<
From version < 50.1 >
edited by Edwin Chen
on 2023/02/25 15:49
To version < 42.11 >
edited by Xiaoling
on 2023/01/31 15:53
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.Xiaoling
Content
... ... @@ -16,33 +16,22 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 -(((
20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 -)))
19 +The Dragino PS-LB series sensors are **(% style="color:blue" %)LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
22 22  
23 -(((
24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 -)))
21 +The PS-LB series sensors include **(% style="color:blue" %)Thread Installation Type**(%%) and **(% style="color:blue" %)Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
26 26  
27 -(((
28 28  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 32  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 -)))
34 34  
35 -(((
36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 -)))
27 +PS-LB is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
38 38  
39 -(((
40 40  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 -)))
42 42  
43 43  [[image:1675071321348-194.png]]
44 44  
45 45  
34 +
46 46  == 1.2 ​Features ==
47 47  
48 48  
... ... @@ -58,23 +58,23 @@
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * 8500mAh Battery for long term use
61 -* Controllable 3.3v,5v and 12v output to power external sensor
62 62  
51 +
63 63  == 1.3 Specification ==
64 64  
65 65  
66 -(% style="color:#037691" %)**Micro Controller:**
55 +**(% style="color:#037691" %)Micro Controller:**
67 67  
68 68  * MCU: 48Mhz ARM
69 69  * Flash: 256KB
70 70  * RAM: 64KB
71 71  
72 -(% style="color:#037691" %)**Common DC Characteristics:**
61 +**(% style="color:#037691" %)Common DC Characteristics:**
73 73  
74 74  * Supply Voltage: 2.5v ~~ 3.6v
75 75  * Operating Temperature: -40 ~~ 85°C
76 76  
77 -(% style="color:#037691" %)**LoRa Spec:**
66 +**(% style="color:#037691" %)LoRa Spec:**
78 78  
79 79  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
80 80  * Max +22 dBm constant RF output vs.
... ... @@ -81,19 +81,19 @@
81 81  * RX sensitivity: down to -139 dBm.
82 82  * Excellent blocking immunity
83 83  
84 -(% style="color:#037691" %)**Current Input Measuring :**
73 +**(% style="color:#037691" %)Current Input Measuring :**
85 85  
86 86  * Range: 0 ~~ 20mA
87 87  * Accuracy: 0.02mA
88 88  * Resolution: 0.001mA
89 89  
90 -(% style="color:#037691" %)**Voltage Input Measuring:**
79 +**(% style="color:#037691" %)Voltage Input Measuring:**
91 91  
92 92  * Range: 0 ~~ 30v
93 93  * Accuracy: 0.02v
94 94  * Resolution: 0.001v
95 95  
96 -(% style="color:#037691" %)**Battery:**
85 +**(% style="color:#037691" %)Battery:**
97 97  
98 98  * Li/SOCI2 un-chargeable battery
99 99  * Capacity: 8500mAh
... ... @@ -101,11 +101,12 @@
101 101  * Max continuously current: 130mA
102 102  * Max boost current: 2A, 1 second
103 103  
104 -(% style="color:#037691" %)**Power Consumption**
93 +**(% style="color:#037691" %)Power Consumption**
105 105  
106 106  * Sleep Mode: 5uA @ 3.3v
107 107  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
108 108  
98 +
109 109  == 1.4 Probe Types ==
110 110  
111 111  === 1.4.1 Thread Installation Type ===
... ... @@ -124,6 +124,7 @@
124 124  * Operating temperature: -20℃~~60℃
125 125  * Connector Type: Various Types, see order info
126 126  
117 +
127 127  === 1.4.2 Immersion Type ===
128 128  
129 129  
... ... @@ -140,16 +140,18 @@
140 140  * Operating temperature: -40℃~~85℃
141 141  * Material: 316 stainless steels
142 142  
134 +
143 143  == 1.5 Probe Dimension ==
144 144  
145 145  
146 146  
139 +
147 147  == 1.6 Application and Installation ==
148 148  
149 149  === 1.6.1 Thread Installation Type ===
150 150  
151 151  
152 -(% style="color:blue" %)**Application:**
145 +**(% style="color:blue" %)Application:**
153 153  
154 154  * Hydraulic Pressure
155 155  * Petrochemical Industry
... ... @@ -167,7 +167,7 @@
167 167  === 1.6.2 Immersion Type ===
168 168  
169 169  
170 -(% style="color:blue" %)**Application:**
163 +**(% style="color:blue" %)Application:**
171 171  
172 172  Liquid & Water Pressure / Level detect.
