Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/04/27 10:31
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 4 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Edwin1 +XWiki.Xiaoling - Content
-
... ... @@ -16,33 +16,22 @@ 16 16 == 1.1 What is LoRaWAN Pressure Sensor == 17 17 18 18 19 -((( 20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 21 -))) 19 +The Dragino PS-LB series sensors are **(% style="color:blue" %)LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 22 22 23 -((( 24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 25 -))) 21 +The PS-LB series sensors include **(% style="color:blue" %)Thread Installation Type**(%%) and **(% style="color:blue" %)Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 26 26 27 -((( 28 28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 32 PS-LB supports BLE configure and wireless OTA update which make user easy to use. 33 -))) 34 34 35 -((( 36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 -))) 27 +PS-LB is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 38 38 39 -((( 40 40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 41 -))) 42 42 43 43 [[image:1675071321348-194.png]] 44 44 45 45 34 + 46 46 == 1.2 Features == 47 47 48 48 ... ... @@ -58,23 +58,23 @@ 58 58 * Uplink on periodically 59 59 * Downlink to change configure 60 60 * 8500mAh Battery for long term use 61 -* Controllable 3.3v,5v and 12v output to power external sensor 62 62 51 + 63 63 == 1.3 Specification == 64 64 65 65 66 -(% style="color:#037691" %) **Micro Controller:**55 +**(% style="color:#037691" %)Micro Controller:** 67 67 68 68 * MCU: 48Mhz ARM 69 69 * Flash: 256KB 70 70 * RAM: 64KB 71 71 72 -(% style="color:#037691" %) **Common DC Characteristics:**61 +**(% style="color:#037691" %)Common DC Characteristics:** 73 73 74 74 * Supply Voltage: 2.5v ~~ 3.6v 75 75 * Operating Temperature: -40 ~~ 85°C 76 76 77 -(% style="color:#037691" %) **LoRa Spec:**66 +**(% style="color:#037691" %)LoRa Spec:** 78 78 79 79 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 80 80 * Max +22 dBm constant RF output vs. ... ... @@ -81,19 +81,19 @@ 81 81 * RX sensitivity: down to -139 dBm. 82 82 * Excellent blocking immunity 83 83 84 -(% style="color:#037691" %) **Current Input Measuring :**73 +**(% style="color:#037691" %)Current Input Measuring :** 85 85 86 86 * Range: 0 ~~ 20mA 87 87 * Accuracy: 0.02mA 88 88 * Resolution: 0.001mA 89 89 90 -(% style="color:#037691" %) **Voltage Input Measuring:**79 +**(% style="color:#037691" %)Voltage Input Measuring:** 91 91 92 92 * Range: 0 ~~ 30v 93 93 * Accuracy: 0.02v 94 94 * Resolution: 0.001v 95 95 96 -(% style="color:#037691" %) **Battery:**85 +**(% style="color:#037691" %)Battery:** 97 97 98 98 * Li/SOCI2 un-chargeable battery 99 99 * Capacity: 8500mAh ... ... @@ -101,11 +101,12 @@ 101 101 * Max continuously current: 130mA 102 102 * Max boost current: 2A, 1 second 103 103 104 -(% style="color:#037691" %) **Power Consumption**93 +**(% style="color:#037691" %)Power Consumption** 105 105 106 106 * Sleep Mode: 5uA @ 3.3v 107 107 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 108 108 98 + 109 109 == 1.4 Probe Types == 110 110 111 111 === 1.4.1 Thread Installation Type === ... ... @@ -124,6 +124,7 @@ 124 124 * Operating temperature: -20℃~~60℃ 125 125 * Connector Type: Various Types, see order info 126 126 117 + 127 127 === 1.4.2 Immersion Type === 128 128 129 129 ... ... @@ -140,16 +140,18 @@ 140 140 * Operating temperature: -40℃~~85℃ 141 141 * Material: 316 stainless steels 142 142 134 + 143 143 == 1.5 Probe Dimension == 144 144 145 145 146 146 139 + 147 147 == 1.6 Application and Installation == 148 148 149 149 === 1.6.1 Thread Installation Type === 150 150 151 151 152 -(% style="color:blue" %) **Application:**145 +**(% style="color:blue" %)Application:** 153 153 154 154 * Hydraulic Pressure 155 155 * Petrochemical Industry ... ... @@ -167,7 +167,7 @@ 167 167 === 1.6.2 Immersion Type === 168 168 169 169 170 -(% style="color:blue" %) **Application:**163 +**(% style="color:blue" %)Application:** 171 171 172 172 Liquid & Water Pressure / Level detect. 173 173 ... ... @@ -186,9 +186,9 @@ 186 186 == 1.7 Sleep mode and working mode == 187 187 188 188 189 -(% style="color:blue" %) **Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.182 +**(% style="color:blue" %)Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 190 190 191 -(% style="color:blue" %) **Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.184 +**(% style="color:blue" %)Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 192 192 193 193 194 194 == 1.8 Button & LEDs == ... ... @@ -198,18 +198,23 @@ 198 198 199 199 200 200 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 201 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action** 202 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 203 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 