<
From version < 50.2 >
edited by Xiaoling
on 2023/02/27 09:26
To version < 42.26 >
edited by Xiaoling
on 2023/01/31 16:42
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -16,33 +16,22 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 -(((
20 20  The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 -)))
22 22  
23 -(((
24 24  The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 -)))
26 26  
27 -(((
28 28  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 32  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 -)))
34 34  
35 -(((
36 36  PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 -)))
38 38  
39 -(((
40 40  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 -)))
42 42  
43 43  [[image:1675071321348-194.png]]
44 44  
45 45  
34 +
46 46  == 1.2 ​Features ==
47 47  
48 48  
... ... @@ -58,10 +58,7 @@
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * 8500mAh Battery for long term use
61 -* Controllable 3.3v,5v and 12v output to power external sensor
62 62  
63 -
64 -
65 65  == 1.3 Specification ==
66 66  
67 67  
... ... @@ -108,8 +108,6 @@
108 108  * Sleep Mode: 5uA @ 3.3v
109 109  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
110 110  
111 -
112 -
113 113  == 1.4 Probe Types ==
114 114  
115 115  === 1.4.1 Thread Installation Type ===
... ... @@ -128,8 +128,6 @@
128 128  * Operating temperature: -20℃~~60℃
129 129  * Connector Type: Various Types, see order info
130 130  
131 -
132 -
133 133  === 1.4.2 Immersion Type ===
134 134  
135 135  
... ... @@ -146,12 +146,11 @@
146 146  * Operating temperature: -40℃~~85℃
147 147  * Material: 316 stainless steels
148 148  
149 -
150 -
151 151  == 1.5 Probe Dimension ==
152 152  
153 153  
154 154  
135 +
155 155  == 1.6 Application and Installation ==
156 156  
157 157  === 1.6.1 Thread Installation Type ===
... ... @@ -206,20 +206,18 @@
206 206  
207 207  
208 208  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
209 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
210 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
190 +|=(% style="width: 150px;" %)**Behavior on ACT**|=(% style="width: 90px;" %)**Function**|=**Action**
191 +|(% style="width:260px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
211 211  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
212 212  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
213 213  )))
214 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
195 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
215 215  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
216 216  (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
217 217  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
218 218  )))
219 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
200 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
220 220  
221 -
222 -
223 223  == 1.9 Pin Mapping ==
224 224  
225 225  
... ... @@ -244,6 +244,8 @@
244 244  == 1.11 Mechanical ==
245 245  
246 246  
226 +
227 +
247 247  [[image:1675143884058-338.png]]
248 248  
249 249  
... ... @@ -261,6 +261,7 @@
261 261  The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
262 262  
263 263  
245 +
264 264  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
265 265  
266 266  
... ... @@ -314,8 +314,18 @@
314 314  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
315 315  
316 316  
299 +
317 317  == 2.3 ​Uplink Payload ==
318 318  
302 +
303 +Uplink payloads have two types:
304 +
305 +* Distance Value: Use FPORT=2
306 +* Other control commands: Use other FPORT fields.
307 +
308 +The application server should parse the correct value based on FPORT settings.
309 +
310 +
319 319  === 2.3.1 Device Status, FPORT~=5 ===
320 320  
321 321  
... ... @@ -326,8 +326,8 @@
326 326  
327 327  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
328 328  |(% colspan="6" %)**Device Status (FPORT=5)**
329 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
330 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
321 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
322 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
331 331  
332 332  Example parse in TTNv3
333 333  
... ... @@ -397,11 +397,12 @@
397 397  |(% style="width:97px" %)(((
398 398  **Size(bytes)**
399 399  )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
400 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
392 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
401 401  
402 402  [[image:1675144608950-310.png]]
403 403  
404 404  
397 +
405 405  === 2.3.3 Battery Info ===
406 406  
407 407  
... ... @@ -415,24 +415,23 @@
415 415  === 2.3.4 Probe Model ===
416 416  
417 417  
418 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
411 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
419 419  
420 420  
421 421  For example.
422 422  
423 423  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
424 -|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning**
425 -|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
426 -|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
427 -|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure
417 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
418 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
419 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
428 428  
429 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
421 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
430 430  
431 431  
432 432  === 2.3.5 0~~20mA value (IDC_IN) ===
433 433  
434 434  
435 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
427 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
436 436  
437 437  (% style="color:#037691" %)**Example**:
438 438  
... ... @@ -439,11 +439,6 @@
439 439  27AE(H) = 10158 (D)/1000 = 10.158mA.
