Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/04/19 17:58
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 4 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Edwin1 +XWiki.Xiaoling - Content
-
... ... @@ -16,33 +16,22 @@ 16 16 == 1.1 What is LoRaWAN Pressure Sensor == 17 17 18 18 19 -((( 20 20 The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 21 -))) 22 22 23 -((( 24 24 The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 25 -))) 26 26 27 -((( 28 28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 32 PS-LB supports BLE configure and wireless OTA update which make user easy to use. 33 -))) 34 34 35 -((( 36 36 PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 -))) 38 38 39 -((( 40 40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 41 -))) 42 42 43 43 [[image:1675071321348-194.png]] 44 44 45 45 34 + 46 46 == 1.2 Features == 47 47 48 48 ... ... @@ -58,7 +58,6 @@ 58 58 * Uplink on periodically 59 59 * Downlink to change configure 60 60 * 8500mAh Battery for long term use 61 -* Controllable 3.3v,5v and 12v output to power external sensor 62 62 63 63 == 1.3 Specification == 64 64 ... ... @@ -144,6 +144,7 @@ 144 144 145 145 146 146 135 + 147 147 == 1.6 Application and Installation == 148 148 149 149 === 1.6.1 Thread Installation Type === ... ... @@ -198,17 +198,17 @@ 198 198 199 199 200 200 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 201 -|=(% style="width: 1 67px;" %)**Behavior on ACT**|=(% style="width:117px;" %)**Function**|=(% style="width: 225px;" %)**Action**202 -|(% style="width: 167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((190 +|=(% style="width: 150px;" %)**Behavior on ACT**|=(% style="width: 90px;" %)**Function**|=**Action** 191 +|(% style="width:260px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|((( 203 203 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 204 204 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 205 205 ))) 206 -|(% style="width:1 67px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((195 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|((( 207 207 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 208 208 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 209 209 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 210 210 ))) 211 -|(% style="width:1 67px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red"%)**Redled**(%%)will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.200 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 212 212 213 213 == 1.9 Pin Mapping == 214 214 ... ... @@ -234,6 +234,8 @@ 234 234 == 1.11 Mechanical == 235 235 236 236 226 + 227 + 237 237 [[image:1675143884058-338.png]] 238 238 239 239 ... ... @@ -251,6 +251,7 @@ 251 251 The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 252 252 253 253 245 + 254 254 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 255 255 256 256 ... ... @@ -304,8 +304,18 @@ 304 304 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 305 305 306 306 299 + 307 307 == 2.3 Uplink Payload == 308 308 302 + 303 +Uplink payloads have two types: 304 + 305 +* Distance Value: Use FPORT=2 306 +* Other control commands: Use other FPORT fields. 307 + 308 +The application server should parse the correct value based on FPORT settings. 309 + 310 + 309 309 === 2.3.1 Device Status, FPORT~=5 === 310 310 311 311 ... ... @@ -316,8 +316,8 @@ 316 316 317 317 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 318 318 |(% colspan="6" %)**Device Status (FPORT=5)** 319 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**| (% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**320 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version| (% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT321 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2** 322 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT 321 321 322 322 Example parse in TTNv3 323 323 ... ... @@ -387,11 +387,12 @@ 387 387 |(% style="width:97px" %)((( 388 388 **Size(bytes)** 389 389 )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1** 390 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3. 4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.8IN126IN226INTpin"]]392 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] 391 391 392 392 [[image:1675144608950-310.png]] 393 393 394 394 397 + 395 395 === 2.3.3 Battery Info === 396 396 397 397 ... ... @@ -405,24 +405,23 @@ 405 405 === 2.3.4 Probe Model === 406 406 407 407 408 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe.411 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 409 409 410 410 411 411 For example. 