194 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action** 195 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|((( 196 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **(% style="color:blue" %)blue led** (%%)will blink once. 197 + 204 204 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 205 205 ))) 206 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 207 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 208 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 200 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|((( 201 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:#037691" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 202 + 203 +**(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network. 204 + 209 209 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 210 210 ))) 211 -|(% style="width:1 67px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red"%)**Redled**(%%)will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.207 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 212 212 209 + 210 + 213 213 == 1.9 Pin Mapping == 214 214 215 215 ... ... @@ -234,6 +234,8 @@ 234 234 == 1.11 Mechanical == 235 235 236 236 235 + 236 + 237 237 [[image:1675143884058-338.png]] 238 238 239 239 ... ... @@ -248,9 +248,10 @@ 248 248 == 2.1 How it works == 249 249 250 250 251 -The PS-LB is configured as (% style="color:#037691" %) **LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.251 +The PS-LB is configured as **(% style="color:#037691" %)LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 252 252 253 253 254 + 254 254 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 255 255 256 256 ... ... @@ -263,7 +263,7 @@ 263 263 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 264 264 265 265 266 -(% style="color:blue" %) **Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.267 +**(% style="color:blue" %)Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB. 267 267 268 268 Each PS-LB is shipped with a sticker with the default device EUI as below: 269 269 ... ... @@ -274,38 +274,48 @@ 274 274 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 275 275 276 276 277 -(% style="color:blue" %) **Register the device**278 +**(% style="color:blue" %)Register the device** 278 278 279 279 [[image:1675144099263-405.png]] 280 280 281 281 282 -(% style="color:blue" %) **Add APP EUI and DEV EUI**283 +**(% style="color:blue" %)Add APP EUI and DEV EUI** 283 283 284 284 [[image:1675144117571-832.png]] 285 285 286 286 287 -(% style="color:blue" %) **Add APP EUI in the application**288 +**(% style="color:blue" %)Add APP EUI in the application** 288 288 289 289 290 290 [[image:1675144143021-195.png]] 291 291 292 292 293 -(% style="color:blue" %) **Add APP KEY**294 +**(% style="color:blue" %)Add APP KEY** 294 294 295 295 [[image:1675144157838-392.png]] 296 296 297 -(% style="color:blue" %) **Step 2:**(%%) Activate on PS-LB298 +**(% style="color:blue" %)Step 2:**(%%) Activate on PS-LB 298 298 299 299 300 300 Press the button for 5 seconds to activate the PS-LB. 301 301 302 -(% style="color:green" %) **Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.303 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:blue" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. **(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network. 303 303 304 304 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 305 305 306 306 308 + 307 307 == 2.3 Uplink Payload == 308 308 311 + 312 +Uplink payloads have two types: 313 + 314 +* Distance Value: Use FPORT=2 315 +* Other control commands: Use other FPORT fields. 316 + 317 +The application server should parse the correct value based on FPORT settings. 318 + 319 + 309 309 === 2.3.1 Device Status, FPORT~=5 === 310 310 311 311 ... ... @@ -316,8 +316,8 @@ 316 316 317 317 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 318 318 |(% colspan="6" %)**Device Status (FPORT=5)** 319 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**| (% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**320 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version| (% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT330 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2** 331 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT 321 321 322 322 Example parse in TTNv3 323 323 ... ... @@ -324,11 +324,11 @@ 324 324 [[image:1675144504430-490.png]] 325 325 326 326 327 -(% style="color:#037691" %) **Sensor Model**(%%): For PS-LB, this value is 0x16338 +**(% style="color:#037691" %)Sensor Model**(%%): For PS-LB, this value is 0x16 328 328 329 -(% style="color:#037691" %) **Firmware Version**(%%): 0x0100, Means: v1.0.0 version340 +**(% style="color:#037691" %)Firmware Version**(%%): 0x0100, Means: v1.0.0 version 330 330 331 -(% style="color:#037691" %) **Frequency Band**:342 +**(% style="color:#037691" %)Frequency Band**: 332 332 333 333 *0x01: EU868 334 334 ... ... @@ -359,7 +359,7 @@ 359 359 *0x0e: MA869 360 360 361 361 362 -(% style="color:#037691" %) **Sub-Band**:373 +**(% style="color:#037691" %)Sub-Band**: 363 363 364 364 AU915 and US915:value 0x00 ~~ 0x08 365 365 ... ... @@ -368,7 +368,7 @@ 368 368 Other Bands: Always 0x00 369 369 370 370 371 -(% style="color:#037691" %) **Battery Info**:382 +**(% style="color:#037691" %)Battery Info**: 372 372 373 373 Check the battery voltage. 