AT+3V3T=500 738 +* Example 2: Downlink Payload: 0701FFFF -> AT+3V3T=65535 739 +* Example 3: Downlink Payload: 070203E8 -> AT+5VT=1000 740 +* Example 4: Downlink Payload: 07020000 -> AT+5VT=0 741 +* Example 5: Downlink Payload: 070301F4 -> AT+12VT=500 742 +* Example 6: Downlink Payload: 07030000 -> AT+12VT=0 726 726 727 727 745 + 728 728 == 3.4 Set the Probe Model == 729 729 730 730 731 - Usersneed toconfigure this parameteraccording to the type of external probe. In this way, the server candecodeaccordingto this value, and convert the current value output by the sensor into water depth or pressure value.749 +**AT Command: AT** **+PROBE** 732 732 733 -**AT Command: AT** **+PROBE** 734 - 735 -AT+PROBE=aabb 736 - 737 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters. 738 - 739 -When aa=01, it is the pressure mode, which converts the current into a pressure value; 740 - 741 -bb represents which type of pressure sensor it is. 742 - 743 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C) 744 - 745 745 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 746 -|**Command Example**|**Function**|**Response** 747 -|AT +PROBE =?|Get or Set the probe model.|0 748 -OK 749 -|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK 750 -|((( 751 -AT +PROBE =000A 752 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response** 753 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|((( 754 +0 752 752 753 - 754 -)))|Set water depth sensor mode, 10m type.|OK 755 -|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK 756 -|AT +PROBE =0000|Initial state, no settings.|OK 757 - 758 -**Downlink Command: 0x08** 759 - 760 -Format: Command Code (0x08) followed by 2 bytes. 761 - 762 -* Example 1: Downlink Payload: 080003 **~-~-->** AT+PROBE=0003 763 -* Example 2: Downlink Payload: 080101 **~-~-->** AT+PROBE=0101 764 - 765 - 766 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) == 767 - 768 - 769 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time. 770 - 771 -(% style="color:blue" %)**AT Command: AT** **+STDC** 772 - 773 -AT+STDC=aa,bb,bb 774 - 775 -(% style="color:#037691" %)**aa:**(%%) 776 -**0:** means disable this function and use TDC to send packets. 777 -**1:** means enable this function, use the method of multiple acquisitions to send packets. 778 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535 779 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120 780 - 781 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 782 -|**Command Example**|**Function**|**Response** 783 -|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18 784 784 OK 785 -|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|((( 786 -Attention:Take effect after ATZ 787 - 788 -OK 789 789 ))) 790 -|AT+STDC=0, 0,0|((( 791 -Use the TDC interval to send packets.(default) 758 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK 759 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|((( 760 +OK 792 792 793 793 794 -)))|((( 795 -Attention:Take effect after ATZ 796 - 763 +))) 764 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|((( 797 797 OK 766 + 767 + 798 798 ))) 799 799 800 - (% style="color:blue" %)**Downlink Command: 0xAE**770 +**Downlink Command: 0x08** 801 801 802 -Format: Command Code (0x08) followed by 5bytes.772 +Format: Command Code (0x08) followed by 2 bytes. 803 803 804 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->** AT+STDC=1,600,18 774 +* Example 1: Downlink Payload: 080003 -> AT+PROBE=0003 775 +* Example 2: Downlink Payload: 080101 -> AT+PROBE=0101 805 805 806 806 778 + 807 807 = 4. Battery & how to replace = 808 808 809 809 == 4.1 Battery Type == ... ... @@ -811,6 +811,7 @@ 811 811 812 812 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 813 813 786 + 814 814 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 815 815 816 816 [[image:1675146710956-626.png]] ... ... @@ -834,12 +834,17 @@ 834 834 835 835 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 836 836 810 + 837 837 Instruction to use as below: 838 838 839 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 840 840 841 - (% style="color:blue" %)**Step2:**(%%)Openand choose814 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 842 842 816 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 817 + 818 + 819 +**Step 2:** Open it and choose 820 + 843 843 * Product Model 844 844 * Uplink Interval 845 845 * Working Mode ... ... @@ -920,11 +920,11 @@ 920 920 = 9. Packing Info = 921 921 922 922 923 - (% style="color:#037691" %)**Package Includes**:901 +**Package Includes**: 924 924 925 925 * PS-LB LoRaWAN Pressure Sensor 926 926 927 - (% style="color:#037691" %)**Dimension and weight**:905 +**Dimension and weight**: 928 928 929 929 * Device Size: cm 930 930 * Device Weight: g ... ... @@ -932,11 +932,11 @@ 932 932 * Weight / pcs : g 933 933 934 934 913 + 935 935 = 10. Support = 936 936 937 937 938 938 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 939 - 940 940 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 941 941 942 942
- image-20230201090514-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -560.9 KB - Content
- image-20230220171300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.0 KB - Content
- image-20230222174559-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -19.4 KB - Content
- image-20230225154759-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -468.9 KB - Content