173 173  
... ... @@ -186,9 +186,9 @@
186 186  == 1.7 Sleep mode and working mode ==
187 187  
188 188  
189 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
182 +**(% style="color:blue" %)Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
190 190  
191 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
184 +**(% style="color:blue" %)Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
192 192  
193 193  
194 194  == 1.8 Button & LEDs ==
... ... @@ -198,18 +198,23 @@
198 198  
199 199  
200 200  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
201 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
202 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
203 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
194 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action**
195 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
196 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **(% style="color:blue" %)blue led** (%%)will blink once.
197 +
204 204  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
205 205  )))
206 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
207 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
208 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
200 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
201 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:#037691" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
202 +
203 +**(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
204 +
209 209  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
210 210  )))
211 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
207 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
212 212  
209 +
210 +
213 213  == 1.9 Pin Mapping ==
214 214  
215 215  
... ... @@ -234,6 +234,8 @@
234 234  == 1.11 Mechanical ==
235 235  
236 236  
235 +
236 +
237 237  [[image:1675143884058-338.png]]
238 238  
239 239  
... ... @@ -248,9 +248,10 @@
248 248  == 2.1 How it works ==
249 249  
250 250  
251 -The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
251 +The PS-LB is configured as **(% style="color:#037691" %)LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
252 252  
253 253  
254 +
254 254  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
255 255  
256 256  
... ... @@ -263,7 +263,7 @@
263 263  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
264 264  
265 265  
266 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
267 +**(% style="color:blue" %)Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
267 267  
268 268  Each PS-LB is shipped with a sticker with the default device EUI as below:
269 269  
... ... @@ -274,38 +274,48 @@
274 274  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
275 275  
276 276  
277 -(% style="color:blue" %)**Register the device**
278 +**(% style="color:blue" %)Register the device**
278 278  
279 279  [[image:1675144099263-405.png]]
280 280  
281 281  
282 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
283 +**(% style="color:blue" %)Add APP EUI and DEV EUI**
283 283  
284 284  [[image:1675144117571-832.png]]
285 285  
286 286  
287 -(% style="color:blue" %)**Add APP EUI in the application**
288 +**(% style="color:blue" %)Add APP EUI in the application**
288 288  
289 289  
290 290  [[image:1675144143021-195.png]]
291 291  
292 292  
293 -(% style="color:blue" %)**Add APP KEY**
294 +**(% style="color:blue" %)Add APP KEY**
294 294  
295 295  [[image:1675144157838-392.png]]
296 296  
297 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
298 +**(% style="color:blue" %)Step 2:**(%%) Activate on PS-LB
298 298  
299 299  
300 300  Press the button for 5 seconds to activate the PS-LB.
301 301  
302 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
303 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:blue" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. **(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
303 303  
304 304  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
305 305  
306 306  
308 +
307 307  == 2.3 ​Uplink Payload ==
308 308  
311 +
312 +Uplink payloads have two types:
313 +
314 +* Distance Value: Use FPORT=2
315 +* Other control commands: Use other FPORT fields.
316 +
317 +The application server should parse the correct value based on FPORT settings.