374 374 ... ... @@ -386,12 +386,13 @@ 386 386 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 387 387 |(% style="width:97px" %)((( 388 388 **Size(bytes)** 389 -)))|(% style="width:48px" %)**2**|(% style="width: 71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**390 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>> ||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.8IN126IN226INTpin"]]400 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1** 401 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>path:#bat]]|(% style="width:58px" %)[[Probe Model>>path:#Probe_Model]]|0 ~~ 20mA value|[[0 ~~~~ 30v value>>path:#Voltage_30v]]|[[IN1 &IN2 Interrupt flag>>path:#Int_pin]] 391 391 392 392 [[image:1675144608950-310.png]] 393 393 394 394 406 + 395 395 === 2.3.3 Battery Info === 396 396 397 397 ... ... @@ -405,41 +405,35 @@ 405 405 === 2.3.4 Probe Model === 406 406 407 407 408 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe.420 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 409 409 410 410 411 411 For example. 412 412 413 413 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 414 -|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning** 415 -|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 416 -|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 417 -|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure 426 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning** 427 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 428 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 418 418 419 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.430 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value. 420 420 421 421 422 422 === 2.3.5 0~~20mA value (IDC_IN) === 423 423 424 424 425 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.436 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level. 426 426 427 -(% style="color:#037691" %) **Example**:438 +**(% style="color:#037691" %)Example**: 428 428 429 429 27AE(H) = 10158 (D)/1000 = 10.158mA. 430 430 431 431 432 -Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example: 433 - 434 -[[image:image-20230225154759-1.png||height="408" width="741"]] 435 - 436 - 437 437 === 2.3.6 0~~30V value ( pin VDC_IN) === 438 438 439 439 440 440 Measure the voltage value. The range is 0 to 30V. 441 441 442 -(% style="color:#037691" %) **Example**:448 +**(% style="color:#037691" %)Example**: 443 443 444 444 138E(H) = 5006(D)/1000= 5.006V 445 445 ... ... @@ -449,44 +449,27 @@ 449 449 450 450 IN1 and IN2 are used as digital input pins. 451 451 452 -(% style="color:#037691" %) **Example**:458 +**(% style="color:#037691" %)Example**: 453 453 454 -09 (H) :(0x09&0x08)>>3=1 IN1 pin is high level.460 +09 (H) :(0x09&0x08)>>3=1 IN1 pin is high level. 455 455 456 -09 (H) :(0x09&0x04)>>2=0 IN2 pin is low level.462 +09 (H) :(0x09&0x04)>>2=0 IN2 pin is low level. 457 457 458 458 459 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin**(%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.465 +This data field shows if this packet is generated by **Interrupt Pin** or not. [[Click here>>path:#Int_mod]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal. 460 460 461 -(% style="color:#037691" %) **Example:**467 +**(% style="color:#037691" %)Example:** 462 462 463 -09 (H): (0x09&0x02)>>1=1 The level of the interrupt pin. 469 +09 (H) : (0x09&0x02)>>1=1 The level of the interrupt pin. 464 464 465 -09 (H): 0x09&0x01=1 0x00: Normal uplink packet. 471 +09 (H) : 0x09&0x01=1 0x00: Normal uplink packet. 466 466 467 467 0x01: Interrupt Uplink Packet. 468 468 469 -=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 === 470 470 476 +=== 2.3.8 Decode payload in The Things Network === 471 471 472 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %) 473 -|(% style="width:94px" %)((( 474 -**Size(bytes)** 475 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n 476 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)((( 477 -Voltage value, each 2 bytes is a set of voltage values. 478 -))) 479 479 480 -[[image:image-20230220171300-1.png||height="207" width="863"]] 481 - 482 -Multiple sets of data collected are displayed in this form: 483 - 484 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2] 485 - 486 - 487 -=== 2.3.9 Decode payload in The Things Network === 488 - 489 - 490 490 While using TTN network, you can add the payload format to decode the payload. 