Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/04/19 17:58
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 4 removed)
Details
- Page properties
-
- Content
-
... ... @@ -16,33 +16,22 @@ 16 16 == 1.1 What is LoRaWAN Pressure Sensor == 17 17 18 18 19 -((( 20 20 The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 21 -))) 22 22 23 -((( 24 24 The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 25 -))) 26 26 27 -((( 28 28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 32 PS-LB supports BLE configure and wireless OTA update which make user easy to use. 33 -))) 34 34 35 -((( 36 36 PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 -))) 38 38 39 -((( 40 40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 41 -))) 42 42 43 43 [[image:1675071321348-194.png]] 44 44 45 45 34 + 46 46 == 1.2 Features == 47 47 48 48 ... ... @@ -58,10 +58,7 @@ 58 58 * Uplink on periodically 59 59 * Downlink to change configure 60 60 * 8500mAh Battery for long term use 61 -* Controllable 3.3v,5v and 12v output to power external sensor 62 62 63 - 64 - 65 65 == 1.3 Specification == 66 66 67 67 ... ... @@ -108,8 +108,6 @@ 108 108 * Sleep Mode: 5uA @ 3.3v 109 109 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 110 110 111 - 112 - 113 113 == 1.4 Probe Types == 114 114 115 115 === 1.4.1 Thread Installation Type === ... ... @@ -128,8 +128,6 @@ 128 128 * Operating temperature: -20℃~~60℃ 129 129 * Connector Type: Various Types, see order info 130 130 131 - 132 - 133 133 === 1.4.2 Immersion Type === 134 134 135 135 ... ... @@ -146,12 +146,11 @@ 146 146 * Operating temperature: -40℃~~85℃ 147 147 * Material: 316 stainless steels 148 148 149 - 150 - 151 151 == 1.5 Probe Dimension == 152 152 153 153 154 154 135 + 155 155 == 1.6 Application and Installation == 156 156 157 157 === 1.6.1 Thread Installation Type === ... ... @@ -206,20 +206,21 @@ 206 206 207 207 208 208 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 209 -| =(% style="width:67px;" %)**Behavior on ACT**|=(% style="width:17px;" %)**Function**|=(% style="width: 225px;" %)**Action**210 -|(% style="width:1 67px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((190 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action** 191 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|((( 211 211 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 193 + 212 212 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 213 213 ))) 214 -|(% style="width:1 67px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((196 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|((( 215 215 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 198 + 216 216 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 200 + 217 217 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 218 218 ))) 219 -|(% style="width:1 67px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red"%)**Redled**(%%)will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.203 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 220 220 221 - 222 - 223 223 == 1.9 Pin Mapping == 224 224 225 225 ... ... @@ -244,6 +244,8 @@ 244 244 == 1.11 Mechanical == 245 245 246 246 229 + 230 + 247 247 [[image:1675143884058-338.png]] 248 248 249 249 ... ... @@ -261,6 +261,7 @@ 261 261 The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 262 262 263 263 248 + 264 264 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 265 265 266 266 ... ... @@ -314,8 +314,18 @@ 314 314 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 315 315 316 316 302 + 317 317 == 2.3 Uplink Payload == 318 318 305 + 306 +Uplink payloads have two types: 307 + 308 +* Distance Value: Use FPORT=2 309 +* Other control commands: Use other FPORT fields. 310 + 311 +The application server should parse the correct value based on FPORT settings. 312 + 313 + 319 319 === 2.3.1 Device Status, FPORT~=5 === 320 320 321 321 ... ... @@ -326,8 +326,8 @@ 326 326 327 327 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 328 328 |(% colspan="6" %)**Device Status (FPORT=5)** 329 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**| (% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**330 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version| (% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT324 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2** 325 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT 331 331 332 332 Example parse in TTNv3 333 333 ... ... @@ -396,12 +396,13 @@ 396 396 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 397 397 |(% style="width:97px" %)((( 398 398 **Size(bytes)** 399 -)))|(% style="width:48px" %)**2**|(% style="width: 71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**400 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3. 