Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/04/27 10:31
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 4 removed)
Details
- Page properties
-
- Content
-
... ... @@ -16,33 +16,22 @@ 16 16 == 1.1 What is LoRaWAN Pressure Sensor == 17 17 18 18 19 -((( 20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 21 -))) 19 +The Dragino PS-LB series sensors are **(% style="color:blue" %)LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 22 22 23 -((( 24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 25 -))) 21 +The PS-LB series sensors include **(% style="color:blue" %)Thread Installation Type**(%%) and **(% style="color:blue" %)Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 26 26 27 -((( 28 28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 32 PS-LB supports BLE configure and wireless OTA update which make user easy to use. 33 -))) 34 34 35 -((( 36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 -))) 27 +PS-LB is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 38 38 39 -((( 40 40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 41 -))) 42 42 43 43 [[image:1675071321348-194.png]] 44 44 45 45 34 + 46 46 == 1.2 Features == 47 47 48 48 ... ... @@ -58,25 +58,23 @@ 58 58 * Uplink on periodically 59 59 * Downlink to change configure 60 60 * 8500mAh Battery for long term use 61 -* Controllable 3.3v,5v and 12v output to power external sensor 62 62 63 63 64 - 65 65 == 1.3 Specification == 66 66 67 67 68 -(% style="color:#037691" %) **Micro Controller:**55 +**(% style="color:#037691" %)Micro Controller:** 69 69 70 70 * MCU: 48Mhz ARM 71 71 * Flash: 256KB 72 72 * RAM: 64KB 73 73 74 -(% style="color:#037691" %) **Common DC Characteristics:**61 +**(% style="color:#037691" %)Common DC Characteristics:** 75 75 76 76 * Supply Voltage: 2.5v ~~ 3.6v 77 77 * Operating Temperature: -40 ~~ 85°C 78 78 79 -(% style="color:#037691" %) **LoRa Spec:**66 +**(% style="color:#037691" %)LoRa Spec:** 80 80 81 81 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 82 82 * Max +22 dBm constant RF output vs. ... ... @@ -83,19 +83,19 @@ 83 83 * RX sensitivity: down to -139 dBm. 84 84 * Excellent blocking immunity 85 85 86 -(% style="color:#037691" %) **Current Input Measuring :**73 +**(% style="color:#037691" %)Current Input Measuring :** 87 87 88 88 * Range: 0 ~~ 20mA 89 89 * Accuracy: 0.02mA 90 90 * Resolution: 0.001mA 91 91 92 -(% style="color:#037691" %) **Voltage Input Measuring:**79 +**(% style="color:#037691" %)Voltage Input Measuring:** 93 93 94 94 * Range: 0 ~~ 30v 95 95 * Accuracy: 0.02v 96 96 * Resolution: 0.001v 97 97 98 -(% style="color:#037691" %) **Battery:**85 +**(% style="color:#037691" %)Battery:** 99 99 100 100 * Li/SOCI2 un-chargeable battery 101 101 * Capacity: 8500mAh ... ... @@ -103,13 +103,12 @@ 103 103 * Max continuously current: 130mA 104 104 * Max boost current: 2A, 1 second 105 105 106 -(% style="color:#037691" %) **Power Consumption**93 +**(% style="color:#037691" %)Power Consumption** 107 107 108 108 * Sleep Mode: 5uA @ 3.3v 109 109 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 110 110 111 111 112 - 113 113 == 1.4 Probe Types == 114 114 115 115 === 1.4.1 Thread Installation Type === ... ... @@ -129,7 +129,6 @@ 129 129 * Connector Type: Various Types, see order info 130 130 131 131 132 - 133 133 === 1.4.2 Immersion Type === 134 134 135 135 ... ... @@ -147,17 +147,17 @@ 147 147 * Material: 316 stainless steels 148 148 149 149 150 - 151 151 == 1.5 Probe Dimension == 152 152 153 153 154 154 139 + 155 155 == 1.6 Application and Installation == 156 156 157 157 === 1.6.1 Thread Installation Type === 158 158 159 159 160 -(% style="color:blue" %) **Application:**145 +**(% style="color:blue" %)Application:** 161 161 162 162 * Hydraulic Pressure 163 163 * Petrochemical Industry ... ... @@ -175,7 +175,7 @@ 175 175 === 1.6.2 Immersion Type === 176 176 177 177 178 -(% style="color:blue" %) **Application:**163 +**(% style="color:blue" %)Application:** 179 179 180 180 Liquid & Water Pressure / Level detect. 181 181 ... ... @@ -194,9 +194,9 @@ 194 194 == 1.7 Sleep mode and working mode == 195 195 196 196 197 -(% style="color:blue" %) **Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.182 +**(% style="color:blue" %)Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 198 198 199 -(% style="color:blue" %) **Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.184 +**(% style="color:blue" %)Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 200 200 201 201 202 202 == 1.8 Button & LEDs == ... ... @@ -206,17 +206,20 @@ 206 206 207 207 208 208 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 209 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action** 210 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 211 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 194 