<
From version < 50.2 >
edited by Xiaoling
on 2023/02/27 09:26
To version < 42.16 >
edited by Xiaoling
on 2023/01/31 16:11
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -16,33 +16,22 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 -(((
20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 -)))
19 +The Dragino PS-LB series sensors are **(% style="color:blue" %)LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
22 22  
23 -(((
24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 -)))
21 +The PS-LB series sensors include **(% style="color:blue" %)Thread Installation Type**(%%) and **(% style="color:blue" %)Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
26 26  
27 -(((
28 28  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 32  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 -)))
34 34  
35 -(((
36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 -)))
27 +PS-LB is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
38 38  
39 -(((
40 40  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 -)))
42 42  
43 43  [[image:1675071321348-194.png]]
44 44  
45 45  
34 +
46 46  == 1.2 ​Features ==
47 47  
48 48  
... ... @@ -58,25 +58,23 @@
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * 8500mAh Battery for long term use
61 -* Controllable 3.3v,5v and 12v output to power external sensor
62 62  
63 63  
64 -
65 65  == 1.3 Specification ==
66 66  
67 67  
68 -(% style="color:#037691" %)**Micro Controller:**
55 +**(% style="color:#037691" %)Micro Controller:**
69 69  
70 70  * MCU: 48Mhz ARM
71 71  * Flash: 256KB
72 72  * RAM: 64KB
73 73  
74 -(% style="color:#037691" %)**Common DC Characteristics:**
61 +**(% style="color:#037691" %)Common DC Characteristics:**
75 75  
76 76  * Supply Voltage: 2.5v ~~ 3.6v
77 77  * Operating Temperature: -40 ~~ 85°C
78 78  
79 -(% style="color:#037691" %)**LoRa Spec:**
66 +**(% style="color:#037691" %)LoRa Spec:**
80 80  
81 81  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
82 82  * Max +22 dBm constant RF output vs.
... ... @@ -83,19 +83,19 @@
83 83  * RX sensitivity: down to -139 dBm.
84 84  * Excellent blocking immunity
85 85  
86 -(% style="color:#037691" %)**Current Input Measuring :**
73 +**(% style="color:#037691" %)Current Input Measuring :**
87 87  
88 88  * Range: 0 ~~ 20mA
89 89  * Accuracy: 0.02mA
90 90  * Resolution: 0.001mA
91 91  
92 -(% style="color:#037691" %)**Voltage Input Measuring:**
79 +**(% style="color:#037691" %)Voltage Input Measuring:**
93 93  
94 94  * Range: 0 ~~ 30v
95 95  * Accuracy: 0.02v
96 96  * Resolution: 0.001v
97 97  
98 -(% style="color:#037691" %)**Battery:**
85 +**(% style="color:#037691" %)Battery:**
99 99  
100 100  * Li/SOCI2 un-chargeable battery
101 101  * Capacity: 8500mAh
... ... @@ -103,13 +103,12 @@
103 103  * Max continuously current: 130mA
104 104  * Max boost current: 2A, 1 second
105 105  
106 -(% style="color:#037691" %)**Power Consumption**
93 +**(% style="color:#037691" %)Power Consumption**
107 107  
108 108  * Sleep Mode: 5uA @ 3.3v
109 109  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
110 110  
111 111  
112 -
113 113  == 1.4 Probe Types ==
114 114  
115 115  === 1.4.1 Thread Installation Type ===
... ... @@ -129,7 +129,6 @@
129 129  * Connector Type: Various Types, see order info
130 130  
131 131  
132 -
133 133  === 1.4.2 Immersion Type ===
134 134  
135 135  
... ... @@ -147,17 +147,17 @@
147 147  * Material: 316 stainless steels
148 148  
149 149  
150 -
151 151  == 1.5 Probe Dimension ==
152 152  
153 153  
154 154  
139 +
155 155  == 1.6 Application and Installation ==
156 156  
157 157  === 1.6.1 Thread Installation Type ===
158 158  
159 159  
160 -(% style="color:blue" %)**Application:**
145 +**(% style="color:blue" %)Application:**
161 161  
162 162  * Hydraulic Pressure
163 163  * Petrochemical Industry
... ... @@ -175,7 +175,7 @@
175 175  === 1.6.2 Immersion Type ===
176 176  
177 177  
178 -(% style="color:blue" %)**Application:**
163 +**(% style="color:blue" %)Application:**
179 179  
180 180  Liquid & Water Pressure / Level detect.
