<
From version < 48.1 >
edited by Bei Jinggeng
on 2023/02/22 17:59
To version < 42.23 >
edited by Xiaoling
on 2023/01/31 16:34
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Bei
1 +XWiki.Xiaoling
Content
... ... @@ -16,33 +16,22 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 -(((
20 20  The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 -)))
22 22  
23 -(((
24 24  The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 -)))
26 26  
27 -(((
28 28  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 32  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 -)))
34 34  
35 -(((
36 36  PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 -)))
38 38  
39 -(((
40 40  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 -)))
42 42  
43 43  [[image:1675071321348-194.png]]
44 44  
45 45  
34 +
46 46  == 1.2 ​Features ==
47 47  
48 48  
... ... @@ -58,7 +58,6 @@
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * 8500mAh Battery for long term use
61 -* Controllable 3.3v,5v and 12v output to power external sensor
62 62  
63 63  == 1.3 Specification ==
64 64  
... ... @@ -144,6 +144,7 @@
144 144  
145 145  
146 146  
135 +
147 147  == 1.6 Application and Installation ==
148 148  
149 149  === 1.6.1 Thread Installation Type ===
... ... @@ -198,17 +198,17 @@
198 198  
199 199  
200 200  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
201 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
202 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
190 +|=(% style="width: 150px;" %)**Behavior on ACT**|=(% style="width: 90px;" %)**Function**|=**Action**
191 +|(% style="width:260px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
203 203  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
204 204  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
205 205  )))
206 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
195 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
207 207  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
208 208  (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
209 209  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
210 210  )))
211 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
200 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
212 212  
213 213  == 1.9 Pin Mapping ==
214 214  
... ... @@ -234,6 +234,8 @@
234 234  == 1.11 Mechanical ==
235 235  
236 236  
226 +
227 +
237 237  [[image:1675143884058-338.png]]
238 238  
239 239  
... ... @@ -251,6 +251,7 @@
251 251  The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
252 252  
253 253  
245 +
254 254  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
255 255  
256 256  
... ... @@ -304,8 +304,18 @@
304 304  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
305 305  
306 306  
299 +
307 307  == 2.3 ​Uplink Payload ==
308 308  
302 +
303 +Uplink payloads have two types:
304 +
305 +* Distance Value: Use FPORT=2
306 +* Other control commands: Use other FPORT fields.
307 +
308 +The application server should parse the correct value based on FPORT settings.
309 +
310 +
309 309  === 2.3.1 Device Status, FPORT~=5 ===
310 310  
311 311  
... ... @@ -316,8 +316,8 @@
316 316  
317 317  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
318 318  |(% colspan="6" %)**Device Status (FPORT=5)**
319 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
320 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
321 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
322 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
321 321  
322 322  Example parse in TTNv3
323 323  
... ... @@ -386,15 +386,13 @@
386 386  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
387 387  |(% style="width:97px" %)(((
388 388  **Size(bytes)**
389 -)))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
390 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
391 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1**
392 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
391 391  
392 392  [[image:1675144608950-310.png]]
393 393  
394 394  
395 -=== ===
396 396  
397 -
398 398  === 2.3.3 Battery Info ===
399 399  
400 400  
... ... @@ -408,21 +408,19 @@
408 408  === 2.3.4 Probe Model ===
409 409  
410 410  
411 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
411 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
412 412  
413 413  
414 414  For example.
415 415  
416 416  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
417 -|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning**
418 -|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
419 -|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
420 -|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure
417 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
418 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
419 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
421 421  
421 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
422 422  
423 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
424 424  
425 -
426 426  === 2.3.5 0~~20mA value (IDC_IN) ===
427 427  
428 428  
... ... @@ -465,27 +465,10 @@
465 465  
466 466  0x01: Interrupt Uplink Packet.
467 467  
468 -=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 ===
469 469  
467 +=== 2.3.8 ​Decode payload in The Things Network ===
470 470  
471 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
472 -|(% style="width:94px" %)(((
473 -**Size(bytes)**
474 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n
475 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
476 -Voltage value, each 2 bytes is a set of voltage values.