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action** 195 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|((( 196 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **(% style="color:blue" %)blue led** (%%)will blink once. 197 + 212 212 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 213 213 ))) 214 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 215 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 216 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 200 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|((( 201 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:#037691" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 202 + 203 +**(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network. 204 + 217 217 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 218 218 ))) 219 -|(% style="width:1 67px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red"%)**Redled**(%%)will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.207 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 220 220 221 221 222 222 ... ... @@ -244,6 +244,8 @@ 244 244 == 1.11 Mechanical == 245 245 246 246 235 + 236 + 247 247 [[image:1675143884058-338.png]] 248 248 249 249 ... ... @@ -258,9 +258,10 @@ 258 258 == 2.1 How it works == 259 259 260 260 261 -The PS-LB is configured as (% style="color:#037691" %) **LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.251 +The PS-LB is configured as **(% style="color:#037691" %)LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 262 262 263 263 254 + 264 264 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 265 265 266 266 ... ... @@ -273,7 +273,7 @@ 273 273 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 274 274 275 275 276 -(% style="color:blue" %) **Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.267 +**(% style="color:blue" %)Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB. 277 277 278 278 Each PS-LB is shipped with a sticker with the default device EUI as below: 279 279 ... ... @@ -284,38 +284,48 @@ 284 284 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 285 285 286 286 287 -(% style="color:blue" %) **Register the device**278 +**(% style="color:blue" %)Register the device** 288 288 289 289 [[image:1675144099263-405.png]] 290 290 291 291 292 -(% style="color:blue" %) **Add APP EUI and DEV EUI**283 +**(% style="color:blue" %)Add APP EUI and DEV EUI** 293 293 294 294 [[image:1675144117571-832.png]] 295 295 296 296 297 -(% style="color:blue" %) **Add APP EUI in the application**288 +**(% style="color:blue" %)Add APP EUI in the application** 298 298 299 299 300 300 [[image:1675144143021-195.png]] 301 301 302 302 303 -(% style="color:blue" %) **Add APP KEY**294 +**(% style="color:blue" %)Add APP KEY** 304 304 305 305 [[image:1675144157838-392.png]] 306 306 307 -(% style="color:blue" %) **Step 2:**(%%) Activate on PS-LB298 +**(% style="color:blue" %)Step 2:**(%%) Activate on PS-LB 308 308 309 309 310 310 Press the button for 5 seconds to activate the PS-LB. 311 311 312 -(% style="color:green" %) **Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.303 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:blue" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. **(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network. 313 313 314 314 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 315 315 316 316 308 + 317 317 == 2.3 Uplink Payload == 318 318 311 + 312 +Uplink payloads have two types: 313 + 314 +* Distance Value: Use FPORT=2 315 +* Other control commands: Use other FPORT fields. 316 + 317 +The application server should parse the correct value based on FPORT settings. 318 + 319 + 319 319 === 2.3.1 Device Status, FPORT~=5 === 320 320 321 321 ... ... @@ -326,8 +326,8 @@ 326 326 327 327 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 328 328 |(% colspan="6" %)**Device Status (FPORT=5)** 329 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**| (% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**330 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version| (% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT330 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2** 331 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT 331 331 332 332 Example parse in TTNv3 333 333 ... ... @@ -334,11 +334,11 @@ 334 334 [[image:1675144504430-490.png]] 335 335 336 336 337 -(% style="color:#037691" %) **Sensor Model**(%%): For PS-LB, this value is 0x16338 +**(% style="color:#037691" %)Sensor Model**(%%): For PS-LB, this value is 0x16 338 338 339 -(% style="color:#037691" %) **Firmware Version**(%%): 0x0100, Means: v1.0.0 version340 +**(% style="color:#037691" %)Firmware Version**(%%): 0x0100, Means: v1.0.0 version 340 340 341 -(% style="color:#037691" %) **Frequency Band**:342 +**(% style="color:#037691" %)Frequency Band**: 342 342 343 343 *0x01: EU868 344 344 ... ... @@ -369,7 +369,7 @@ 369 369 *0x0e: MA869 370 370 371 371 372 -(% style="color:#037691" %) **Sub-Band**:373 +**(% style="color:#037691" %)Sub-Band**: 373 373 374 374 AU915 and US915:value 0x00 ~~ 0x08 375 375 ... ... @@ -378,7 +378,7 @@ 378 378 Other Bands: Always 0x00 379 379 380 380 381 -(% style="color:#037691" %) **Battery Info**:382 +**(% style="color:#037691" %)Battery Info**: 382 382 383 383 Check the battery voltage. 