4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.8IN126IN226INTpin"]]394 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1** 395 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] 401 401 402 402 [[image:1675144608950-310.png]] 403 403 404 404 400 + 405 405 === 2.3.3 Battery Info === 406 406 407 407 ... ... @@ -415,24 +415,23 @@ 415 415 === 2.3.4 Probe Model === 416 416 417 417 418 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe.414 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 419 419 420 420 421 421 For example. 422 422 423 423 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 424 -|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning** 425 -|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 426 -|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 427 -|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure 420 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning** 421 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 422 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 428 428 429 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.424 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value. 430 430 431 431 432 432 === 2.3.5 0~~20mA value (IDC_IN) === 433 433 434 434 435 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.430 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level. 436 436 437 437 (% style="color:#037691" %)**Example**: 438 438 ... ... @@ -439,11 +439,6 @@ 439 439 27AE(H) = 10158 (D)/1000 = 10.158mA. 440 440 441 441 442 -Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example: 443 - 444 -[[image:image-20230225154759-1.png||height="408" width="741"]] 445 - 446 - 447 447 === 2.3.6 0~~30V value ( pin VDC_IN) === 448 448 449 449 ... ... @@ -477,27 +477,9 @@ 477 477 0x01: Interrupt Uplink Packet. 478 478 479 479 480 -=== (%id="cke_bm_109176S"style="display:none"%) (%%)2.3.8 Sensorvalue, FPORT~=7===470 +=== 2.3.8 Decode payload in The Things Network === 481 481 482 482 483 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %) 484 -|(% style="width:94px" %)((( 485 -**Size(bytes)** 486 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n 487 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)((( 488 -Voltage value, each 2 bytes is a set of voltage values. 489 -))) 490 - 491 -[[image:image-20230220171300-1.png||height="207" width="863"]] 492 - 493 -Multiple sets of data collected are displayed in this form: 494 - 495 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2] 496 - 497 - 498 -=== 2.3.9 Decode payload in The Things Network === 499 - 500 - 501 501 While using TTN network, you can add the payload format to decode the payload. 502 502 503 503 ... ... @@ -553,6 +553,7 @@ 553 553 [[image:1675145060812-420.png]] 554 554 555 555 528 + 556 556 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 557 557 558 558 ... ... @@ -575,6 +575,7 @@ 575 575 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]] 576 576 577 577 551 + 578 578 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink = 579 579 580 580 ... ... @@ -585,7 +585,7 @@ 585 585 586 586 There are two kinds of commands to configure PS-LB, they are: 587 587 588 -* (% style="color:#037691" %)**General Commands** 562 +* (% style="color:#037691" %)**General Commands**. 589 589 590 590 These commands are to configure: 591 591 ... ... @@ -610,14 +610,17 @@ 610 610 (% style="color:blue" %)**AT Command: AT+TDC** 611 611 612 612 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 613 -| =(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**614 -| (% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((587 +|**Command Example**|**Function**|**Response** 588 +|AT+TDC=?|Show current transmit Interval|((( 615 615 30000 590 + 616 616 OK 592 + 617 617 the interval is 30000ms = 30s 618 618 ))) 619 -| (% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((595 +|AT+TDC=60000|Set Transmit Interval|((( 620 620 OK 597 + 621 621 Set transmit interval to 60000ms = 60 seconds 622 622 ))) 623 623 ... ... @@ -625,13 +625,12 @@ 625 625 626 626 Format: Command Code (0x01) followed by 3 bytes time value. 627 627 628 -If the downlink payload=0100003C, it means set the END Node 's Transmit Interval to 0x00003C=60(S), while type code is 01.605 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 629 629 630 -* Example 1: Downlink Payload: 0100001E 631 -* Example 2: Downlink Payload: 0100003C 607 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 608 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 632 632 633 633 634 - 635 635 == 3.2 Set Interrupt Mode == 636 636 637 637 ... ... @@ -640,20 +640,26 @@ 640 640 (% style="color:blue" %)**AT Command: AT+INTMOD** 641 641 642 642 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 643 -| =(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**644 -| (% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((619 +|**Command Example**|**Function**|**Response** 620 +|AT+INTMOD=?