181 181  
... ... @@ -194,9 +194,9 @@
194 194  == 1.7 Sleep mode and working mode ==
195 195  
196 196  
197 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
182 +**(% style="color:blue" %)Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
198 198  
199 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
184 +**(% style="color:blue" %)Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
200 200  
201 201  
202 202  == 1.8 Button & LEDs ==
... ... @@ -206,17 +206,20 @@
206 206  
207 207  
208 208  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
209 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
210 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
211 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
194 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action**
195 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
196 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **(% style="color:blue" %)blue led** (%%)will blink once.
197 +
212 212  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
213 213  )))
214 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
215 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
216 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
200 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
201 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:#037691" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
202 +
203 +**(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
204 +
217 217  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
218 218  )))
219 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
207 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
220 220  
221 221  
222 222  
... ... @@ -244,6 +244,8 @@
244 244  == 1.11 Mechanical ==
245 245  
246 246  
235 +
236 +
247 247  [[image:1675143884058-338.png]]
248 248  
249 249  
... ... @@ -258,9 +258,10 @@
258 258  == 2.1 How it works ==
259 259  
260 260  
261 -The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
251 +The PS-LB is configured as **(% style="color:#037691" %)LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
262 262  
263 263  
254 +
264 264  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
265 265  
266 266  
... ... @@ -273,7 +273,7 @@
273 273  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
274 274  
275 275  
276 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
267 +**(% style="color:blue" %)Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
277 277  
278 278  Each PS-LB is shipped with a sticker with the default device EUI as below:
279 279  
... ... @@ -284,38 +284,48 @@
284 284  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
285 285  
286 286  
287 -(% style="color:blue" %)**Register the device**
278 +**(% style="color:blue" %)Register the device**
288 288  
289 289  [[image:1675144099263-405.png]]
290 290  
291 291  
292 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
283 +**(% style="color:blue" %)Add APP EUI and DEV EUI**
293 293  
294 294  [[image:1675144117571-832.png]]
295 295  
296 296  
297 -(% style="color:blue" %)**Add APP EUI in the application**
288 +**(% style="color:blue" %)Add APP EUI in the application**
298 298  
299 299  
300 300  [[image:1675144143021-195.png]]
301 301  
302 302  
303 -(% style="color:blue" %)**Add APP KEY**
294 +**(% style="color:blue" %)Add APP KEY**
304 304  
305 305  [[image:1675144157838-392.png]]
306 306  
307 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
298 +**(% style="color:blue" %)Step 2:**(%%) Activate on PS-LB
308 308  
309 309  
310 310  Press the button for 5 seconds to activate the PS-LB.
311 311  
312 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
303 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:blue" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. **(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
313 313  
314 314  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
315 315  
316 316  
308 +
317 317  == 2.3 ​Uplink Payload ==
318 318  
311 +
312 +Uplink payloads have two types:
313 +
314 +* Distance Value: Use FPORT=2
315 +* Other control commands: Use other FPORT fields.
316 +
317 +The application server should parse the correct value based on FPORT settings.
318 +
319 +
319 319  === 2.3.1 Device Status, FPORT~=5 ===
320 320  
321 321  
... ... @@ -326,8 +326,8 @@
326 326  
327 327  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
328 328  |(% colspan="6" %)**Device Status (FPORT=5)**
329 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
330 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
330 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
331 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
331 331  
332 332  Example parse in TTNv3
333 333  
... ... @@ -334,11 +334,11 @@
334 334  [[image:1675144504430-490.png]]
335 335  
336 336  
337 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
338 +**(% style="color:#037691" %)Sensor Model**(%%): For PS-LB, this value is 0x16
338 338  
339 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
340 +**(% style="color:#037691" %)Firmware Version**(%%): 0x0100, Means: v1.0.0 version
340 340  
341 -(% style="color:#037691" %)**Frequency Band**:
342 +**(% style="color:#037691" %)Frequency Band**:
342 342  
343 343  *0x01: EU868
344 344  
... ... @@ -369,7 +369,7 @@
369 369  *0x0e: MA869
370 370  
371 371  
372 -(% style="color:#037691" %)**Sub-Band**:
373 +**(% style="color:#037691" %)Sub-Band**:
373 373  
374 374  AU915 and US915:value 0x00 ~~ 0x08
375 375  
... ... @@ -378,7 +378,7 @@
378 378  Other Bands: Always 0x00
379 379  
380 380  
381 -(% style="color:#037691" %)**Battery Info**:
382 +**(% style="color:#037691" %)Battery Info**:
382 382  
383 383  Check the battery voltage.