318 +
319 +
309 309  === 2.3.1 Device Status, FPORT~=5 ===
310 310  
311 311  
... ... @@ -316,8 +316,8 @@
316 316  
317 317  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
318 318  |(% colspan="6" %)**Device Status (FPORT=5)**
319 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
320 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
330 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
331 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
321 321  
322 322  Example parse in TTNv3
323 323  
... ... @@ -324,11 +324,11 @@
324 324  [[image:1675144504430-490.png]]
325 325  
326 326  
327 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
338 +**(% style="color:#037691" %)Sensor Model**(%%): For PS-LB, this value is 0x16
328 328  
329 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
340 +**(% style="color:#037691" %)Firmware Version**(%%): 0x0100, Means: v1.0.0 version
330 330  
331 -(% style="color:#037691" %)**Frequency Band**:
342 +**(% style="color:#037691" %)Frequency Band**:
332 332  
333 333  *0x01: EU868
334 334  
... ... @@ -359,7 +359,7 @@
359 359  *0x0e: MA869
360 360  
361 361  
362 -(% style="color:#037691" %)**Sub-Band**:
373 +**(% style="color:#037691" %)Sub-Band**:
363 363  
364 364  AU915 and US915:value 0x00 ~~ 0x08
365 365  
... ... @@ -368,7 +368,7 @@
368 368  Other Bands: Always 0x00
369 369  
370 370  
371 -(% style="color:#037691" %)**Battery Info**:
382 +**(% style="color:#037691" %)Battery Info**:
372 372  
373 373  Check the battery voltage.
374 374  
... ... @@ -386,12 +386,13 @@
386 386  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
387 387  |(% style="width:97px" %)(((
388 388  **Size(bytes)**
389 -)))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
390 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
400 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1**
401 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>path:#bat]]|(% style="width:58px" %)[[Probe Model>>path:#Probe_Model]]|0 ~~ 20mA value|[[0 ~~~~ 30v value>>path:#Voltage_30v]]|[[IN1 &IN2 Interrupt  flag>>path:#Int_pin]]
391 391  
392 392  [[image:1675144608950-310.png]]
393 393  
394 394  
406 +
395 395  === 2.3.3 Battery Info ===
396 396  
397 397  
... ... @@ -405,41 +405,35 @@
405 405  === 2.3.4 Probe Model ===
406 406  
407 407  
408 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
420 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
409 409  
410 410  
411 411  For example.
412 412  
413 413  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
414 -|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning**
415 -|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
416 -|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
417 -|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure
426 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
427 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
428 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
418 418  
419 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
430 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
420 420  
421 421  
422 422  === 2.3.5 0~~20mA value (IDC_IN) ===
423 423  
424 424  
425 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
436 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
426 426  
427 -(% style="color:#037691" %)**Example**:
438 +**(% style="color:#037691" %)Example**:
428 428  
429 429  27AE(H) = 10158 (D)/1000 = 10.158mA.
430 430  
431 431  
432 -Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
433 -
434 -[[image:image-20230225154759-1.png||height="408" width="741"]]
435 -
436 -
437 437  === 2.3.6 0~~30V value ( pin VDC_IN) ===
438 438  
439 439  
440 440  Measure the voltage value. The range is 0 to 30V.
441 441  
442 -(% style="color:#037691" %)**Example**:
448 +**(% style="color:#037691" %)Example**:
443 443  
444 444  138E(H) = 5006(D)/1000= 5.006V
445 445  
... ... @@ -449,44 +449,27 @@
449 449  
450 450  IN1 and IN2 are used as digital input pins.
451 451  
452 -(% style="color:#037691" %)**Example**:
458 +**(% style="color:#037691" %)Example**:
453 453  
454 -09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
460 +09 (H) :(0x09&0x08)>>3=1    IN1 pin is high level.
455 455  
456 -09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
462 +09 (H) :(0x09&0x04)>>2=0    IN2 pin is low level.
