Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/04/19 17:58
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 3 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Bei1 +XWiki.Xiaoling - Content
-
... ... @@ -16,33 +16,22 @@ 16 16 == 1.1 What is LoRaWAN Pressure Sensor == 17 17 18 18 19 -((( 20 20 The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 21 -))) 22 22 23 -((( 24 24 The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 25 -))) 26 26 27 -((( 28 28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 32 PS-LB supports BLE configure and wireless OTA update which make user easy to use. 33 -))) 34 34 35 -((( 36 36 PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 -))) 38 38 39 -((( 40 40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 41 -))) 42 42 43 43 [[image:1675071321348-194.png]] 44 44 45 45 34 + 46 46 == 1.2 Features == 47 47 48 48 ... ... @@ -58,7 +58,6 @@ 58 58 * Uplink on periodically 59 59 * Downlink to change configure 60 60 * 8500mAh Battery for long term use 61 -* Controllable 3.3v,5v and 12v output to power external sensor 62 62 63 63 == 1.3 Specification == 64 64 ... ... @@ -144,6 +144,7 @@ 144 144 145 145 146 146 135 + 147 147 == 1.6 Application and Installation == 148 148 149 149 === 1.6.1 Thread Installation Type === ... ... @@ -198,17 +198,20 @@ 198 198 199 199 200 200 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 201 -|=(% style="width: 1 67px;" %)**Behavior on ACT**|=(% style="width:117px;" %)**Function**|=(% style="width: 225px;" %)**Action**202 -|(% style="width: 167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((190 +|=(% style="width: 150px;" %)**Behavior on ACT**|=(% style="width: 90px;" %)**Function**|=**Action** 191 +|(% style="width:260px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|((( 203 203 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 193 + 204 204 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 205 205 ))) 206 -|(% style="width:1 67px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((196 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|((( 207 207 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 198 + 208 208 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 200 + 209 209 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 210 210 ))) 211 -|(% style="width:1 67px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red"%)**Redled**(%%)will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.203 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 212 212 213 213 == 1.9 Pin Mapping == 214 214 ... ... @@ -234,6 +234,8 @@ 234 234 == 1.11 Mechanical == 235 235 236 236 229 + 230 + 237 237 [[image:1675143884058-338.png]] 238 238 239 239 ... ... @@ -251,6 +251,7 @@ 251 251 The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 252 252 253 253 248 + 254 254 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 255 255 256 256 ... ... @@ -304,8 +304,18 @@ 304 304 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 305 305 306 306 302 + 307 307 == 2.3 Uplink Payload == 308 308 305 + 306 +Uplink payloads have two types: 307 + 308 +* Distance Value: Use FPORT=2 309 +* Other control commands: Use other FPORT fields. 310 + 311 +The application server should parse the correct value based on FPORT settings. 312 + 313 + 309 309 === 2.3.1 Device Status, FPORT~=5 === 310 310 311 311 ... ... @@ -316,8 +316,8 @@ 316 316 317 317 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 318 318 |(% colspan="6" %)**Device Status (FPORT=5)** 319 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**| (% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**320 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version| (% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT324 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2** 325 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT 321 321 322 322 Example parse in TTNv3 323 323 ... ... @@ -386,15 +386,13 @@ 386 386 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 387 387 |(% style="width:97px" %)((( 388 388 **Size(bytes)** 389 -)))|(% style="width:48px" %)**2**|(% style="width: 71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**390 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3. 4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.8IN126IN226INTpin"]]394 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1** 395 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] 391 391 392 392 [[image:1675144608950-310.png]] 393 393 394 394 395 -=== === 396 396 397 - 398 398 === 2.3.3 Battery Info === 399 399 400 400 ... ... @@ -408,21 +408,19 @@ 408 408 === 2.3.4 Probe Model === 409 409 410 410 411 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe.414 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 412 412 413 413 414 414 For example. 