<
From version < 48.1 >
edited by Bei Jinggeng
on 2023/02/22 17:59
To version < 42.14 >
edited by Xiaoling
on 2023/01/31 16:07
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Bei
1 +XWiki.Xiaoling
Content
... ... @@ -16,33 +16,22 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 -(((
20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 -)))
19 +The Dragino PS-LB series sensors are **(% style="color:blue" %)LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
22 22  
23 -(((
24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 -)))
21 +The PS-LB series sensors include **(% style="color:blue" %)Thread Installation Type**(%%) and **(% style="color:blue" %)Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
26 26  
27 -(((
28 28  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 32  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 -)))
34 34  
35 -(((
36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 -)))
27 +PS-LB is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
38 38  
39 -(((
40 40  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 -)))
42 42  
43 43  [[image:1675071321348-194.png]]
44 44  
45 45  
34 +
46 46  == 1.2 ​Features ==
47 47  
48 48  
... ... @@ -58,23 +58,23 @@
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * 8500mAh Battery for long term use
61 -* Controllable 3.3v,5v and 12v output to power external sensor
62 62  
51 +
63 63  == 1.3 Specification ==
64 64  
65 65  
66 -(% style="color:#037691" %)**Micro Controller:**
55 +**(% style="color:#037691" %)Micro Controller:**
67 67  
68 68  * MCU: 48Mhz ARM
69 69  * Flash: 256KB
70 70  * RAM: 64KB
71 71  
72 -(% style="color:#037691" %)**Common DC Characteristics:**
61 +**(% style="color:#037691" %)Common DC Characteristics:**
73 73  
74 74  * Supply Voltage: 2.5v ~~ 3.6v
75 75  * Operating Temperature: -40 ~~ 85°C
76 76  
77 -(% style="color:#037691" %)**LoRa Spec:**
66 +**(% style="color:#037691" %)LoRa Spec:**
78 78  
79 79  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
80 80  * Max +22 dBm constant RF output vs.
... ... @@ -81,19 +81,19 @@
81 81  * RX sensitivity: down to -139 dBm.
82 82  * Excellent blocking immunity
83 83  
84 -(% style="color:#037691" %)**Current Input Measuring :**
73 +**(% style="color:#037691" %)Current Input Measuring :**
85 85  
86 86  * Range: 0 ~~ 20mA
87 87  * Accuracy: 0.02mA
88 88  * Resolution: 0.001mA
89 89  
90 -(% style="color:#037691" %)**Voltage Input Measuring:**
79 +**(% style="color:#037691" %)Voltage Input Measuring:**
91 91  
92 92  * Range: 0 ~~ 30v
93 93  * Accuracy: 0.02v
94 94  * Resolution: 0.001v
95 95  
96 -(% style="color:#037691" %)**Battery:**
85 +**(% style="color:#037691" %)Battery:**
97 97  
98 98  * Li/SOCI2 un-chargeable battery
99 99  * Capacity: 8500mAh
... ... @@ -101,11 +101,12 @@
101 101  * Max continuously current: 130mA
102 102  * Max boost current: 2A, 1 second
103 103  
104 -(% style="color:#037691" %)**Power Consumption**
93 +**(% style="color:#037691" %)Power Consumption**
105 105  
106 106  * Sleep Mode: 5uA @ 3.3v
107 107  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
108 108  
98 +
109 109  == 1.4 Probe Types ==
110 110  
111 111  === 1.4.1 Thread Installation Type ===
... ... @@ -124,6 +124,7 @@
124 124  * Operating temperature: -20℃~~60℃
125 125  * Connector Type: Various Types, see order info
126 126  
117 +
127 127  === 1.4.2 Immersion Type ===
128 128  
129 129  
... ... @@ -140,16 +140,18 @@
140 140  * Operating temperature: -40℃~~85℃
141 141  * Material: 316 stainless steels
142 142  
134 +
143 143  == 1.5 Probe Dimension ==
144 144  
145 145  
146 146  
139 +
147 147  == 1.6 Application and Installation ==
148 148  
149 149  === 1.6.1 Thread Installation Type ===
150 150  
151 151  
152 -(% style="color:blue" %)**Application:**
145 +**(% style="color:blue" %)Application:**
153 153  
154 154  * Hydraulic Pressure
155 155  * Petrochemical Industry
... ... @@ -167,7 +167,7 @@
167 167  === 1.6.2 Immersion Type ===
168 168  
169 169  
170 -(% style="color:blue" %)**Application:**
163 +**(% style="color:blue" %)Application:**
171 171  
172 172  Liquid & Water Pressure / Level detect.