457 457  
458 458  
459 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
465 +This data field shows if this packet is generated by **Interrupt Pin** or not. [[Click here>>path:#Int_mod]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
460 460  
461 -(% style="color:#037691" %)**Example:**
467 +**(% style="color:#037691" %)Example:**
462 462  
463 -09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
469 +09 (H) : (0x09&0x02)>>1=1    The level of the interrupt pin.
464 464  
465 -09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
471 +09 (H) : 0x09&0x01=1              0x00: Normal uplink packet.
466 466  
467 467  0x01: Interrupt Uplink Packet.
468 468  
469 -=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 ===
470 470  
476 +=== 2.3.8 ​Decode payload in The Things Network ===
471 471  
472 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
473 -|(% style="width:94px" %)(((
474 -**Size(bytes)**
475 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n
476 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
477 -Voltage value, each 2 bytes is a set of voltage values.
478 -)))
479 479  
480 -[[image:image-20230220171300-1.png||height="207" width="863"]]
481 -
482 -Multiple sets of data collected are displayed in this form:
483 -
484 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
485 -
486 -
487 -=== 2.3.9 ​Decode payload in The Things Network ===
488 -
489 -
490 490  While using TTN network, you can add the payload format to decode the payload.
491 491  
492 492  
... ... @@ -508,9 +508,9 @@
508 508  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
509 509  
510 510  
511 -(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
500 +**(% style="color:blue" %)Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
512 512  
513 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
502 +**(% style="color:blue" %)Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
514 514  
515 515  
516 516  [[image:1675144951092-237.png]]
... ... @@ -519,9 +519,9 @@
519 519  [[image:1675144960452-126.png]]
520 520  
521 521  
522 -(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
511 +**(% style="color:blue" %)Step 3:**(%%) Create an account or log in Datacake.
523 523  
524 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
513 +**(% style="color:#blue" %)Step 4:** (%%)Create PS-LB product.
525 525  
526 526  [[image:1675145004465-869.png]]
527 527  
... ... @@ -534,7 +534,7 @@
534 534  [[image:1675145029119-717.png]]
535 535  
536 536  
537 -(% style="color:blue" %)**Step 5: **(%%)add payload decode
526 +**(% style="color:blue" %)Step 5: **(%%)add payload decode
538 538  
539 539  [[image:1675145051360-659.png]]
540 540  
... ... @@ -542,6 +542,7 @@
542 542  [[image:1675145060812-420.png]]
543 543  
544 544  
534 +
545 545  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
546 546  
547 547  
... ... @@ -564,17 +564,19 @@
564 564  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
565 565  
566 566  
557 +
567 567  = 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
568 568  
569 569  
570 570  Use can configure PS-LB via AT Command or LoRaWAN Downlink.
571 571  
572 -* AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
563 +* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
573 573  * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
574 574  
566 +
575 575  There are two kinds of commands to configure PS-LB, they are:
576 576  
577 -* (% style="color:#037691" %)**General Commands**
569 +* **General Commands**.
578 578  
579 579  These commands are to configure:
580 580  
... ... @@ -586,7 +586,7 @@
586 586  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
587 587  
588 588  
589 -* (% style="color:#037691" %)**Commands special design for PS-LB**
581 +* **Commands special design for PS-LB**
590 590  
591 591  These commands only valid for PS-LB, as below:
592 592  
... ... @@ -596,206 +596,194 @@
596 596  
597 597  Feature: Change LoRaWAN End Node Transmit Interval.
598 598  
599 -(% style="color:blue" %)**AT Command: AT+TDC**
591 +**AT Command: AT+TDC**
600 600  
601 601  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
602 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
603 -|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
594 +|**Command Example**|**Function**|**Response**
595 +|AT+TDC=?|Show current transmit Interval|(((
604 604  30000
597 +
605 605  OK
599 +
606 606  the interval is 30000ms = 30s
607 607  )))
608 -|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
602 +|AT+TDC=60000|Set Transmit Interval|(((
609 609  OK
604 +
610 610  Set transmit interval to 60000ms = 60 seconds
611 611  )))
612 612  
613 -(% style="color:blue" %)**Downlink Command: 0x01**
608 +**Downlink Command: 0x01**
614 614  
615 615  Format: Command Code (0x01) followed by 3 bytes time value.