440 440  
441 441  
442 -Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
443 -
444 -[[image:image-20230225154759-1.png||height="408" width="741"]]
445 -
446 -
447 447  === 2.3.6 0~~30V value ( pin VDC_IN) ===
448 448  
449 449  
... ... @@ -477,27 +477,9 @@
477 477  0x01: Interrupt Uplink Packet.
478 478  
479 479  
480 -=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 ===
467 +=== 2.3.8 ​Decode payload in The Things Network ===
481 481  
482 482  
483 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
484 -|(% style="width:94px" %)(((
485 -**Size(bytes)**
486 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n
487 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
488 -Voltage value, each 2 bytes is a set of voltage values.
489 -)))
490 -
491 -[[image:image-20230220171300-1.png||height="207" width="863"]]
492 -
493 -Multiple sets of data collected are displayed in this form:
494 -
495 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
496 -
497 -
498 -=== 2.3.9 ​Decode payload in The Things Network ===
499 -
500 -
501 501  While using TTN network, you can add the payload format to decode the payload.
502 502  
503 503  
... ... @@ -553,6 +553,7 @@
553 553  [[image:1675145060812-420.png]]
554 554  
555 555  
525 +
556 556  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
557 557  
558 558  
... ... @@ -575,6 +575,7 @@
575 575  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
576 576  
577 577  
548 +
578 578  = 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
579 579  
580 580  
... ... @@ -585,7 +585,7 @@
585 585  
586 586  There are two kinds of commands to configure PS-LB, they are:
587 587  
588 -* (% style="color:#037691" %)**General Commands**
559 +* (% style="color:#037691" %)**General Commands**.
589 589  
590 590  These commands are to configure:
591 591  
... ... @@ -625,13 +625,11 @@
625 625  
626 626  Format: Command Code (0x01) followed by 3 bytes time value.
627 627  
628 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
599 +If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
629 629  
630 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
631 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
601 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
602 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
632 632  
633 -
634 -
635 635  == 3.2 Set Interrupt Mode ==
636 636  
637 637  
... ... @@ -640,20 +640,26 @@
640 640  (% style="color:blue" %)**AT Command: AT+INTMOD**
641 641  
642 642  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
643 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
644 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
612 +|=**Command Example**|=**Function**|=**Response**
613 +|AT+INTMOD=?|Show current interrupt mode|(((
645 645  0
615 +
646 646  OK
647 -the mode is 0 =Disable Interrupt
617 +
618 +the mode is 0 = No interruption
648 648  )))
649 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
620 +|AT+INTMOD=2|(((
650 650  Set Transmit Interval
651 -0. (Disable Interrupt),
652 -~1. (Trigger by rising and falling edge)
653 -2. (Trigger by falling edge)
654 -3. (Trigger by rising edge)
655 -)))|(% style="width:157px" %)OK
656 656  
623 +~1. (Disable Interrupt),
624 +
625 +2. (Trigger by rising and falling edge),
626 +
627 +3. (Trigger by falling edge)
628 +
629 +4. (Trigger by rising edge)
630 +)))|OK
631 +
657 657  (% style="color:blue" %)**Downlink Command: 0x06**
658 658  
659 659  Format: Command Code (0x06) followed by 3 bytes.
... ... @@ -660,11 +660,9 @@
660 660  
661 661  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
662 662  
663 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
664 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
638 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
639 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
665 665  
666 -
667 -
668 668  == 3.3 Set the output time ==
669 669  
670 670  
... ... @@ -672,53 +672,68 @@
672 672  
673 673  (% style="color:blue" %)**AT Command: AT+3V3T**
674 674  
675 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
676 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
677 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
648 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
649 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 236px;" %)**Function**|=(% style="width: 117px;" %)**Response**
650 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
678 678  0
652 +
679 679  OK
680 680  )))
681 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
655 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
682 682  OK
657 +
683 683  default setting
684 684  )))
685 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
660 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
686 686  OK
662 +
663 +
687 687  )))
688 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
665 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
689 689  OK
667 +
668 +
690 690  )))
691 691  
692 692  (% style="color:blue" %)**AT Command: AT+5VT**
693 693  
694 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
695 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
696 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
673 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
674 +|=(% style="width: 158px;" %)**Command Example**|=(% style="width: 232px;" %)**Function**|=(% style="width: 119px;" %)**Response**
675 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
697 697  0
677 +
698 698  OK
699 699  )))
700 -|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
680 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
701 701  OK
682 +
702 702  default setting
703 703  )))
704 -|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
685 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
705 705  OK
687 +
688 +
706 706  )))
707 -|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
690 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
708 708  OK
692 +
693 +
709 709  )))
710 710  
711 711  (% style="color:blue" %)**AT Command: AT+12VT**
712 712  
713 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
714 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
715 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
698 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
699 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 268px;" %)**Function**|=**Response**
700 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
716 716  0
702 +
717 717  OK
718 718  )))
719 -|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
720 -|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
705 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
706 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
721 721  OK
708 +
709 +
722 722  )))
723 723  
724 724  (% style="color:blue" %)**Downlink Command: 0x07**
... ... @@ -727,96 +727,44 @@
727 727  
728 728  The first byte is which power, the second and third bytes are the time to turn on.