415 415 416 416 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 417 -|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning** 418 -|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 419 -|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 420 -|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure 420 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning** 421 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 422 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 421 421 424 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value. 422 422 423 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value. 424 424 425 - 426 426 === 2.3.5 0~~20mA value (IDC_IN) === 427 427 428 428 ... ... @@ -465,27 +465,10 @@ 465 465 466 466 0x01: Interrupt Uplink Packet. 467 467 468 -=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 === 469 469 470 +=== 2.3.8 Decode payload in The Things Network === 470 470 471 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %) 472 -|(% style="width:94px" %)((( 473 -**Size(bytes)** 474 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n 475 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)((( 476 -Voltage value, each 2 bytes is a set of voltage values. 477 -))) 478 478 479 -[[image:image-20230220171300-1.png||height="207" width="863"]] 480 - 481 -Multiple sets of data collected are displayed in this form: 482 - 483 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2] 484 - 485 - 486 -=== 2.3.9 Decode payload in The Things Network === 487 - 488 - 489 489 While using TTN network, you can add the payload format to decode the payload. 490 490 491 491 ... ... @@ -541,6 +541,7 @@ 541 541 [[image:1675145060812-420.png]] 542 542 543 543 528 + 544 544 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 545 545 546 546 ... ... @@ -563,6 +563,7 @@ 563 563 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]] 564 564 565 565 551 + 566 566 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink = 567 567 568 568 ... ... @@ -573,7 +573,7 @@ 573 573 574 574 There are two kinds of commands to configure PS-LB, they are: 575 575 576 -* (% style="color:#037691" %)**General Commands** 562 +* (% style="color:#037691" %)**General Commands**. 577 577 578 578 These commands are to configure: 579 579 ... ... @@ -598,14 +598,17 @@ 598 598 (% style="color:blue" %)**AT Command: AT+TDC** 599 599 600 600 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 601 -| =(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**602 -| (% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((587 +|**Command Example**|**Function**|**Response** 588 +|AT+TDC=?|Show current transmit Interval|((( 603 603 30000 590 + 604 604 OK 592 + 605 605 the interval is 30000ms = 30s 606 606 ))) 607 -| (% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((595 +|AT+TDC=60000|Set Transmit Interval|((( 608 608 OK 597 + 609 609 Set transmit interval to 60000ms = 60 seconds 610 610 ))) 611 611 ... ... @@ -613,11 +613,12 @@ 613 613 614 614 Format: Command Code (0x01) followed by 3 bytes time value. 615 615 616 -If the downlink payload=0100003C, it means set the END Node 's Transmit Interval to 0x00003C=60(S), while type code is 01.605 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 617 617 618 -* Example 1: Downlink Payload: 0100001E 619 -* Example 2: Downlink Payload: 0100003C 607 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 608 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 620 620 610 + 621 621 == 3.2 Set Interrupt Mode == 622 622 623 623 ... ... @@ -626,20 +626,26 @@ 626 626 (% style="color:blue" %)**AT Command: AT+INTMOD** 627 627 628 628 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 629 -| =(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**630 -| (% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((619 +|**Command Example**|**Function**|**Response** 620 +|AT+INTMOD=?