412 412 413 413 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 414 -|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning** 415 -|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 416 -|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 417 -|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure 417 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning** 418 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 419 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 418 418 419 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.421 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value. 420 420 421 421 422 422 === 2.3.5 0~~20mA value (IDC_IN) === 423 423 424 424 425 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.427 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level. 426 426 427 427 (% style="color:#037691" %)**Example**: 428 428 ... ... @@ -429,11 +429,6 @@ 429 429 27AE(H) = 10158 (D)/1000 = 10.158mA. 430 430 431 431 432 -Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example: 433 - 434 -[[image:image-20230225154759-1.png||height="408" width="741"]] 435 - 436 - 437 437 === 2.3.6 0~~30V value ( pin VDC_IN) === 438 438 439 439 ... ... @@ -466,27 +466,10 @@ 466 466 467 467 0x01: Interrupt Uplink Packet. 468 468 469 -=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 === 470 470 467 +=== 2.3.8 Decode payload in The Things Network === 471 471 472 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %) 473 -|(% style="width:94px" %)((( 474 -**Size(bytes)** 475 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n 476 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)((( 477 -Voltage value, each 2 bytes is a set of voltage values. 478 -))) 479 479 480 -[[image:image-20230220171300-1.png||height="207" width="863"]] 481 - 482 -Multiple sets of data collected are displayed in this form: 483 - 484 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2] 485 - 486 - 487 -=== 2.3.9 Decode payload in The Things Network === 488 - 489 - 490 490 While using TTN network, you can add the payload format to decode the payload. 491 491 492 492 ... ... @@ -542,6 +542,7 @@ 542 542 [[image:1675145060812-420.png]] 543 543 544 544 525 + 545 545 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 546 546 547 547 ... ... @@ -564,6 +564,7 @@ 564 564 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]] 565 565 566 566 548 + 567 567 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink = 568 568 569 569 ... ... @@ -574,7 +574,7 @@ 574 574 575 575 There are two kinds of commands to configure PS-LB, they are: 576 576 577 -* (% style="color:#037691" %)**General Commands** 559 +* (% style="color:#037691" %)**General Commands**. 578 578 579 579 These commands are to configure: 580 580 ... ... @@ -602,11 +602,14 @@ 602 602 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response** 603 603 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 604 604 30000 587 + 605 605 OK 589 + 606 606 the interval is 30000ms = 30s 607 607 ))) 608 608 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|((( 609 609 OK 594 + 610 610 Set transmit interval to 60000ms = 60 seconds 611 611 ))) 612 612 ... ... @@ -614,10 +614,10 @@ 614 614 615 615 Format: Command Code (0x01) followed by 3 bytes time value. 616 616 617 -If the downlink payload=0100003C, it means set the END Node 's Transmit Interval to 0x00003C=60(S), while type code is 01.602 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 618 618 619 -* Example 1: Downlink Payload: 0100001E 620 -* Example 2: Downlink Payload: 0100003C 604 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 605 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 621 621 622 622 == 3.2 Set Interrupt Mode == 623 623 ... ... @@ -627,20 +627,26 @@ 627 627 (% style="color:blue" %)**AT Command: AT+INTMOD** 628 628 629 629 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 630 -|= (% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**631 -| (% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((615 +|=**Command Example**|=**Function**|=**Response** 616 +|AT+INTMOD=?