173 173  
... ... @@ -186,9 +186,9 @@
186 186  == 1.7 Sleep mode and working mode ==
187 187  
188 188  
189 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
182 +**(% style="color:blue" %)Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
190 190  
191 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
184 +**(% style="color:blue" %)Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
192 192  
193 193  
194 194  == 1.8 Button & LEDs ==
... ... @@ -198,18 +198,23 @@
198 198  
199 199  
200 200  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
201 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
202 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
203 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
194 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action**
195 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
196 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **(% style="color:blue" %)blue led** (%%)will blink once.
197 +
204 204  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
205 205  )))
206 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
207 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
208 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
200 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
201 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:#037691" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
202 +
203 +**(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
204 +
209 209  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
210 210  )))
211 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
207 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
212 212  
209 +
210 +
213 213  == 1.9 Pin Mapping ==
214 214  
215 215  
... ... @@ -234,6 +234,8 @@
234 234  == 1.11 Mechanical ==
235 235  
236 236  
235 +
236 +
237 237  [[image:1675143884058-338.png]]
238 238  
239 239  
... ... @@ -248,9 +248,10 @@
248 248  == 2.1 How it works ==
249 249  
250 250  
251 -The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
251 +The PS-LB is configured as **(% style="color:#037691" %)LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
252 252  
253 253  
254 +
254 254  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
255 255  
256 256  
... ... @@ -263,7 +263,7 @@
263 263  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
264 264  
265 265  
266 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
267 +**(% style="color:blue" %)Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
267 267  
268 268  Each PS-LB is shipped with a sticker with the default device EUI as below:
269 269  
... ... @@ -274,38 +274,48 @@
274 274  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
275 275  
276 276  
277 -(% style="color:blue" %)**Register the device**
278 +**(% style="color:blue" %)Register the device**
278 278  
279 279  [[image:1675144099263-405.png]]
280 280  
281 281  
282 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
283 +**(% style="color:blue" %)Add APP EUI and DEV EUI**
283 283  
284 284  [[image:1675144117571-832.png]]
285 285  
286 286  
287 -(% style="color:blue" %)**Add APP EUI in the application**
288 +**(% style="color:blue" %)Add APP EUI in the application**
288 288  
289 289  
290 290  [[image:1675144143021-195.png]]
291 291  
292 292  
293 -(% style="color:blue" %)**Add APP KEY**
294 +**(% style="color:blue" %)Add APP KEY**
294 294  
295 295  [[image:1675144157838-392.png]]
296 296  
297 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
298 +**(% style="color:blue" %)Step 2:**(%%) Activate on PS-LB
298 298  
299 299  
300 300  Press the button for 5 seconds to activate the PS-LB.
301 301  
302 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
303 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:blue" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. **(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
303 303  
304 304  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
305 305  
306 306  
308 +
307 307  == 2.3 ​Uplink Payload ==
308 308  
311 +
312 +Uplink payloads have two types:
313 +
314 +* Distance Value: Use FPORT=2
315 +* Other control commands: Use other FPORT fields.
316 +
317 +The application server should parse the correct value based on FPORT settings.
318 +
319 +
309 309  === 2.3.1 Device Status, FPORT~=5 ===
310 310  
311 311  
... ... @@ -316,8 +316,8 @@
316 316  
317 317  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
318 318  |(% colspan="6" %)**Device Status (FPORT=5)**
319 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
320 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
330 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
331 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
321 321  
322 322  Example parse in TTNv3
323 323  
... ... @@ -324,11 +324,11 @@
324 324  [[image:1675144504430-490.png]]
325 325  
326 326  
327 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
338 +**(% style="color:#037691" %)Sensor Model**(%%): For PS-LB, this value is 0x16
328 328  
329 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
340 +**(% style="color:#037691" %)Firmware Version**(%%): 0x0100, Means: v1.0.0 version
330 330  
331 -(% style="color:#037691" %)**Frequency Band**:
342 +**(% style="color:#037691" %)Frequency Band**:
332 332  
333 333  *0x01: EU868
334 334  
... ... @@ -359,7 +359,7 @@
359 359  *0x0e: MA869
360 360  
361 361  
362 -(% style="color:#037691" %)**Sub-Band**:
373 +**(% style="color:#037691" %)Sub-Band**:
363 363  
364 364  AU915 and US915:value 0x00 ~~ 0x08
365 365  
... ... @@ -368,7 +368,7 @@
368 368  Other Bands: Always 0x00
369 369  
370 370  
371 -(% style="color:#037691" %)**Battery Info**:
382 +**(% style="color:#037691" %)Battery Info**:
372 372  
373 373  Check the battery voltage.