384 384  
... ... @@ -396,12 +396,13 @@
396 396  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
397 397  |(% style="width:97px" %)(((
398 398  **Size(bytes)**
399 -)))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
400 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
400 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1**
401 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
401 401  
402 402  [[image:1675144608950-310.png]]
403 403  
404 404  
406 +
405 405  === 2.3.3 Battery Info ===
406 406  
407 407  
... ... @@ -415,41 +415,35 @@
415 415  === 2.3.4 Probe Model ===
416 416  
417 417  
418 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
420 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
419 419  
420 420  
421 421  For example.
422 422  
423 423  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
424 -|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning**
425 -|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
426 -|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
427 -|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure
426 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
427 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
428 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
428 428  
429 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
430 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
430 430  
431 431  
432 432  === 2.3.5 0~~20mA value (IDC_IN) ===
433 433  
434 434  
435 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
436 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
436 436  
437 -(% style="color:#037691" %)**Example**:
438 +**(% style="color:#037691" %)Example**:
438 438  
439 439  27AE(H) = 10158 (D)/1000 = 10.158mA.
440 440  
441 441  
442 -Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
443 -
444 -[[image:image-20230225154759-1.png||height="408" width="741"]]
445 -
446 -
447 447  === 2.3.6 0~~30V value ( pin VDC_IN) ===
448 448  
449 449  
450 450  Measure the voltage value. The range is 0 to 30V.
451 451  
452 -(% style="color:#037691" %)**Example**:
448 +**(% style="color:#037691" %)Example**:
453 453  
454 454  138E(H) = 5006(D)/1000= 5.006V
455 455  
... ... @@ -459,45 +459,27 @@
459 459  
460 460  IN1 and IN2 are used as digital input pins.
461 461  
462 -(% style="color:#037691" %)**Example**:
458 +**(% style="color:#037691" %)Example**:
463 463  
464 -09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
460 +09 (H):(0x09&0x08)>>3=1    IN1 pin is high level.
465 465  
466 -09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
462 +09 (H):(0x09&0x04)>>2=0    IN2 pin is low level.
467 467  
468 468  
469 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
465 +This data field shows if this packet is generated by **(% style="color:blue" %)Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
470 470  
471 -(% style="color:#037691" %)**Example:**
467 +**(% style="color:#037691" %)Example:**
472 472  
473 -09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
469 +09 (H):(0x09&0x02)>>1=1    The level of the interrupt pin.
474 474  
475 -09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
471 +09 (H):0x09&0x01=1              0x00: Normal uplink packet.
476 476  
477 477  0x01: Interrupt Uplink Packet.
478 478  
479 479  
480 -=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 ===
476 +=== 2.3.8 ​Decode payload in The Things Network ===
481 481  
482 482  
483 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
484 -|(% style="width:94px" %)(((
485 -**Size(bytes)**
486 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n
487 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
488 -Voltage value, each 2 bytes is a set of voltage values.
489 -)))
490 -
491 -[[image:image-20230220171300-1.png||height="207" width="863"]]
492 -
493 -Multiple sets of data collected are displayed in this form:
494 -
495 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
496 -
497 -
498 -=== 2.3.9 ​Decode payload in The Things Network ===
499 -
500 -
501 501  While using TTN network, you can add the payload format to decode the payload.
502 502  
503 503  
... ... @@ -519,9 +519,9 @@
519 519  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
520 520  
521 521  
522 -(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
500 +**(% style="color:blue" %)Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
523 523  
524 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
502 +**(% style="color:blue" %)Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
525 525  
526 526  
527 527  [[image:1675144951092-237.png]]
... ... @@ -530,9 +530,9 @@
530 530  [[image:1675144960452-126.png]]
531 531  
532 532  
533 -(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
511 +**(% style="color:blue" %)Step 3:**(%%) Create an account or log in Datacake.
534 534  
535 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
513 +**(% style="color:#blue" %)Step 4:** (%%)Create PS-LB product.
536 536  
537 537  [[image:1675145004465-869.png]]
538 538  
... ... @@ -545,7 +545,7 @@
545 545  [[image:1675145029119-717.png]]
546 546  
547 547  
548 -(% style="color:blue" %)**Step 5: **(%%)add payload decode
526 +**(% style="color:blue" %)Step 5: **(%%)add payload decode
549 549  
550 550  [[image:1675145051360-659.png]]
551 551  
... ... @@ -553,6 +553,7 @@
553 553  [[image:1675145060812-420.png]]
554 554  
555 555  
534 +
556 556  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
557 557  
558 558  
... ... @@ -575,17 +575,19 @@
575 575  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
576 576  
577 577  
557 +
578 578  = 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
579 579  
580 580  
581 581  Use can configure PS-LB via AT Command or LoRaWAN Downlink.