729 729  
730 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
731 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
732 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
733 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
734 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
735 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
718 +* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
719 +* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
720 +* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
721 +* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
722 +* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
723 +* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
736 736  
737 -
738 -
739 739  == 3.4 Set the Probe Model ==
740 740  
741 741  
742 -Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
728 +(% style="color:blue" %)**AT Command: AT** **+PROBE**
743 743  
744 -**AT Command: AT** **+PROBE**
745 -
746 -AT+PROBE=aabb
747 -
748 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
749 -
750 -When aa=01, it is the pressure mode, which converts the current into a pressure value;
751 -
752 -bb represents which type of pressure sensor it is.
753 -
754 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
755 -
756 756  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
757 -|**Command Example**|**Function**|**Response**
758 -|AT +PROBE =?|Get or Set the probe model.|0
759 -OK
760 -|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK
761 -|(((
762 -AT +PROBE =000A
731 +|=(% style="width: 157px;" %)**Command Example**|=(% style="width: 267px;" %)**Function**|=**Response**
732 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
733 +0
763 763  
764 -
765 -)))|Set water depth sensor mode, 10m type.|OK
766 -|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK
767 -|AT +PROBE =0000|Initial state, no settings.|OK
768 -
769 -**Downlink Command: 0x08**
770 -
771 -Format: Command Code (0x08) followed by 2 bytes.
772 -
773 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
774 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
775 -
776 -
777 -
778 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
779 -
780 -
781 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
782 -
783 -(% style="color:blue" %)**AT Command: AT** **+STDC**
784 -
785 -AT+STDC=aa,bb,bb
786 -
787 -(% style="color:#037691" %)**aa:**(%%)
788 -**0:** means disable this function and use TDC to send packets.
789 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
790 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
791 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
792 -
793 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
794 -|**Command Example**|**Function**|**Response**
795 -|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18
796 796  OK
797 -|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(((
798 -Attention:Take effect after ATZ
799 -
800 -OK
801 801  )))
802 -|AT+STDC=0, 0,0|(((
803 -Use the TDC interval to send packets.(default)
737 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
738 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
739 +OK
804 804  
805 805  
806 -)))|(((
807 -Attention:Take effect after ATZ
808 -
742 +)))
743 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
809 809  OK
745 +
746 +
810 810  )))
811 811  
812 -(% style="color:blue" %)**Downlink Command: 0xAE**
749 +(% style="color:blue" %)**Downlink Command: 0x08**
813 813  
814 -Format: Command Code (0x08) followed by 5 bytes.
751 +Format: Command Code (0x08) followed by 2 bytes.
815 815  
816 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
753 +* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
754 +* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
817 817  
818 -
819 -
820 820  = 4. Battery & how to replace =
821 821  
822 822  == 4.1 Battery Type ==
... ... @@ -824,6 +824,7 @@
824 824  
825 825  PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
826 826  
763 +
827 827  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
828 828  
829 829  [[image:1675146710956-626.png]]
... ... @@ -847,10 +847,15 @@
847 847  
848 848  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
849 849  
787 +
850 850  Instruction to use as below:
851 851  
852 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
853 853  
791 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
792 +
793 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
794 +
795 +
854 854  (% style="color:blue" %)**Step 2:**(%%) Open it and choose
855 855  
856 856  * Product Model
... ... @@ -944,8 +944,6 @@
944 944  * Package Size / pcs : cm
945 945  * Weight / pcs : g
946 946  
947 -
948 -
949 949  = 10. Support =
950 950  
951 951  
image-20230201090514-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
image-20230222174559-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -19.4 KB
Content
image-20230225154759-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -468.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0