374 374  
... ... @@ -386,15 +386,13 @@
386 386  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
387 387  |(% style="width:97px" %)(((
388 388  **Size(bytes)**
389 -)))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
390 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
400 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1**
401 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
391 391  
392 392  [[image:1675144608950-310.png]]
393 393  
394 394  
395 -=== ===
396 396  
397 -
398 398  === 2.3.3 Battery Info ===
399 399  
400 400  
... ... @@ -408,27 +408,25 @@
408 408  === 2.3.4 Probe Model ===
409 409  
410 410  
411 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
420 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
412 412  
413 413  
414 414  For example.
415 415  
416 416  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
417 -|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning**
418 -|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
419 -|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
420 -|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure
426 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
427 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
428 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
421 421  
430 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
422 422  
423 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
424 424  
425 -
426 426  === 2.3.5 0~~20mA value (IDC_IN) ===
427 427  
428 428  
429 429  The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
430 430  
431 -(% style="color:#037691" %)**Example**:
438 +**(% style="color:#037691" %)Example**:
432 432  
433 433  27AE(H) = 10158 (D)/1000 = 10.158mA.
434 434  
... ... @@ -438,7 +438,7 @@
438 438  
439 439  Measure the voltage value. The range is 0 to 30V.
440 440  
441 -(% style="color:#037691" %)**Example**:
448 +**(% style="color:#037691" %)Example**:
442 442  
443 443  138E(H) = 5006(D)/1000= 5.006V
444 444  
... ... @@ -448,44 +448,27 @@
448 448  
449 449  IN1 and IN2 are used as digital input pins.
450 450  
451 -(% style="color:#037691" %)**Example**:
458 +**(% style="color:#037691" %)Example**:
452 452  
453 -09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
460 +09 (H) :(0x09&0x08)>>3=1    IN1 pin is high level.
454 454  
455 -09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
462 +09 (H) :(0x09&0x04)>>2=0    IN2 pin is low level.
456 456  
457 457  
458 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
465 +This data field shows if this packet is generated by **Interrupt Pin** or not. [[Click here>>path:#Int_mod]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
459 459  
460 -(% style="color:#037691" %)**Example:**
467 +**(% style="color:#037691" %)Example:**
461 461  
462 -09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
469 +09 (H) : (0x09&0x02)>>1=1    The level of the interrupt pin.
463 463  
464 -09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
471 +09 (H) : 0x09&0x01=1              0x00: Normal uplink packet.
465 465  
466 466  0x01: Interrupt Uplink Packet.
467 467  
468 -=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 ===
469 469  
476 +=== 2.3.8 ​Decode payload in The Things Network ===
470 470  
471 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
472 -|(% style="width:94px" %)(((
473 -**Size(bytes)**
474 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n
475 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
476 -Voltage value, each 2 bytes is a set of voltage values.
477 -)))
478 478  
479 -[[image:image-20230220171300-1.png||height="207" width="863"]]
480 -
481 -Multiple sets of data collected are displayed in this form:
482 -
483 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
484 -
485 -
486 -=== 2.3.9 ​Decode payload in The Things Network ===
487 -
488 -
489 489  While using TTN network, you can add the payload format to decode the payload.
490 490  
491 491  
... ... @@ -507,9 +507,9 @@
507 507  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
508 508  
509 509  
510 -(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
500 +**(% style="color:blue" %)Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
511 511  
512 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
502 +**(% style="color:blue" %)Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
513 513  
514 514  
515 515  [[image:1675144951092-237.png]]
... ... @@ -518,9 +518,9 @@
518 518  [[image:1675144960452-126.png]]
519 519  
520 520  
521 -(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
511 +**(% style="color:blue" %)Step 3:**(%%) Create an account or log in Datacake.
522 522  
523 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
513 +**(% style="color:#blue" %)Step 4:** (%%)Create PS-LB product.
524 524  
525 525  [[image:1675145004465-869.png]]
526 526  
... ... @@ -533,7 +533,7 @@
533 533  [[image:1675145029119-717.png]]
534 534  
535 535  
536 -(% style="color:blue" %)**Step 5: **(%%)add payload decode
526 +**(% style="color:blue" %)Step 5: **(%%)add payload decode
537 537  
538 538  [[image:1675145051360-659.png]]
539 539  
... ... @@ -541,6 +541,7 @@
541 541  [[image:1675145060812-420.png]]
542 542  
543 543  
534 +
544 544  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
545 545  
546 546  
... ... @@ -563,17 +563,19 @@
563 563  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
564 564  
565 565  
557 +
566 566  = 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
567 567  
568 568  
569 569  Use can configure PS-LB via AT Command or LoRaWAN Downlink.