384 384 ... ... @@ -396,12 +396,13 @@ 396 396 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 397 397 |(% style="width:97px" %)((( 398 398 **Size(bytes)** 399 -)))|(% style="width:48px" %)**2**|(% style="width: 71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**400 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3. 4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.8IN126IN226INTpin"]]400 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1** 401 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] 401 401 402 402 [[image:1675144608950-310.png]] 403 403 404 404 406 + 405 405 === 2.3.3 Battery Info === 406 406 407 407 ... ... @@ -415,41 +415,35 @@ 415 415 === 2.3.4 Probe Model === 416 416 417 417 418 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe.420 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 419 419 420 420 421 421 For example. 422 422 423 423 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 424 -|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning** 425 -|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 426 -|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 427 -|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure 426 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning** 427 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 428 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 428 428 429 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.430 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value. 430 430 431 431 432 432 === 2.3.5 0~~20mA value (IDC_IN) === 433 433 434 434 435 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.436 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level. 436 436 437 -(% style="color:#037691" %) **Example**:438 +**(% style="color:#037691" %)Example**: 438 438 439 439 27AE(H) = 10158 (D)/1000 = 10.158mA. 440 440 441 441 442 -Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example: 443 - 444 -[[image:image-20230225154759-1.png||height="408" width="741"]] 445 - 446 - 447 447 === 2.3.6 0~~30V value ( pin VDC_IN) === 448 448 449 449 450 450 Measure the voltage value. The range is 0 to 30V. 451 451 452 -(% style="color:#037691" %) **Example**:448 +**(% style="color:#037691" %)Example**: 453 453 454 454 138E(H) = 5006(D)/1000= 5.006V 455 455 ... ... @@ -459,45 +459,27 @@ 459 459 460 460 IN1 and IN2 are used as digital input pins. 461 461 462 -(% style="color:#037691" %) **Example**:458 +**(% style="color:#037691" %)Example**: 463 463 464 -09 (H) :(0x09&0x08)>>3=1 IN1 pin is high level.460 +09 (H) :(0x09&0x08)>>3=1 IN1 pin is high level. 465 465 466 -09 (H) :(0x09&0x04)>>2=0 IN2 pin is low level.462 +09 (H) :(0x09&0x04)>>2=0 IN2 pin is low level. 467 467 468 468 469 -This data field shows if this packet is generated by (% style="color:blue" %) **Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.465 +This data field shows if this packet is generated by **(% style="color:blue" %)Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal. 470 470 471 -(% style="color:#037691" %) **Example:**467 +**(% style="color:#037691" %)Example:** 472 472 473 -09 (H) :(0x09&0x02)>>1=1 The level of the interrupt pin.469 +09 (H) :(0x09&0x02)>>1=1 The level of the interrupt pin. 474 474 475 -09 (H) :0x09&0x01=1 0x00: Normal uplink packet.471 +09 (H) :0x09&0x01=1 0x00: Normal uplink packet. 476 476 477 477 0x01: Interrupt Uplink Packet. 478 478 479 479 480 -=== (%id="cke_bm_109176S"style="display:none"%) (%%)2.3.8 Sensorvalue, FPORT~=7===476 +=== 2.3.8 Decode payload in The Things Network === 481 481 482 482 483 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %) 484 -|(% style="width:94px" %)((( 485 -**Size(bytes)** 486 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n 487 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)((( 488 -Voltage value, each 2 bytes is a set of voltage values. 489 -))) 490 - 491 -[[image:image-20230220171300-1.png||height="207" width="863"]] 492 - 493 -Multiple sets of data collected are displayed in this form: 494 - 495 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2] 496 - 497 - 498 -=== 2.3.9 Decode payload in The Things Network === 499 - 500 - 501 501 While using TTN network, you can add the payload format to decode the payload. 