491 491 492 492 ... ... @@ -508,9 +508,9 @@ 508 508 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 509 509 510 510 511 -(% style="color:blue" %) **Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.500 +**(% style="color:blue" %)Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time. 512 512 513 -(% style="color:blue" %) **Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:502 +**(% style="color:blue" %)Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 514 514 515 515 516 516 [[image:1675144951092-237.png]] ... ... @@ -519,9 +519,9 @@ 519 519 [[image:1675144960452-126.png]] 520 520 521 521 522 -(% style="color:blue" %) **Step 3:**(%%) Create an account or log in Datacake.511 +**(% style="color:blue" %)Step 3:**(%%) Create an account or log in Datacake. 523 523 524 -(% style="color:blue" %) **Step 4:** (%%)Create PS-LB product.513 +**(% style="color:#blue" %)Step 4:** (%%)Create PS-LB product. 525 525 526 526 [[image:1675145004465-869.png]] 527 527 ... ... @@ -534,7 +534,7 @@ 534 534 [[image:1675145029119-717.png]] 535 535 536 536 537 -(% style="color:blue" %) **Step 5: **(%%)add payload decode526 +**(% style="color:blue" %)Step 5: **(%%)add payload decode 538 538 539 539 [[image:1675145051360-659.png]] 540 540 ... ... @@ -542,6 +542,7 @@ 542 542 [[image:1675145060812-420.png]] 543 543 544 544 534 + 545 545 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 546 546 547 547 ... ... @@ -564,17 +564,19 @@ 564 564 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]] 565 565 566 566 557 + 567 567 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink = 568 568 569 569 570 570 Use can configure PS-LB via AT Command or LoRaWAN Downlink. 571 571 572 -* AT Command Connection: See [[FAQ>> ||anchor="H7.FAQ"]].563 +* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]]. 573 573 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 574 574 566 + 575 575 There are two kinds of commands to configure PS-LB, they are: 576 576 577 -* (% style="color:#037691" %)**General Commands**569 +* **General Commands**. 578 578 579 579 These commands are to configure: 580 580 ... ... @@ -586,7 +586,7 @@ 586 586 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 587 587 588 588 589 -* (% style="color:#037691" %)**Commands special design for PS-LB**581 +* **Commands special design for PS-LB** 590 590 591 591 These commands only valid for PS-LB, as below: 592 592 ... ... @@ -596,206 +596,194 @@ 596 596 597 597 Feature: Change LoRaWAN End Node Transmit Interval. 598 598 599 - (% style="color:blue" %)**AT Command: AT+TDC**591 +**AT Command: AT+TDC** 600 600 601 601 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 602 -| =(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**603 -| (% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((594 +|**Command Example**|**Function**|**Response** 595 +|AT+TDC=?|Show current transmit Interval|((( 604 604 30000 597 + 605 605 OK 599 + 606 606 the interval is 30000ms = 30s 607 607 ))) 608 -| (% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((602 +|AT+TDC=60000|Set Transmit Interval|((( 609 609 OK 604 + 610 610 Set transmit interval to 60000ms = 60 seconds 611 611 ))) 612 612 613 - (% style="color:blue" %)**Downlink Command: 0x01**608 +**Downlink Command: 0x01** 614 614 615 615 Format: Command Code (0x01) followed by 3 bytes time value. 616 616 617 -If the downlink payload=0100003C, it means set the END Node 's Transmit Interval to 0x00003C=60(S), while type code is 01.612 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 618 618 619 -* Example 1: Downlink Payload: 0100001E 620 -* Example 2: Downlink Payload: 0100003C 614 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 615 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 621 621 617 + 622 622 == 3.2 Set Interrupt Mode == 623 623 624 624 625 625 Feature, Set Interrupt mode for GPIO_EXIT. 626 626 627 - (% style="color:blue" %)**AT Command: AT+INTMOD**623 +**AT Command: AT+INTMOD** 628 628 629 629 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 630 -| =(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**631 -| (% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((626 +|**Command Example**|**Function**|**Response** 627 +|AT+INTMOD=?|Show current interrupt mode|((( 632 632 0 629 + 633 633 OK 634 -the mode is 0 =Disable Interrupt 631 + 632 +the mode is 0 = No interruption 635 635 ))) 636 -| (% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((634 +|AT+INTMOD=2|((( 637 637 Set Transmit Interval 638 -0. (Disable Interrupt), 639 -~1. (Trigger by rising and falling edge) 640 -2. (Trigger by falling edge) 641 -3. (Trigger by rising edge) 642 -)))|(% style="width:157px" %)OK 643 643 644 - (%style="color:blue"%)**Downlink Command: 0x06**637 +~1. (Disable Interrupt), 645 645 639 +2. (Trigger by rising and falling edge), 640 + 641 +3. (Trigger by falling edge) 642 + 643 +4. (Trigger by rising edge) 644 +)))|OK 645 + 646 +**Downlink Command: 0x06** 647 + 646 646 Format: Command Code (0x06) followed by 3 bytes. 