570 570  
571 -* AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
563 +* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
572 572  * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
573 573  
566 +
574 574  There are two kinds of commands to configure PS-LB, they are:
575 575  
576 -* (% style="color:#037691" %)**General Commands**
569 +* **General Commands**.
577 577  
578 578  These commands are to configure:
579 579  
... ... @@ -585,7 +585,7 @@
585 585  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
586 586  
587 587  
588 -* (% style="color:#037691" %)**Commands special design for PS-LB**
581 +* **Commands special design for PS-LB**
589 589  
590 590  These commands only valid for PS-LB, as below:
591 591  
... ... @@ -595,208 +595,194 @@
595 595  
596 596  Feature: Change LoRaWAN End Node Transmit Interval.
597 597  
598 -(% style="color:blue" %)**AT Command: AT+TDC**
591 +**AT Command: AT+TDC**
599 599  
600 600  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
601 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
602 -|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
594 +|**Command Example**|**Function**|**Response**
595 +|AT+TDC=?|Show current transmit Interval|(((
603 603  30000
597 +
604 604  OK
599 +
605 605  the interval is 30000ms = 30s
606 606  )))
607 -|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
602 +|AT+TDC=60000|Set Transmit Interval|(((
608 608  OK
604 +
609 609  Set transmit interval to 60000ms = 60 seconds
610 610  )))
611 611  
612 -(% style="color:blue" %)**Downlink Command: 0x01**
608 +**Downlink Command: 0x01**
613 613  
614 614  Format: Command Code (0x01) followed by 3 bytes time value.
615 615  
616 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
612 +If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
617 617  
618 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
619 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
614 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
615 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
620 620  
617 +
621 621  == 3.2 Set Interrupt Mode ==
622 622  
623 623  
624 624  Feature, Set Interrupt mode for GPIO_EXIT.
625 625  
626 -(% style="color:blue" %)**AT Command: AT+INTMOD**
623 +**AT Command: AT+INTMOD**
627 627  
628 628  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
629 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
630 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
626 +|**Command Example**|**Function**|**Response**
627 +|AT+INTMOD=?|Show current interrupt mode|(((
631 631  0
629 +
632 632  OK
633 -the mode is 0 =Disable Interrupt
631 +
632 +the mode is 0 = No interruption
634 634  )))
635 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
634 +|AT+INTMOD=2|(((
636 636  Set Transmit Interval
637 -0. (Disable Interrupt),
638 -~1. (Trigger by rising and falling edge)
639 -2. (Trigger by falling edge)
640 -3. (Trigger by rising edge)
641 -)))|(% style="width:157px" %)OK
642 642  
643 -(% style="color:blue" %)**Downlink Command: 0x06**
637 +~1. (Disable Interrupt),
644 644  
639 +2. (Trigger by rising and falling edge),
640 +
641 +3. (Trigger by falling edge)
642 +
643 +4. (Trigger by rising edge)
644 +)))|OK
645 +
646 +**Downlink Command: 0x06**
647 +
645 645  Format: Command Code (0x06) followed by 3 bytes.
646 646  
647 647  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
648 648  
649 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
650 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
652 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
653 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
651 651  
655 +
656 +
652 652  == 3.3 Set the output time ==
653 653  
654 654  
655 655  Feature, Control the output 3V3 , 5V or 12V.
656 656  
657 -(% style="color:blue" %)**AT Command: AT+3V3T**
662 +**AT Command: AT+3V3T**
658 658  
659 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
660 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
661 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
664 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
665 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**
666 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
662 662  0
668 +
663 663  OK
664 664  )))
665 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
671 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
666 666  OK
673 +
667 667  default setting
668 668  )))
669 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
676 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
670 670  OK
678 +
679 +
671 671  )))
672 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
681 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
673 673  OK
683 +
684 +
674 674  )))
675 675  
676 -(% style="color:blue" %)**AT Command: AT+5VT**
677 677  
678 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
679 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
680 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
688 +**AT Command: AT+5VT**
689 +
690 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
691 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**
692 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
681 681  0
694 +
682 682  OK
683 683  )))
684 -|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
697 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
685 685  OK
699 +
686 686  default setting
687 687  )))
688 -|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
702 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
689 689  OK
704 +
705 +
690 690  )))
691 -|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
707 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
692 692  OK
709 +
710 +
693 693  )))
694 694  
695 -(% style="color:blue" %)**AT Command: AT+12VT**
696 696  
697 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
698 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
699 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
714 +**AT Command: AT+12VT**
715 +
716 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
717 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response**
718 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
700 700  0
720 +
701 701  OK
702 702  )))
703 -|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
704 -|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
723 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
724 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
705 705  OK
726 +
727 +
706 706  )))
707 707  
708 -(% style="color:blue" %)**Downlink Command: 0x07**
709 709  
731 +**Downlink Command: 0x07**
732 +
710 710  Format: Command Code (0x07) followed by 3 bytes.