477 -)))
478 478  
479 -[[image:image-20230220171300-1.png||height="207" width="863"]]
480 -
481 -Multiple sets of data collected are displayed in this form:
482 -
483 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
484 -
485 -
486 -=== 2.3.9 ​Decode payload in The Things Network ===
487 -
488 -
489 489  While using TTN network, you can add the payload format to decode the payload.
490 490  
491 491  
... ... @@ -541,6 +541,7 @@
541 541  [[image:1675145060812-420.png]]
542 542  
543 543  
525 +
544 544  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
545 545  
546 546  
... ... @@ -563,6 +563,7 @@
563 563  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
564 564  
565 565  
548 +
566 566  = 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
567 567  
568 568  
... ... @@ -573,7 +573,7 @@
573 573  
574 574  There are two kinds of commands to configure PS-LB, they are:
575 575  
576 -* (% style="color:#037691" %)**General Commands**
559 +* (% style="color:#037691" %)**General Commands**.
577 577  
578 578  These commands are to configure:
579 579  
... ... @@ -598,14 +598,17 @@
598 598  (% style="color:blue" %)**AT Command: AT+TDC**
599 599  
600 600  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
601 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
602 -|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
584 +|**Command Example**|**Function**|**Response**
585 +|AT+TDC=?|Show current transmit Interval|(((
603 603  30000
587 +
604 604  OK
589 +
605 605  the interval is 30000ms = 30s
606 606  )))
607 -|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
592 +|AT+TDC=60000|Set Transmit Interval|(((
608 608  OK
594 +
609 609  Set transmit interval to 60000ms = 60 seconds
610 610  )))
611 611  
... ... @@ -613,11 +613,12 @@
613 613  
614 614  Format: Command Code (0x01) followed by 3 bytes time value.
615 615  
616 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
602 +If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
617 617  
618 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
619 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
604 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
605 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
620 620  
607 +
621 621  == 3.2 Set Interrupt Mode ==
622 622  
623 623  
... ... @@ -626,20 +626,26 @@
626 626  (% style="color:blue" %)**AT Command: AT+INTMOD**
627 627  
628 628  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
629 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
630 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
616 +|**Command Example**|**Function**|**Response**
617 +|AT+INTMOD=?|Show current interrupt mode|(((
631 631  0
619 +
632 632  OK
633 -the mode is 0 =Disable Interrupt
621 +
622 +the mode is 0 = No interruption
634 634  )))
635 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
624 +|AT+INTMOD=2|(((
636 636  Set Transmit Interval
637 -0. (Disable Interrupt),
638 -~1. (Trigger by rising and falling edge)
639 -2. (Trigger by falling edge)
640 -3. (Trigger by rising edge)
641 -)))|(% style="width:157px" %)OK
642 642  
627 +~1. (Disable Interrupt),
628 +
629 +2. (Trigger by rising and falling edge),
630 +
631 +3. (Trigger by falling edge)
632 +
633 +4. (Trigger by rising edge)
634 +)))|OK
635 +
643 643  (% style="color:blue" %)**Downlink Command: 0x06**
644 644  
645 645  Format: Command Code (0x06) followed by 3 bytes.
... ... @@ -646,8 +646,8 @@
646 646  
647 647  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
648 648  
649 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
650 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
642 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
643 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
651 651  
652 652  == 3.3 Set the output time ==
653 653  
... ... @@ -656,53 +656,68 @@
656 656  
657 657  (% style="color:blue" %)**AT Command: AT+3V3T**
658 658  
659 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
660 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
661 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
652 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
653 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**
654 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
662 662  0
656 +
663 663  OK
664 664  )))
665 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
659 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
666 666  OK
661 +
667 667  default setting
668 668  )))
669 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
664 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
670 670  OK
666 +
667 +
671 671  )))
672 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
669 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
673 673  OK
671 +
672 +
674 674  )))
675 675  
676 676  (% style="color:blue" %)**AT Command: AT+5VT**
677 677  
678 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
679 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
680 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
677 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
678 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**
679 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
681 681  0
681 +
682 682  OK
683 683  )))
684 -|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
684 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
685 685  OK
686 +
686 686  default setting
687 687  )))
688 -|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
689 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
689 689  OK
691 +
692 +
690 690  )))
691 -|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
694 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
692 692  OK
696 +
697 +
693 693  )))
694 694  
695 695  (% style="color:blue" %)**AT Command: AT+12VT**
696 696  
697 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
698 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
699 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
702 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
703 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response**
704 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
700 700  0
706 +
701 701  OK
702 702  )))
703 -|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
704 -|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
709 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
710 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
705 705  OK
712 +
713 +
706 706  )))
707 707  
708 708  (% style="color:blue" %)**Downlink Command: 0x07**
... ... @@ -711,92 +711,44 @@
711 711  
712 712  The first byte is which power, the second and third bytes are the time to turn on.