502 502 503 503 ... ... @@ -519,9 +519,9 @@ 519 519 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 520 520 521 521 522 -(% style="color:blue" %) **Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.500 +**(% style="color:blue" %)Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time. 523 523 524 -(% style="color:blue" %) **Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:502 +**(% style="color:blue" %)Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 525 525 526 526 527 527 [[image:1675144951092-237.png]] ... ... @@ -530,9 +530,9 @@ 530 530 [[image:1675144960452-126.png]] 531 531 532 532 533 -(% style="color:blue" %) **Step 3:**(%%) Create an account or log in Datacake.511 +**(% style="color:blue" %)Step 3:**(%%) Create an account or log in Datacake. 534 534 535 -(% style="color:blue" %) **Step 4:** (%%)Create PS-LB product.513 +**(% style="color:#blue" %)Step 4:** (%%)Create PS-LB product. 536 536 537 537 [[image:1675145004465-869.png]] 538 538 ... ... @@ -545,7 +545,7 @@ 545 545 [[image:1675145029119-717.png]] 546 546 547 547 548 -(% style="color:blue" %) **Step 5: **(%%)add payload decode526 +**(% style="color:blue" %)Step 5: **(%%)add payload decode 549 549 550 550 [[image:1675145051360-659.png]] 551 551 ... ... @@ -553,6 +553,7 @@ 553 553 [[image:1675145060812-420.png]] 554 554 555 555 534 + 556 556 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 557 557 558 558 ... ... @@ -575,17 +575,19 @@ 575 575 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]] 576 576 577 577 557 + 578 578 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink = 579 579 580 580 581 581 Use can configure PS-LB via AT Command or LoRaWAN Downlink. 582 582 583 -* AT Command Connection: See [[FAQ>> ||anchor="H7.FAQ"]].563 +* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]]. 584 584 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 585 585 566 + 586 586 There are two kinds of commands to configure PS-LB, they are: 587 587 588 -* (% style="color:#037691" %)**General Commands**569 +* **General Commands**. 589 589 590 590 These commands are to configure: 591 591 ... ... @@ -597,7 +597,7 @@ 597 597 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 598 598 599 599 600 -* (% style="color:#037691" %)**Commands special design for PS-LB**581 +* **Commands special design for PS-LB** 601 601 602 602 These commands only valid for PS-LB, as below: 603 603 ... ... @@ -607,61 +607,69 @@ 607 607 608 608 Feature: Change LoRaWAN End Node Transmit Interval. 609 609 610 - (% style="color:blue" %)**AT Command: AT+TDC**591 +**AT Command: AT+TDC** 611 611 612 612 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 613 -| =(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**614 -| (% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((594 +|**Command Example**|**Function**|**Response** 595 +|AT+TDC=?|Show current transmit Interval|((( 615 615 30000 597 + 616 616 OK 599 + 617 617 the interval is 30000ms = 30s 618 618 ))) 619 -| (% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((602 +|AT+TDC=60000|Set Transmit Interval|((( 620 620 OK 604 + 621 621 Set transmit interval to 60000ms = 60 seconds 622 622 ))) 623 623 624 - (% style="color:blue" %)**Downlink Command: 0x01**608 +**Downlink Command: 0x01** 625 625 626 626 Format: Command Code (0x01) followed by 3 bytes time value. 627 627 628 -If the downlink payload=0100003C, it means set the END Node 's Transmit Interval to 0x00003C=60(S), while type code is 01.612 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 629 629 630 -* Example 1: Downlink Payload: 0100001E 631 -* Example 2: Downlink Payload: 0100003C 614 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 615 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 632 632 633 633 634 - 635 635 == 3.2 Set Interrupt Mode == 636 636 637 637 638 638 Feature, Set Interrupt mode for GPIO_EXIT. 639 639 640 - (% style="color:blue" %)**AT Command: AT+INTMOD**623 +**AT Command: AT+INTMOD** 641 641 642 642 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 643 -| =(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**644 -| (% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((626 +|**Command Example**|**Function**|**Response** 627 +|AT+INTMOD=?|Show current interrupt mode|((( 645 645 0 629 + 646 646 OK 647 -the mode is 0 =Disable Interrupt 631 + 632 +the mode is 0 = No interruption 648 648 ))) 649 -| (% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((634 +|AT+INTMOD=2|((( 650 650 Set Transmit Interval 651 -0. (Disable Interrupt), 652 -~1. (Trigger by rising and falling edge) 653 -2. (Trigger by falling edge) 654 -3. (Trigger by rising edge) 655 -)))|(% style="width:157px" %)OK 656 656 657 - (%style="color:blue"%)**Downlink Command: 0x06**637 +~1. (Disable Interrupt), 658 658 639 +2. (Trigger by rising and falling edge), 640 + 641 +3. (Trigger by falling edge) 642 + 643 +4. (Trigger by rising edge) 644 +)))|OK 645 + 646 +**Downlink Command: 0x06** 647 + 659 659 Format: Command Code (0x06) followed by 3 bytes. 