711 711  
712 712  The first byte is which power, the second and third bytes are the time to turn on.
713 713  
714 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
715 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
716 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
717 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
718 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
719 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
737 +* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
738 +* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
739 +* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
740 +* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
741 +* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
742 +* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
720 720  
721 -== 3.4 Set the Probe Model ==
722 722  
723 723  
724 -Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
746 +== 3.4 Set the Probe Model ==
725 725  
726 -**AT Command: AT** **+PROBE**
727 727  
728 -AT+PROBE=aabb
749 +**AT Command: AT** **+PROBE**
729 729  
730 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
731 -
732 -When aa=01, it is the pressure mode, which converts the current into a pressure value;
733 -
734 -bb represents which type of pressure sensor it is.
735 -
736 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
737 -
738 738  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
739 -|**Command Example**|**Function**|**Response**
740 -|AT +PROBE =?|Get or Set the probe model.|0
741 -OK
742 -|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK
743 -|(((
744 -AT +PROBE =000A
752 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response**
753 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
754 +0
745 745  
746 -
747 -)))|Set water depth sensor mode, 10m type.|OK
748 -|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK
749 -|AT +PROBE =0000|Initial state, no settings.|OK
750 -
751 -
752 -**Downlink Command: 0x08**
753 -
754 -Format: Command Code (0x08) followed by 2 bytes.
755 -
756 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
757 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
758 -
759 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
760 -
761 -
762 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
763 -
764 -(% style="color:blue" %)**AT Command: AT** **+STDC**
765 -
766 -AT+STDC=aa,bb,bb
767 -
768 -(% style="color:#037691" %)**aa:**(%%)
769 -**0:** means disable this function and use TDC to send packets.
770 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
771 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
772 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
773 -
774 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
775 -|**Command Example**|**Function**|**Response**
776 -|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18
777 777  OK
778 -|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(((
779 -Attention:Take effect after ATZ
780 -
781 -OK
782 782  )))
783 -|AT+STDC=0, 0,0|(((
784 -Use the TDC interval to send packets.(default)
758 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
759 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
760 +OK
785 785  
786 786  
787 -)))|(((
788 -Attention:Take effect after ATZ
789 -
763 +)))
764 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
790 790  OK
766 +
767 +
791 791  )))
792 792  
770 +**Downlink Command: 0x08**
793 793  
794 -(% style="color:blue" %)**Downlink Command: 0xAE**
772 +Format: Command Code (0x08) followed by 2 bytes.
795 795  
796 -Format: Command Code (0x08) followed by 5 bytes.
774 +* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
775 +* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
797 797  
798 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
799 799  
778 +
800 800  = 4. Battery & how to replace =
801 801  
802 802  == 4.1 Battery Type ==
... ... @@ -804,6 +804,7 @@
804 804  
805 805  PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
806 806  
786 +
807 807  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
808 808  
809 809  [[image:1675146710956-626.png]]
... ... @@ -827,12 +827,17 @@
827 827  
828 828  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
829 829  
810 +
830 830  Instruction to use as below:
831 831  
832 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
833 833  
834 -(% style="color:blue" %)**Step 2:**(%%) Open it and choose
814 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
835 835  
816 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
817 +
818 +
819 +**Step 2:** Open it and choose
820 +
836 836  * Product Model
837 837  * Uplink Interval
838 838  * Working Mode
... ... @@ -913,11 +913,11 @@
913 913  = 9. ​Packing Info =
914 914  
915 915  
916 -(% style="color:#037691" %)**Package Includes**:
901 +**Package Includes**:
917 917  
918 918  * PS-LB LoRaWAN Pressure Sensor
919 919  
920 -(% style="color:#037691" %)**Dimension and weight**:
905 +**Dimension and weight**:
921 921  
922 922  * Device Size: cm
923 923  * Device Weight: g
... ... @@ -924,11 +924,12 @@
924 924  * Package Size / pcs : cm
925 925  * Weight / pcs : g
926 926  
912 +
913 +
927 927  = 10. Support =
928 928  
929 929  
930 930  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
931 -
932 932  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
933 933  
934 934  
image-20230201090514-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
image-20230222174559-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -19.4 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0