647 647 648 648 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 649 649 650 -* Example 1: Downlink Payload: 06000000 651 -* Example 2: Downlink Payload: 06000003 652 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 653 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 652 652 655 + 656 + 653 653 == 3.3 Set the output time == 654 654 655 655 656 656 Feature, Control the output 3V3 , 5V or 12V. 657 657 658 - (% style="color:blue" %)**AT Command: AT+3V3T**662 +**AT Command: AT+3V3T** 659 659 660 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 474px" %)661 -| =(% style="width:4px;" %)**Command Example**|=(% style="width:01px;" %)**Function**|=(% style="width:6px;" %)**Response**662 -|(% style="width:15 4px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((664 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 665 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response** 666 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)((( 663 663 0 668 + 664 664 OK 665 665 ))) 666 -|(% style="width:15 4px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((671 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)((( 667 667 OK 673 + 668 668 default setting 669 669 ))) 670 -|(% style="width:15 4px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((676 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)((( 671 671 OK 678 + 679 + 672 672 ))) 673 -|(% style="width:15 4px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((681 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)((( 674 674 OK 683 + 684 + 675 675 ))) 676 676 677 -(% style="color:blue" %)**AT Command: AT+5VT** 678 678 679 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %) 680 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response** 681 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)((( 688 +**AT Command: AT+5VT** 689 + 690 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 691 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response** 692 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)((( 682 682 0 694 + 683 683 OK 684 684 ))) 685 -|(% style="width:15 5px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((697 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)((( 686 686 OK 699 + 687 687 default setting 688 688 ))) 689 -|(% style="width:15 5px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((702 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)((( 690 690 OK 704 + 705 + 691 691 ))) 692 -|(% style="width:15 5px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((707 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)((( 693 693 OK 709 + 710 + 694 694 ))) 695 695 696 -(% style="color:blue" %)**AT Command: AT+12VT** 697 697 698 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %) 699 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response** 700 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)((( 714 +**AT Command: AT+12VT** 715 + 716 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 717 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response** 718 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|((( 701 701 0 720 + 702 702 OK 703 703 ))) 704 -|(% style="width:156px" %)AT+12VT=0|(% style="width: 199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK705 -|(% style="width:156px" %)AT+12VT=500|(% style="width: 199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((723 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK 724 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|((( 706 706 OK 726 + 727 + 707 707 ))) 708 708 709 -(% style="color:blue" %)**Downlink Command: 0x07** 710 710 731 +**Downlink Command: 0x07** 732 + 711 711 Format: Command Code (0x07) followed by 3 bytes. 712 712 713 713 The first byte is which power, the second and third bytes are the time to turn on. 714 714 715 -* Example 1: Downlink Payload: 070101F4 **~-~-->**716 -* Example 2: Downlink Payload: 0701FFFF **~-~-->**AT+3V3T=65535717 -* Example 3: Downlink Payload: 070203E8 **~-~-->**AT+5VT=1000718 -* Example 4: Downlink Payload: 07020000 **~-~-->**AT+5VT=0719 -* Example 5: Downlink Payload: 070301F4 **~-~-->**AT+12VT=500720 -* Example 6: Downlink Payload: 07030000 **~-~-->**AT+12VT=0737 +* Example 1: Downlink Payload: 070101F4 -> AT+3V3T=500 738 +* Example 2: Downlink Payload: 0701FFFF -> AT+3V3T=65535 739 +* Example 3: Downlink Payload: 070203E8 -> AT+5VT=1000 740 +* Example 4: Downlink Payload: 07020000 -> AT+5VT=0 741 +* Example 5: Downlink Payload: 070301F4 -> AT+12VT=500 742 +* Example 6: Downlink Payload: 07030000 -> AT+12VT=0 721 721 722 -== 3.4 Set the Probe Model == 723 723 724 724 725 - Usersneed to configure this parameter according to the type of external probe.In this way, theserver can decode accordingtothis