660 660 661 661 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 662 662 663 -* Example 1: Downlink Payload: 06000000 664 -* Example 2: Downlink Payload: 06000003 652 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 653 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 665 665 666 666 667 667 ... ... @@ -670,69 +670,87 @@ 670 670 671 671 Feature, Control the output 3V3 , 5V or 12V. 672 672 673 - (% style="color:blue" %)**AT Command: AT+3V3T**662 +**AT Command: AT+3V3T** 674 674 675 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 474px" %)676 -| =(% style="width:4px;" %)**Command Example**|=(% style="width:01px;" %)**Function**|=(% style="width:6px;" %)**Response**677 -|(% style="width:15 4px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((664 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 665 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response** 666 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)((( 678 678 0 668 + 679 679 OK 680 680 ))) 681 -|(% style="width:15 4px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((671 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)((( 682 682 OK 673 + 683 683 default setting 684 684 ))) 685 -|(% style="width:15 4px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((676 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)((( 686 686 OK 678 + 679 + 687 687 ))) 688 -|(% style="width:15 4px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((681 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)((( 689 689 OK 683 + 684 + 690 690 ))) 691 691 692 -(% style="color:blue" %)**AT Command: AT+5VT** 693 693 694 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %) 695 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response** 696 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)((( 688 +**AT Command: AT+5VT** 689 + 690 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 691 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response** 692 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)((( 697 697 0 694 + 698 698 OK 699 699 ))) 700 -|(% style="width:15 5px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((697 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)((( 701 701 OK 699 + 702 702 default setting 703 703 ))) 704 -|(% style="width:15 5px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((702 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)((( 705 705 OK 704 + 705 + 706 706 ))) 707 -|(% style="width:15 5px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((707 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)((( 708 708 OK 709 + 710 + 709 709 ))) 710 710 711 -(% style="color:blue" %)**AT Command: AT+12VT** 712 712 713 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %) 714 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response** 715 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)((( 714 +**AT Command: AT+12VT** 715 + 716 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 717 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response** 718 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|((( 716 716 0 720 + 717 717 OK 718 718 ))) 719 -|(% style="width:156px" %)AT+12VT=0|(% style="width: 199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK720 -|(% style="width:156px" %)AT+12VT=500|(% style="width: 199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((723 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK 724 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|((( 721 721 OK 726 + 727 + 722 722 ))) 723 723 724 -(% style="color:blue" %)**Downlink Command: 0x07** 725 725 731 +**Downlink Command: 0x07** 732 + 726 726 Format: Command Code (0x07) followed by 3 bytes. 727 727 728 728 The first byte is which power, the second and third bytes are the time to turn on. 729 729 730 -* Example 1: Downlink Payload: 070101F4 **~-~-->**731 -* Example 2: Downlink Payload: 0701FFFF **~-~-->**AT+3V3T=65535732 -* Example 3: Downlink Payload: 070203E8 **~-~-->**AT+5VT=1000733 -* Example 4: Downlink Payload: 07020000 **~-~-->**AT+5VT=0734 -* Example 5: Downlink Payload: 070301F4 **~-~-->**AT+12VT=500735 -* Example 6: Downlink Payload: 07030000 **~-~-->**AT+12VT=0737 +* Example 1: Downlink Payload: 070101F4 -> AT+3V3T=500 738 +* Example 2: Downlink Payload: 0701FFFF -> AT+3V3T=65535 739 +* Example 3: Downlink Payload: 070203E8 -> AT+5VT=1000 740 +* Example 4: Downlink Payload: 07020000 -> AT+5VT=0 741 +* Example 5: Downlink Payload: 070301F4 -> AT+12VT=500 742 +* Example 6: Downlink Payload: 07030000 -> AT+12VT=0 736 736 737 737 738 738 ... ... @@ -739,81 +739,33 @@ 739 739 == 3.4 Set the Probe Model == 740 740 741 741 742 - Usersneed toconfigure this parameteraccording to the type of external probe. In this way, the server candecodeaccordingto this value, and convert the current value output by the sensor into water depth or pressure value.749 +**AT Command: AT** **+PROBE** 743 743 744 -**AT Command: AT** **+PROBE** 745 - 746 -AT+PROBE=aabb 747 - 748 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters. 749 - 750 -When aa=01, it is the pressure mode, which converts the current into a pressure value; 751 - 752 -bb represents which type of pressure sensor it is. 753 - 754 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C) 755 - 756 756 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 757 -|**Command Example**|**Function**|**Response** 758 -|AT +PROBE =?