616 616  
617 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
612 +If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
618 618  
619 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
620 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
614 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
615 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
621 621  
617 +
622 622  == 3.2 Set Interrupt Mode ==
623 623  
624 624  
625 625  Feature, Set Interrupt mode for GPIO_EXIT.
626 626  
627 -(% style="color:blue" %)**AT Command: AT+INTMOD**
623 +**AT Command: AT+INTMOD**
628 628  
629 629  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
630 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
631 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
626 +|**Command Example**|**Function**|**Response**
627 +|AT+INTMOD=?|Show current interrupt mode|(((
632 632  0
629 +
633 633  OK
634 -the mode is 0 =Disable Interrupt
631 +
632 +the mode is 0 = No interruption
635 635  )))
636 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
634 +|AT+INTMOD=2|(((
637 637  Set Transmit Interval
638 -0. (Disable Interrupt),
639 -~1. (Trigger by rising and falling edge)
640 -2. (Trigger by falling edge)
641 -3. (Trigger by rising edge)
642 -)))|(% style="width:157px" %)OK
643 643  
644 -(% style="color:blue" %)**Downlink Command: 0x06**
637 +~1. (Disable Interrupt),
645 645  
639 +2. (Trigger by rising and falling edge),
640 +
641 +3. (Trigger by falling edge)
642 +
643 +4. (Trigger by rising edge)
644 +)))|OK
645 +
646 +**Downlink Command: 0x06**
647 +
646 646  Format: Command Code (0x06) followed by 3 bytes.
647 647  
648 648  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
649 649  
650 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
651 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
652 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
653 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
652 652  
655 +
656 +
653 653  == 3.3 Set the output time ==
654 654  
655 655  
656 656  Feature, Control the output 3V3 , 5V or 12V.
657 657  
658 -(% style="color:blue" %)**AT Command: AT+3V3T**
662 +**AT Command: AT+3V3T**
659 659  
660 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
661 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
662 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
664 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
665 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**
666 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
663 663  0
668 +
664 664  OK
665 665  )))
666 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
671 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
667 667  OK
673 +
668 668  default setting
669 669  )))
670 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
676 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
671 671  OK
678 +
679 +
672 672  )))
673 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
681 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
674 674  OK
683 +
684 +
675 675  )))
676 676  
677 -(% style="color:blue" %)**AT Command: AT+5VT**
678 678  
679 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
680 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
681 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
688 +**AT Command: AT+5VT**
689 +
690 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
691 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**
692 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
682 682  0
694 +
683 683  OK
684 684  )))
685 -|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
697 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
686 686  OK
699 +
687 687  default setting
688 688  )))
689 -|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
702 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
690 690  OK
704 +
705 +
691 691  )))
692 -|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
707 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
693 693  OK
709 +
710 +
694 694  )))
695 695  
696 -(% style="color:blue" %)**AT Command: AT+12VT**
697 697  
698 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
699 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
700 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
714 +**AT Command: AT+12VT**
715 +
716 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
717 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response**
718 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
701 701  0
720 +
702 702  OK
703 703  )))
704 -|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
705 -|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
723 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
724 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
706 706  OK
726 +
727 +
707 707  )))
708 708  
709 -(% style="color:blue" %)**Downlink Command: 0x07**
710 710  
731 +**Downlink Command: 0x07**
732 +
711 711  Format: Command Code (0x07) followed by 3 bytes.
712 712  
713 713  The first byte is which power, the second and third bytes are the time to turn on.