|Show current interrupt mode|((( 645 645 0 622 + 646 646 OK 647 -the mode is 0 =Disable Interrupt 624 + 625 +the mode is 0 = No interruption 648 648 ))) 649 -| (% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((627 +|AT+INTMOD=2|((( 650 650 Set Transmit Interval 651 -0. (Disable Interrupt), 652 -~1. (Trigger by rising and falling edge) 653 -2. (Trigger by falling edge) 654 -3. (Trigger by rising edge) 655 -)))|(% style="width:157px" %)OK 656 656 630 +~1. (Disable Interrupt), 631 + 632 +2. (Trigger by rising and falling edge), 633 + 634 +3. (Trigger by falling edge) 635 + 636 +4. (Trigger by rising edge) 637 +)))|OK 638 + 657 657 (% style="color:blue" %)**Downlink Command: 0x06** 658 658 659 659 Format: Command Code (0x06) followed by 3 bytes. ... ... @@ -660,11 +660,9 @@ 660 660 661 661 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 662 662 663 -* Example 1: Downlink Payload: 06000000 664 -* Example 2: Downlink Payload: 06000003 645 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 646 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 665 665 666 - 667 - 668 668 == 3.3 Set the output time == 669 669 670 670 ... ... @@ -672,53 +672,68 @@ 672 672 673 673 (% style="color:blue" %)**AT Command: AT+3V3T** 674 674 675 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 474px" %)676 -| =(% style="width:4px;" %)**Command Example**|=(% style="width:01px;" %)**Function**|=(% style="width:6px;" %)**Response**677 -|(% style="width:15 4px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((655 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 656 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response** 657 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)((( 678 678 0 659 + 679 679 OK 680 680 ))) 681 -|(% style="width:15 4px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((662 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)((( 682 682 OK 664 + 683 683 default setting 684 684 ))) 685 -|(% style="width:15 4px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((667 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)((( 686 686 OK 669 + 670 + 687 687 ))) 688 -|(% style="width:15 4px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((672 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)((( 689 689 OK 674 + 675 + 690 690 ))) 691 691 692 692 (% style="color:blue" %)**AT Command: AT+5VT** 693 693 694 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 470px" %)695 -| =(% style="width:5px;" %)**Command Example**|=(% style="width:196px;" %)**Function**|=(% style="width:4px;" %)**Response**696 -|(% style="width:15 5px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((680 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 681 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response** 682 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)((( 697 697 0 684 + 698 698 OK 699 699 ))) 700 -|(% style="width:15 5px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((687 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)((( 701 701 OK 689 + 702 702 default setting 703 703 ))) 704 -|(% style="width:15 5px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((692 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)((( 705 705 OK 694 + 695 + 706 706 ))) 707 -|(% style="width:15 5px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((697 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)((( 708 708 OK 699 + 700 + 709 709 ))) 710 710 711 711 (% style="color:blue" %)**AT Command: AT+12VT** 712 712 713 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 443px" %)714 -| =(% style="width:;" %)**Command Example**|=(% style="width:199px;" %)**Function**|=(% style="width: 83px;" %)**Response**715 -|(% style="width:156px" %)AT+12VT=?|(% style="width: 199px" %)Show 12V open time.|(% style="width:83px" %)(((705 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 706 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response** 707 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|((( 716 716 0 709 + 717 717 OK 718 718 ))) 719 -|(% style="width:156px" %)AT+12VT=0|(% style="width: 199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK720 -|(% style="width:156px" %)AT+12VT=500|(% style="width: 199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((712 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK 713 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|((( 721 721 OK 715 + 716 + 722 722 ))) 723 723 724 724 (% style="color:blue" %)**Downlink Command: 0x07** ... ... @@ -727,96 +727,44 @@ 727 727 728 728 The first byte is which power, the second and third bytes are the time to turn on. 729 729 730 -* Example 1: Downlink Payload: 070101F4 **~-~-->**731 -* Example 2: Downlink Payload: 0701FFFF **~-~-->**AT+3V3T=65535732 -* Example 3: Downlink Payload: 070203E8 **~-~-->**AT+5VT=1000733 -* Example 4: Downlink Payload: 07020000 **~-~-->**AT+5VT=0734 -* Example 5: Downlink Payload: 070301F4 **~-~-->**AT+12VT=500735 -* Example 6: Downlink Payload: 07030000 **~-~-->**AT+12VT=0725 +* Example 1: Downlink Payload: 070101F4 -> AT+3V3T=500 726 +* Example 2: Downlink Payload: 0701FFFF -> AT+3V3T=65535 727 +* Example 3: Downlink Payload: 070203E8 -> AT+5VT=1000 728 +* Example 4: Downlink Payload: 07020000 -> AT+5VT=0 729 +* Example 5: Downlink Payload: 070301F4 -> AT+12VT=500 730 +* Example 6: Downlink Payload: 07030000 -> AT+12VT=0 736 736 737 - 738 - 739 739 == 3.4 Set the Probe Model == 740 740 741 741 742 - Usersneed to configure thisparameter according to the type of externalprobe. In this way, the servercan decode according to this value, and convert the current valueoutputby the sensor into waterdepthorpressure value.735 +(% style="color:blue" %)**AT Command: AT** **+PROBE** 743 743 744 -**AT Command: AT** **+PROBE** 745 - 746 -AT+PROBE=aabb 747 - 748 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters. 749 - 750 -When aa=01, it is the pressure mode, which converts the current into a pressure value; 751 - 752 -bb represents which type of pressure sensor it is. 753 - 754 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C) 755 - 756 756 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 757 -|**Command Example**|**Function**|**Response** 758 -|AT +PROBE =?|Get or Set the probe model.|0 759 -OK 760 -|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK 761 -|((( 762 -AT +PROBE =000A 738 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response** 739 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|((( 740 +0 763 763 764 - 765 -)))|Set water depth sensor mode, 10m type.|OK 766 -|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK 767 -|AT +PROBE =0000|Initial state, no settings.|OK 768 - 769 -**Downlink Command: 0x08** 770 - 771 -Format: Command Code (0x08) followed by 2 bytes. 772 - 773 -* Example 1: Downlink Payload: 080003 **~-~-->** AT+PROBE=0003 774 -* Example 2: Downlink Payload: 080101 **~-~-->** AT+PROBE=0101 775 - 776 - 777 - 778 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) == 779 - 780 - 781 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time. 782 - 783 -(% style="color:blue" %)**AT Command: AT** **+STDC** 784 - 785 -AT+STDC=aa,bb,bb 786 - 787 -(% style="color:#037691" %)**aa:**(%%) 788 -**0:** means disable this function and use TDC to send packets. 789 -**1:** means enable this function, use the method of multiple acquisitions to send packets. 790 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535 791 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120 792 - 793 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 794 -|**Command Example**|**Function**|**Response** 795 -|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18 796 796 OK 797 -|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|((( 798 -Attention:Take effect after ATZ 799 - 800 -OK 801 801 ))) 802 -|AT+STDC=0, 0,0|((( 803 -Use the TDC interval to send packets.(default) 744 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK 745 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|((( 746 +OK 804 804 805 805 806 -)))|((( 807 -Attention:Take effect after ATZ 808 - 749 +))) 750 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|((( 809 809 OK 752 + 753 + 810 810 ))) 811 811 812 -(% style="color:blue" %)**Downlink Command: 0x AE**756 +(% style="color:blue" %)**Downlink Command: 0x08** 813 813 814 -Format: Command Code (0x08) followed by 5bytes.758 +Format: Command Code (0x08) followed by 2 bytes. 815 815 816 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->** AT+STDC=1,600,18 760 +* Example 1: Downlink Payload: 080003 -> AT+PROBE=0003 761 +* Example 2: Downlink Payload: 080101 -> AT+PROBE=0101 817 817 818 - 819 - 820 820 = 4. Battery & how to replace = 821 821 822 822 == 4.1 Battery Type == ... ... @@ -824,6 +824,7 @@ 824 824 825 825 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 826 826 770 + 827 827 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 828 828 829 829 [[image:1675146710956-626.png]] ... ... @@ -847,10 +847,15 @@ 847 847 848 848 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 849 849 794 + 850 850 Instruction to use as below: 851 851 852 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 853 853 798 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 799 + 800 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 801 + 802 + 854 854 (% style="color:blue" %)**Step 2:**(%%) Open it and choose 855 855 856 856 * Product Model ... ... @@ -944,8 +944,6 @@ 944 944 * Package Size / pcs : cm 945 945 * Weight / pcs : g 946 946 947 - 948 - 949 949 = 10. Support = 950 950 951 951
- image-20230201090514-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -560.9 KB - Content
- image-20230220171300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.0 KB - Content
- image-20230222174559-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -19.4 KB - Content
- image-20230225154759-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -468.9 KB - Content