|Get or Set the probe model.|0 759 -OK 760 -|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK 761 -|((( 762 -AT +PROBE =000A 752 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response** 753 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|((( 754 +0 763 763 764 - 765 -)))|Set water depth sensor mode, 10m type.|OK 766 -|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK 767 -|AT +PROBE =0000|Initial state, no settings.|OK 768 - 769 -**Downlink Command: 0x08** 770 - 771 -Format: Command Code (0x08) followed by 2 bytes. 772 - 773 -* Example 1: Downlink Payload: 080003 **~-~-->** AT+PROBE=0003 774 -* Example 2: Downlink Payload: 080101 **~-~-->** AT+PROBE=0101 775 - 776 - 777 - 778 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) == 779 - 780 - 781 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time. 782 - 783 -(% style="color:blue" %)**AT Command: AT** **+STDC** 784 - 785 -AT+STDC=aa,bb,bb 786 - 787 -(% style="color:#037691" %)**aa:**(%%) 788 -**0:** means disable this function and use TDC to send packets. 789 -**1:** means enable this function, use the method of multiple acquisitions to send packets. 790 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535 791 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120 792 - 793 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 794 -|**Command Example**|**Function**|**Response** 795 -|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18 796 796 OK 797 -|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|((( 798 -Attention:Take effect after ATZ 799 - 800 -OK 801 801 ))) 802 -|AT+STDC=0, 0,0|((( 803 -Use the TDC interval to send packets.(default) 758 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK 759 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|((( 760 +OK 804 804 805 805 806 -)))|((( 807 -Attention:Take effect after ATZ 808 - 763 +))) 764 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|((( 809 809 OK 766 + 767 + 810 810 ))) 811 811 812 - (% style="color:blue" %)**Downlink Command: 0xAE**770 +**Downlink Command: 0x08** 813 813 814 -Format: Command Code (0x08) followed by 5bytes.772 +Format: Command Code (0x08) followed by 2 bytes. 815 815 816 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->** AT+STDC=1,600,18 774 +* Example 1: Downlink Payload: 080003 -> AT+PROBE=0003 775 +* Example 2: Downlink Payload: 080101 -> AT+PROBE=0101 817 817 818 818 819 819 ... ... @@ -824,6 +824,7 @@ 824 824 825 825 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 826 826 786 + 827 827 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 828 828 829 829 [[image:1675146710956-626.png]] ... ... @@ -847,12 +847,17 @@ 847 847 848 848 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 849 849 810 + 850 850 Instruction to use as below: 851 851 852 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 853 853 854 - (% style="color:blue" %)**Step2:**(%%)Openand choose814 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 855 855 816 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 817 + 818 + 819 +**Step 2:** Open it and choose 820 + 856 856 * Product Model 857 857 * Uplink Interval 858 858 * Working Mode ... ... @@ -933,11 +933,11 @@ 933 933 = 9. Packing Info = 934 934 935 935 936 - (% style="color:#037691" %)**Package Includes**:901 +**Package Includes**: 937 937 938 938 * PS-LB LoRaWAN Pressure Sensor 939 939 940 - (% style="color:#037691" %)**Dimension and weight**:905 +**Dimension and weight**: 941 941 942 942 * Device Size: cm 943 943 * Device Weight: g ... ... @@ -950,7 +950,6 @@ 950 950 951 951 952 952 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 953 - 954 954 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 955 955 956 956
- image-20230201090514-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -560.9 KB - Content
- image-20230220171300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.0 KB - Content
- image-20230222174559-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -19.4 KB - Content
- image-20230225154759-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -468.9 KB - Content