714 714  
715 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
716 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
717 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
718 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
719 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
720 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
737 +* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
738 +* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
739 +* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
740 +* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
741 +* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
742 +* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
721 721  
722 -== 3.4 Set the Probe Model ==
723 723  
724 724  
725 -Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
746 +== 3.4 Set the Probe Model ==
726 726  
727 -**AT Command: AT** **+PROBE**
728 728  
729 -AT+PROBE=aabb
749 +**AT Command: AT** **+PROBE**
730 730  
731 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
751 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
752 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response**
753 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
754 +0
732 732  
733 -When aa=01, it is the pressure mode, which converts the current into a pressure value;
756 +OK
757 +)))
758 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
759 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
760 +OK
734 734  
735 -bb represents which type of pressure sensor it is.
736 -
737 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
738 -
739 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
740 -|**Command Example**|**Function**|**Response**
741 -|AT +PROBE =?|Get or Set the probe model.|0
762 +
763 +)))
764 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
742 742  OK
743 -|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK
744 -|(((
745 -AT +PROBE =000A
746 746  
747 747  
748 -)))|Set water depth sensor mode, 10m type.|OK
749 -|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK
750 -|AT +PROBE =0000|Initial state, no settings.|OK
768 +)))
751 751  
752 752  **Downlink Command: 0x08**
753 753  
754 754  Format: Command Code (0x08) followed by 2 bytes.
755 755  
756 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
757 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
774 +* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
775 +* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
758 758  
759 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
760 760  
761 761  
762 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
763 -
764 -(% style="color:blue" %)**AT Command: AT** **+STDC**
765 -
766 -AT+STDC=aa,bb,bb
767 -
768 -(% style="color:#037691" %)**aa:**(%%)
769 -**0:** means disable this function and use TDC to send packets.
770 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
771 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
772 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
773 -
774 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
775 -|**Command Example**|**Function**|**Response**
776 -|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18
777 -OK
778 -|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(((
779 -Attention:Take effect after ATZ
780 -
781 -OK
782 -)))
783 -|AT+STDC=0, 0,0|(((
784 -Use the TDC interval to send packets.(default)
785 -
786 -
787 -)))|(((
788 -Attention:Take effect after ATZ
789 -
790 -OK
791 -)))
792 -
793 -(% style="color:blue" %)**Downlink Command: 0xAE**
794 -
795 -Format: Command Code (0x08) followed by 5 bytes.
796 -
797 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
798 -
799 799  = 4. Battery & how to replace =
800 800  
801 801  == 4.1 Battery Type ==
... ... @@ -803,6 +803,7 @@
803 803  
804 804  PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
805 805  
786 +
806 806  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
807 807  
808 808  [[image:1675146710956-626.png]]
... ... @@ -826,12 +826,17 @@
826 826  
827 827  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
828 828  
810 +
829 829  Instruction to use as below:
830 830  
831 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
832 832  
833 -(% style="color:blue" %)**Step 2:**(%%) Open it and choose
814 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
834 834  
816 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
817 +
818 +
819 +**Step 2:** Open it and choose
820 +
835 835  * Product Model
836 836  * Uplink Interval
837 837  * Working Mode
... ... @@ -912,11 +912,11 @@
912 912  = 9. ​Packing Info =
913 913  
914 914  
915 -(% style="color:#037691" %)**Package Includes**:
901 +**Package Includes**:
916 916  
917 917  * PS-LB LoRaWAN Pressure Sensor
918 918  
919 -(% style="color:#037691" %)**Dimension and weight**:
905 +**Dimension and weight**:
920 920  
921 921  * Device Size: cm
922 922  * Device Weight: g
... ... @@ -923,11 +923,12 @@
923 923  * Package Size / pcs : cm
924 924  * Weight / pcs : g
925 925  
912 +
913 +
926 926  = 10. Support =
927 927  
928 928  
929 929  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
930 -
931 931  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
932 932  
933 933  
image-20230201090514-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
image-20230222174559-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -19.4 KB
Content
image-20230225154759-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -468.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0