582 582  
583 -* AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
563 +* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
584 584  * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
585 585  
566 +
586 586  There are two kinds of commands to configure PS-LB, they are:
587 587  
588 -* (% style="color:#037691" %)**General Commands**
569 +* **General Commands**.
589 589  
590 590  These commands are to configure:
591 591  
... ... @@ -597,7 +597,7 @@
597 597  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
598 598  
599 599  
600 -* (% style="color:#037691" %)**Commands special design for PS-LB**
581 +* **Commands special design for PS-LB**
601 601  
602 602  These commands only valid for PS-LB, as below:
603 603  
... ... @@ -607,61 +607,69 @@
607 607  
608 608  Feature: Change LoRaWAN End Node Transmit Interval.
609 609  
610 -(% style="color:blue" %)**AT Command: AT+TDC**
591 +**AT Command: AT+TDC**
611 611  
612 612  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
613 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
614 -|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
594 +|**Command Example**|**Function**|**Response**
595 +|AT+TDC=?|Show current transmit Interval|(((
615 615  30000
597 +
616 616  OK
599 +
617 617  the interval is 30000ms = 30s
618 618  )))
619 -|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
602 +|AT+TDC=60000|Set Transmit Interval|(((
620 620  OK
604 +
621 621  Set transmit interval to 60000ms = 60 seconds
622 622  )))
623 623  
624 -(% style="color:blue" %)**Downlink Command: 0x01**
608 +**Downlink Command: 0x01**
625 625  
626 626  Format: Command Code (0x01) followed by 3 bytes time value.
627 627  
628 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
612 +If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
629 629  
630 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
631 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
614 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
615 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
632 632  
633 633  
634 -
635 635  == 3.2 Set Interrupt Mode ==
636 636  
637 637  
638 638  Feature, Set Interrupt mode for GPIO_EXIT.
639 639  
640 -(% style="color:blue" %)**AT Command: AT+INTMOD**
623 +**AT Command: AT+INTMOD**
641 641  
642 642  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
643 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
644 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
626 +|**Command Example**|**Function**|**Response**
627 +|AT+INTMOD=?|Show current interrupt mode|(((
645 645  0
629 +
646 646  OK
647 -the mode is 0 =Disable Interrupt
631 +
632 +the mode is 0 = No interruption
648 648  )))
649 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
634 +|AT+INTMOD=2|(((
650 650  Set Transmit Interval
651 -0. (Disable Interrupt),
652 -~1. (Trigger by rising and falling edge)
653 -2. (Trigger by falling edge)
654 -3. (Trigger by rising edge)
655 -)))|(% style="width:157px" %)OK
656 656  
657 -(% style="color:blue" %)**Downlink Command: 0x06**
637 +~1. (Disable Interrupt),
658 658  
639 +2. (Trigger by rising and falling edge),
640 +
641 +3. (Trigger by falling edge)
642 +
643 +4. (Trigger by rising edge)
644 +)))|OK
645 +
646 +**Downlink Command: 0x06**
647 +
659 659  Format: Command Code (0x06) followed by 3 bytes.
660 660  
661 661  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
662 662  
663 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
664 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
652 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
653 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
665 665  
666 666  
667 667  
... ... @@ -670,69 +670,87 @@
670 670  
671 671  Feature, Control the output 3V3 , 5V or 12V.
672 672  
673 -(% style="color:blue" %)**AT Command: AT+3V3T**
662 +**AT Command: AT+3V3T**
674 674  
675 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
676 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
677 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
664 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
665 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**
666 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
678 678  0
668 +
679 679  OK
680 680  )))
681 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
671 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
682 682  OK
673 +
683 683  default setting
684 684  )))
685 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
676 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
686 686  OK
678 +
679 +
687 687  )))
688 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
681 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
689 689  OK
683 +
684 +
690 690  )))
691 691  
692 -(% style="color:blue" %)**AT Command: AT+5VT**
693 693  
694 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
695 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
696 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
688 +**AT Command: AT+5VT**
689 +
690 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
691 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**
692 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
697 697  0
694 +
698 698  OK
699 699  )))
700 -|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
697 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
701 701  OK
699 +
702 702  default setting
703 703  )))
704 -|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
702 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
705 705  OK
704 +
705 +
706 706  )))
707 -|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
707 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
708 708  OK
709 +
710 +
709 709  )))
710 710  
711 -(% style="color:blue" %)**AT Command: AT+12VT**
712 712  
713 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
714 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
715 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
714 +**AT Command: AT+12VT**
715 +
716 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
717 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response**
718 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
716 716  0
720 +
717 717  OK
718 718  )))
719 -|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
720 -|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
723 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
724 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
721 721  OK
726 +
727 +
722 722  )))
723 723  
724 -(% style="color:blue" %)**Downlink Command: 0x07**
725 725  
731 +**Downlink Command: 0x07**
732 +
726 726  Format: Command Code (0x07) followed by 3 bytes.