|Show current interrupt mode|((( 631 631 0 622 + 632 632 OK 633 -the mode is 0 =Disable Interrupt 624 + 625 +the mode is 0 = No interruption 634 634 ))) 635 -| (% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((627 +|AT+INTMOD=2|((( 636 636 Set Transmit Interval 637 -0. (Disable Interrupt), 638 -~1. (Trigger by rising and falling edge) 639 -2. (Trigger by falling edge) 640 -3. (Trigger by rising edge) 641 -)))|(% style="width:157px" %)OK 642 642 630 +~1. (Disable Interrupt), 631 + 632 +2. (Trigger by rising and falling edge), 633 + 634 +3. (Trigger by falling edge) 635 + 636 +4. (Trigger by rising edge) 637 +)))|OK 638 + 643 643 (% style="color:blue" %)**Downlink Command: 0x06** 644 644 645 645 Format: Command Code (0x06) followed by 3 bytes. ... ... @@ -646,8 +646,8 @@ 646 646 647 647 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 648 648 649 -* Example 1: Downlink Payload: 06000000 650 -* Example 2: Downlink Payload: 06000003 645 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 646 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 651 651 652 652 == 3.3 Set the output time == 653 653 ... ... @@ -656,53 +656,68 @@ 656 656 657 657 (% style="color:blue" %)**AT Command: AT+3V3T** 658 658 659 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 474px" %)660 -| =(% style="width:4px;" %)**Command Example**|=(% style="width:01px;" %)**Function**|=(% style="width:6px;" %)**Response**661 -|(% style="width:15 4px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((655 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 656 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response** 657 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)((( 662 662 0 659 + 663 663 OK 664 664 ))) 665 -|(% style="width:15 4px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((662 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)((( 666 666 OK 664 + 667 667 default setting 668 668 ))) 669 -|(% style="width:15 4px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((667 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)((( 670 670 OK 669 + 670 + 671 671 ))) 672 -|(% style="width:15 4px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((672 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)((( 673 673 OK 674 + 675 + 674 674 ))) 675 675 676 676 (% style="color:blue" %)**AT Command: AT+5VT** 677 677 678 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 470px" %)679 -| =(% style="width:5px;" %)**Command Example**|=(% style="width:196px;" %)**Function**|=(% style="width:4px;" %)**Response**680 -|(% style="width:15 5px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((680 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 681 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response** 682 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)((( 681 681 0 684 + 682 682 OK 683 683 ))) 684 -|(% style="width:15 5px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((687 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)((( 685 685 OK 689 + 686 686 default setting 687 687 ))) 688 -|(% style="width:15 5px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((692 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)((( 689 689 OK 694 + 695 + 690 690 ))) 691 -|(% style="width:15 5px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((697 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)((( 692 692 OK 699 + 700 + 693 693 ))) 694 694 695 695 (% style="color:blue" %)**AT Command: AT+12VT** 696 696 697 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 443px" %)698 -| =(% style="width:;" %)**Command Example**|=(% style="width:199px;" %)**Function**|=(% style="width: 83px;" %)**Response**699 -|(% style="width:156px" %)AT+12VT=?|(% style="width: 199px" %)Show 12V open time.|(% style="width:83px" %)(((705 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 706 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response** 707 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|((( 700 700 0 709 + 701 701 OK 702 702 ))) 703 -|(% style="width:156px" %)AT+12VT=0|(% style="width: 199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK704 -|(% style="width:156px" %)AT+12VT=500|(% style="width: 199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((712 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK 713 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|((( 705 705 OK 715 + 716 + 706 706 ))) 707 707 708 708 (% style="color:blue" %)**Downlink Command: 0x07** ... ... @@ -711,92 +711,44 @@ 711 711 712 712 The first byte is which power, the second and third bytes are the time to turn on. 713 713 714 -* Example 1: Downlink Payload: 070101F4 **~-~-->**715 -* Example 2: Downlink Payload: 0701FFFF **~-~-->**AT+3V3T=65535716 -* Example 3: Downlink Payload: 070203E8 **~-~-->**AT+5VT=1000717 -* Example 4: Downlink Payload: 07020000 **~-~-->**AT+5VT=0718 -* Example 5: Downlink Payload: 070301F4 **~-~-->**AT+12VT=500719 -* Example 6: Downlink Payload: 07030000 **~-~-->**AT+12VT=0725 +* Example 1: Downlink Payload: 070101F4 -> AT+3V3T=500 726 +* Example 2: Downlink Payload: 0701FFFF -> AT+3V3T=65535 727 +* Example 3: Downlink Payload: 070203E8 -> AT+5VT=1000 728 +* Example 4: Downlink Payload: 07020000 -> AT+5VT=0 729 +* Example 5: Downlink Payload: 070301F4 -> AT+12VT=500 730 +* Example 6: Downlink Payload: 07030000 -> AT+12VT=0 720 720 721 721 == 3.4 Set the Probe Model == 722 722 723 723 724 - Usersneed to configure thisparameter according to the type of externalprobe. In this way, the servercan decode according to this value, and convert the current valueoutputby the sensor into waterdepthorpressure value.735 +(% style="color:blue" %)**AT Command: AT** **+PROBE** 725 725 726 -**AT Command: AT** **+PROBE** 727 - 728 -AT+PROBE=aabb 729 - 730 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters. 731 - 732 -When aa=01, it is the pressure mode, which converts the current into a pressure value; 733 - 734 -bb represents which type of pressure sensor it is. 735 - 736 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C) 737 - 738 738 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 739 -|**Command Example**|**Function**|**Response** 740 -|AT +PROBE =?|Get or Set the probe model.|0 741 -OK 742 -|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK 743 -|((( 744 -AT +PROBE =000A 738 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response** 739 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|((( 740 +0 745 745 746 - 747 -)))|Set water depth sensor mode, 10m type.|OK 748 -|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK 749 -|AT +PROBE =0000|Initial state, no settings.|OK 750 - 751 - 752 -**Downlink Command: 0x08** 753 - 754 -Format: Command Code (0x08) followed by 2 bytes. 755 - 756 -* Example 1: Downlink Payload: 080003 **~-~-->** AT+PROBE=0003 757 -* Example 2: Downlink Payload: 080101 **~-~-->** AT+PROBE=0101 758 - 759 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) == 760 - 761 - 762 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time. 763 - 764 -(% style="color:blue" %)**AT Command: AT** **+STDC** 765 - 766 -AT+STDC=aa,bb,bb 767 - 768 -(% style="color:#037691" %)**aa:**(%%) 769 -**0:** means disable this function and use TDC to send packets. 770 -**1:** means enable this function, use the method of multiple acquisitions to send packets. 771 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535 772 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120 773 - 774 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 775 -|**Command Example**|**Function**|**Response** 776 -|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18 777 777 OK 778 -|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|((( 779 -Attention:Take effect after ATZ 780 - 781 -OK 782 782 ))) 783 -|AT+STDC=0, 0,0|((( 784 -Use the TDC interval to send packets.(default) 744 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK 745 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|((( 746 +OK 785 785 786 786 787 -)))|((( 788 -Attention:Take effect after ATZ 789 - 749 +))) 750 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|((( 790 790 OK 752 + 753 + 791 791 ))) 792 792 756 +(% style="color:blue" %)**Downlink Command: 0x08** 793 793 794 - (% style="color:blue"%)**DownlinkCommand:0xAE**758 +Format: Command Code (0x08) followed by 2 bytes. 795 795 796 -Format: Command Code (0x08) followed by 5 bytes. 760 +* Example 1: Downlink Payload: 080003 -> AT+PROBE=0003 761 +* Example 2: Downlink Payload: 080101 -> AT+PROBE=0101 797 797 798 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->** AT+STDC=1,600,18 799 - 800 800 = 4. Battery & how to replace = 801 801 802 802 == 4.1 Battery Type == ... ... @@ -804,6 +804,7 @@ 804 804 805 805 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 806 806 770 + 807 807 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 808 808 809 809 [[image:1675146710956-626.png]] ... ... @@ -827,10 +827,15 @@ 827 827 828 828 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 829 829 794 + 830 830 Instruction to use as below: 831 831 832 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 833 833 798 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 799 + 800 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 801 + 802 + 834 834 (% style="color:blue" %)**Step 2:**(%%) Open it and choose 835 835 836 836 * Product Model
- image-20230201090514-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -560.9 KB - Content
- image-20230220171300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.0 KB - Content
- image-20230222174559-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -19.4 KB - Content