713 713  
714 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
715 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
716 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
717 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
718 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
719 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
722 +* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
723 +* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
724 +* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
725 +* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
726 +* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
727 +* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
720 720  
721 721  == 3.4 Set the Probe Model ==
722 722  
723 723  
724 -Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
732 +(% style="color:blue" %)**AT Command: AT** **+PROBE**
725 725  
726 -**AT Command: AT** **+PROBE**
727 -
728 -AT+PROBE=aabb
729 -
730 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
731 -
732 -When aa=01, it is the pressure mode, which converts the current into a pressure value;
733 -
734 -bb represents which type of pressure sensor it is.
735 -
736 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
737 -
738 738  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
739 -|**Command Example**|**Function**|**Response**
740 -|AT +PROBE =?|Get or Set the probe model.|0
741 -OK
742 -|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK
743 -|(((
744 -AT +PROBE =000A
735 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response**
736 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
737 +0
745 745  
746 -
747 -)))|Set water depth sensor mode, 10m type.|OK
748 -|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK
749 -|AT +PROBE =0000|Initial state, no settings.|OK
750 -
751 -
752 -**Downlink Command: 0x08**
753 -
754 -Format: Command Code (0x08) followed by 2 bytes.
755 -
756 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
757 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
758 -
759 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
760 -
761 -
762 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
763 -
764 -(% style="color:blue" %)**AT Command: AT** **+STDC**
765 -
766 -AT+STDC=aa,bb,bb
767 -
768 -(% style="color:#037691" %)**aa:**(%%)
769 -**0:** means disable this function and use TDC to send packets.
770 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
771 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
772 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
773 -
774 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
775 -|**Command Example**|**Function**|**Response**
776 -|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18
777 777  OK
778 -|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(((
779 -Attention:Take effect after ATZ
780 -
781 -OK
782 782  )))
783 -|AT+STDC=0, 0,0|(((
784 -Use the TDC interval to send packets.(default)
741 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
742 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
743 +OK
785 785  
786 786  
787 -)))|(((
788 -Attention:Take effect after ATZ
789 -
746 +)))
747 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
790 790  OK
749 +
750 +
791 791  )))
792 792  
753 +(% style="color:blue" %)**Downlink Command: 0x08**
793 793  
794 -(% style="color:blue" %)**Downlink Command: 0xAE**
755 +Format: Command Code (0x08) followed by 2 bytes.
795 795  
796 -Format: Command Code (0x08) followed by 5 bytes.
757 +* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
758 +* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
797 797  
798 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
799 -
800 800  = 4. Battery & how to replace =
801 801  
802 802  == 4.1 Battery Type ==
... ... @@ -804,6 +804,7 @@
804 804  
805 805  PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
806 806  
767 +
807 807  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
808 808  
809 809  [[image:1675146710956-626.png]]
... ... @@ -827,10 +827,15 @@
827 827  
828 828  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
829 829  
791 +
830 830  Instruction to use as below:
831 831  
832 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
833 833  
795 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
796 +
797 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
798 +
799 +
834 834  (% style="color:blue" %)**Step 2:**(%%) Open it and choose
835 835  
836 836  * Product Model
image-20230201090514-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
image-20230222174559-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -19.4 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0