727 727  
728 728  The first byte is which power, the second and third bytes are the time to turn on.
729 729  
730 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
731 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
732 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
733 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
734 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
735 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
737 +* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
738 +* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
739 +* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
740 +* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
741 +* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
742 +* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
736 736  
737 737  
738 738  
... ... @@ -739,81 +739,33 @@
739 739  == 3.4 Set the Probe Model ==
740 740  
741 741  
742 -Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
749 +**AT Command: AT** **+PROBE**
743 743  
744 -**AT Command: AT** **+PROBE**
745 -
746 -AT+PROBE=aabb
747 -
748 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
749 -
750 -When aa=01, it is the pressure mode, which converts the current into a pressure value;
751 -
752 -bb represents which type of pressure sensor it is.
753 -
754 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
755 -
756 756  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
757 -|**Command Example**|**Function**|**Response**
758 -|AT +PROBE =?|Get or Set the probe model.|0
759 -OK
760 -|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK
761 -|(((
762 -AT +PROBE =000A
752 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response**
753 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
754 +0
763 763  
764 -
765 -)))|Set water depth sensor mode, 10m type.|OK
766 -|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK
767 -|AT +PROBE =0000|Initial state, no settings.|OK
768 -
769 -**Downlink Command: 0x08**
770 -
771 -Format: Command Code (0x08) followed by 2 bytes.
772 -
773 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
774 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
775 -
776 -
777 -
778 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
779 -
780 -
781 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
782 -
783 -(% style="color:blue" %)**AT Command: AT** **+STDC**
784 -
785 -AT+STDC=aa,bb,bb
786 -
787 -(% style="color:#037691" %)**aa:**(%%)
788 -**0:** means disable this function and use TDC to send packets.
789 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
790 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
791 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
792 -
793 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
794 -|**Command Example**|**Function**|**Response**
795 -|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18
796 796  OK
797 -|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(((
798 -Attention:Take effect after ATZ
799 -
800 -OK
801 801  )))
802 -|AT+STDC=0, 0,0|(((
803 -Use the TDC interval to send packets.(default)
758 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
759 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
760 +OK
804 804  
805 805  
806 -)))|(((
807 -Attention:Take effect after ATZ
808 -
763 +)))
764 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
809 809  OK
766 +
767 +
810 810  )))
811 811  
812 -(% style="color:blue" %)**Downlink Command: 0xAE**
770 +**Downlink Command: 0x08**
813 813  
814 -Format: Command Code (0x08) followed by 5 bytes.
772 +Format: Command Code (0x08) followed by 2 bytes.
815 815  
816 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
774 +* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
775 +* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
817 817  
818 818  
819 819  
... ... @@ -824,6 +824,7 @@
824 824  
825 825  PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
826 826  
786 +
827 827  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
828 828  
829 829  [[image:1675146710956-626.png]]
... ... @@ -847,12 +847,17 @@
847 847  
848 848  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
849 849  
810 +
850 850  Instruction to use as below:
851 851  
852 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
853 853  
854 -(% style="color:blue" %)**Step 2:**(%%) Open it and choose
814 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
855 855  
816 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
817 +
818 +
819 +**Step 2:** Open it and choose
820 +
856 856  * Product Model
857 857  * Uplink Interval
858 858  * Working Mode
... ... @@ -933,11 +933,11 @@
933 933  = 9. ​Packing Info =
934 934  
935 935  
936 -(% style="color:#037691" %)**Package Includes**:
901 +**Package Includes**:
937 937  
938 938  * PS-LB LoRaWAN Pressure Sensor
939 939  
940 -(% style="color:#037691" %)**Dimension and weight**:
905 +**Dimension and weight**:
941 941  
942 942  * Device Size: cm
943 943  * Device Weight: g
... ... @@ -950,7 +950,6 @@
950 950  
951 951  
952 952  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
953 -
954 954  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
955 955  
956 956  
image-20230201090514-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
image-20230222174559-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -19.4 KB
Content
image-20230225154759-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -468.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0