value,and convert the current valueoutputby thesensor into waterdepth or pressure value.746 +== 3.4 Set the Probe Model == 726 726 727 -**AT Command: AT** **+PROBE** 728 728 729 -AT+PROBE =aabb749 +**AT Command: AT** **+PROBE** 730 730 731 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters. 751 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 752 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response** 753 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|((( 754 +0 732 732 733 -When aa=01, it is the pressure mode, which converts the current into a pressure value; 756 +OK 757 +))) 758 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK 759 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|((( 760 +OK 734 734 735 -bb represents which type of pressure sensor it is. 736 - 737 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C) 738 - 739 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 740 -|**Command Example**|**Function**|**Response** 741 -|AT +PROBE =?|Get or Set the probe model.|0 762 + 763 +))) 764 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|((( 742 742 OK 743 -|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK 744 -|((( 745 -AT +PROBE =000A 746 746 747 747 748 -)))|Set water depth sensor mode, 10m type.|OK 749 -|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK 750 -|AT +PROBE =0000|Initial state, no settings.|OK 768 +))) 751 751 752 752 **Downlink Command: 0x08** 753 753 754 754 Format: Command Code (0x08) followed by 2 bytes. 755 755 756 -* Example 1: Downlink Payload: 080003 **~-~-->**757 -* Example 2: Downlink Payload: 080101 **~-~-->**774 +* Example 1: Downlink Payload: 080003 -> AT+PROBE=0003 775 +* Example 2: Downlink Payload: 080101 -> AT+PROBE=0101 758 758 759 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) == 760 760 761 761 762 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time. 763 - 764 -(% style="color:blue" %)**AT Command: AT** **+STDC** 765 - 766 -AT+STDC=aa,bb,bb 767 - 768 -(% style="color:#037691" %)**aa:**(%%) 769 -**0:** means disable this function and use TDC to send packets. 770 -**1:** means enable this function, use the method of multiple acquisitions to send packets. 771 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535 772 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120 773 - 774 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 775 -|**Command Example**|**Function**|**Response** 776 -|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18 777 -OK 778 -|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|((( 779 -Attention:Take effect after ATZ 780 - 781 -OK 782 -))) 783 -|AT+STDC=0, 0,0|((( 784 -Use the TDC interval to send packets.(default) 785 - 786 - 787 -)))|((( 788 -Attention:Take effect after ATZ 789 - 790 -OK 791 -))) 792 - 793 -(% style="color:blue" %)**Downlink Command: 0xAE** 794 - 795 -Format: Command Code (0x08) followed by 5 bytes. 796 - 797 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->** AT+STDC=1,600,18 798 - 799 799 = 4. Battery & how to replace = 800 800 801 801 == 4.1 Battery Type == ... ... @@ -803,6 +803,7 @@ 803 803 804 804 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 805 805 786 + 806 806 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 807 807 808 808 [[image:1675146710956-626.png]] ... ... @@ -826,12 +826,17 @@ 826 826 827 827 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 828 828 810 + 829 829 Instruction to use as below: 830 830 831 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 832 832 833 - (% style="color:blue" %)**Step2:**(%%)Openand choose814 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 834 834 816 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 817 + 818 + 819 +**Step 2:** Open it and choose 820 + 835 835 * Product Model 836 836 * Uplink Interval 837 837 * Working Mode ... ... @@ -912,11 +912,11 @@ 912 912 = 9. Packing Info = 913 913 914 914 915 - (% style="color:#037691" %)**Package Includes**:901 +**Package Includes**: 916 916 917 917 * PS-LB LoRaWAN Pressure Sensor 918 918 919 - (% style="color:#037691" %)**Dimension and weight**:905 +**Dimension and weight**: 920 920 921 921 * Device Size: cm 922 922 * Device Weight: g ... ... @@ -923,11 +923,12 @@ 923 923 * Package Size / pcs : cm 924 924 * Weight / pcs : g 925 925 912 + 913 + 926 926 = 10. Support = 927 927 928 928 929 929 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 930 - 931 931 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 932 932 933 933
- image-20230201090514-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -560.9 KB - Content
- image-20230220171300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.0 KB - Content
- image-20230222174559-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -19.4 KB - Content
- image-20230225154759-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -468.9 KB - Content