|Show current interrupt mode|((( 632 632 0 618 + 633 633 OK 634 -the mode is 0 =Disable Interrupt 620 + 621 +the mode is 0 = No interruption 635 635 ))) 636 -| (% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((623 +|AT+INTMOD=2|((( 637 637 Set Transmit Interval 638 -0. (Disable Interrupt), 639 -~1. (Trigger by rising and falling edge) 640 -2. (Trigger by falling edge) 641 -3. (Trigger by rising edge) 642 -)))|(% style="width:157px" %)OK 643 643 626 +~1. (Disable Interrupt), 627 + 628 +2. (Trigger by rising and falling edge), 629 + 630 +3. (Trigger by falling edge) 631 + 632 +4. (Trigger by rising edge) 633 +)))|OK 634 + 644 644 (% style="color:blue" %)**Downlink Command: 0x06** 645 645 646 646 Format: Command Code (0x06) followed by 3 bytes. ... ... @@ -647,8 +647,8 @@ 647 647 648 648 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 649 649 650 -* Example 1: Downlink Payload: 06000000 651 -* Example 2: Downlink Payload: 06000003 641 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 642 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 652 652 653 653 == 3.3 Set the output time == 654 654 ... ... @@ -657,53 +657,68 @@ 657 657 658 658 (% style="color:blue" %)**AT Command: AT+3V3T** 659 659 660 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 474px" %)661 -|=(% style="width: 15 4px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**662 -|(% style="width:15 4px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((651 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 652 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 236px;" %)**Function**|=(% style="width: 117px;" %)**Response** 653 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)((( 663 663 0 655 + 664 664 OK 665 665 ))) 666 -|(% style="width:15 4px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((658 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)((( 667 667 OK 660 + 668 668 default setting 669 669 ))) 670 -|(% style="width:15 4px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((663 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)((( 671 671 OK 665 + 666 + 672 672 ))) 673 -|(% style="width:15 4px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((668 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)((( 674 674 OK 670 + 671 + 675 675 ))) 676 676 677 677 (% style="color:blue" %)**AT Command: AT+5VT** 678 678 679 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 470px" %)680 -|=(% style="width: 15 5px;" %)**Command Example**|=(% style="width:196px;" %)**Function**|=(% style="width: 114px;" %)**Response**681 -|(% style="width:15 5px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((676 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 677 +|=(% style="width: 158px;" %)**Command Example**|=(% style="width: 232px;" %)**Function**|=(% style="width: 119px;" %)**Response** 678 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)((( 682 682 0 680 + 683 683 OK 684 684 ))) 685 -|(% style="width:15 5px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((683 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)((( 686 686 OK 685 + 687 687 default setting 688 688 ))) 689 -|(% style="width:15 5px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((688 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)((( 690 690 OK 690 + 691 + 691 691 ))) 692 -|(% style="width:15 5px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((693 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)((( 693 693 OK 695 + 696 + 694 694 ))) 695 695 696 696 (% style="color:blue" %)**AT Command: AT+12VT** 697 697 698 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 443px" %)699 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**700 -|(% style="width:156px" %)AT+12VT=?|(% style="width: 199px" %)Show 12V open time.|(% style="width:83px" %)(((701 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 702 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 268px;" %)**Function**|=**Response** 703 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|((( 701 701 0 705 + 702 702 OK 703 703 ))) 704 -|(% style="width:156px" %)AT+12VT=0|(% style="width: 199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK705 -|(% style="width:156px" %)AT+12VT=500|(% style="width: 199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((708 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK 709 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|((( 706 706 OK 711 + 712 + 707 707 ))) 708 708 709 709 (% style="color:blue" %)**Downlink Command: 0x07** ... ... @@ -712,89 +712,43 @@ 712 712 713 713 The first byte is which power, the second and third bytes are the time to turn on. 714 714 715 -* Example 1: Downlink Payload: 070101F4 **~-~-->**716 -* Example 2: Downlink Payload: 0701FFFF **~-~-->**AT+3V3T=65535717 -* Example 3: Downlink Payload: 070203E8 **~-~-->**AT+5VT=1000718 -* Example 4: Downlink Payload: 07020000 **~-~-->**AT+5VT=0719 -* Example 5: Downlink Payload: 070301F4 **~-~-->**AT+12VT=500720 -* Example 6: Downlink Payload: 07030000 **~-~-->**AT+12VT=0721 +* Example 1: Downlink Payload: 070101F4 -> AT+3V3T=500 722 +* Example 2: Downlink Payload: 0701FFFF -> AT+3V3T=65535 723 +* Example 3: Downlink Payload: 070203E8 -> AT+5VT=1000 724 +* Example 4: Downlink Payload: 07020000 -> AT+5VT=0 725 +* Example 5: Downlink Payload: 070301F4 -> AT+12VT=500 726 +* Example 6: Downlink Payload: 07030000 -> AT+12VT=0 721 721 722 722 == 3.4 Set the Probe Model == 723 723 724 724 725 - Usersneed to configure thisparameter according to the type of externalprobe. In this way, the servercan decode according to this value, and convert the current valueoutputby the sensor into waterdepthorpressure value.731 +(% style="color:blue" %)**AT Command: AT** **+PROBE** 726 726 727 -**AT Command: AT** **+PROBE** 728 - 729 -AT+PROBE=aabb 730 - 731 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters. 732 - 733 -When aa=01, it is the pressure mode, which converts the current into a pressure value; 734 - 735 -bb represents which type of pressure sensor it is. 736 - 737 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C) 738 - 739 739 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 740 -|**Command Example**|**Function**|**Response** 741 -|AT +PROBE =?|Get or Set the probe model.|0 742 -OK 743 -|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK 744 -|((( 745 -AT +PROBE =000A 734 +|=(% style="width: 157px;" %)**Command Example**|=(% style="width: 267px;" %)**Function**|=**Response** 735 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|((( 736 +0 746 746 747 - 748 -)))|Set water depth sensor mode, 10m type.|OK 749 -|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK 750 -|AT +PROBE =0000|Initial state, no settings.|OK 751 - 752 -**Downlink Command: 0x08** 753 - 754 -Format: Command Code (0x08) followed by 2 bytes. 755 - 756 -* Example 1: Downlink Payload: 080003 **~-~-->** AT+PROBE=0003 757 -* Example 2: Downlink Payload: 080101 **~-~-->** AT+PROBE=0101 758 - 759 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) == 760 - 761 - 762 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time. 763 - 764 -(% style="color:blue" %)**AT Command: AT** **+STDC** 765 - 766 -AT+STDC=aa,bb,bb 767 - 768 -(% style="color:#037691" %)**aa:**(%%) 769 -**0:** means disable this function and use TDC to send packets. 770 -**1:** means enable this function, use the method of multiple acquisitions to send packets. 771 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535 772 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120 773 - 774 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 775 -|**Command Example**|**Function**|**Response** 776 -|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18 777 777 OK 778 -|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|((( 779 -Attention:Take effect after ATZ 780 - 781 -OK 782 782 ))) 783 -|AT+STDC=0, 0,0|((( 784 -Use the TDC interval to send packets.(default) 740 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK 741 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|((( 742 +OK 785 785 786 786 787 -)))|((( 788 -Attention:Take effect after ATZ 789 - 745 +))) 746 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|((( 790 790 OK 748 + 749 + 791 791 ))) 792 792 793 -(% style="color:blue" %)**Downlink Command: 0x AE**752 +(% style="color:blue" %)**Downlink Command: 0x08** 794 794 795 -Format: Command Code (0x08) followed by 5bytes.754 +Format: Command Code (0x08) followed by 2 bytes. 796 796 797 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->** AT+STDC=1,600,18 756 +* Example 1: Downlink Payload: 080003 -> AT+PROBE=0003 757 +* Example 2: Downlink Payload: 080101 -> AT+PROBE=0101 798 798 799 799 = 4. Battery & how to replace = 800 800 ... ... @@ -803,6 +803,7 @@ 803 803 804 804 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 805 805 766 + 806 806 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 807 807 808 808 [[image:1675146710956-626.png]] ... ... @@ -826,10 +826,15 @@ 826 826 827 827 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 828 828 790 + 829 829 Instruction to use as below: 830 830 831 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 832 832 794 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 795 + 796 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 797 + 798 + 833 833 (% style="color:blue" %)**Step 2:**(%%) Open it and choose 834 834 835 835 * Product Model
- image-20230201090514-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -560.9 KB - Content
- image-20230220171300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.0 KB - Content
- image-20230222174559-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -19.4 KB - Content
- image-20230225154759-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -468.9 KB - Content