<
From version < 47.1 >
edited by Bei Jinggeng
on 2023/02/22 17:55
To version < 42.28 >
edited by Xiaoling
on 2023/01/31 16:47
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Bei
1 +XWiki.Xiaoling
Content
... ... @@ -16,33 +16,22 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 -(((
20 20  The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 -)))
22 22  
23 -(((
24 24  The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 -)))
26 26  
27 -(((
28 28  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 32  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 -)))
34 34  
35 -(((
36 36  PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 -)))
38 38  
39 -(((
40 40  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 -)))
42 42  
43 43  [[image:1675071321348-194.png]]
44 44  
45 45  
34 +
46 46  == 1.2 ​Features ==
47 47  
48 48  
... ... @@ -58,9 +58,7 @@
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * 8500mAh Battery for long term use
61 -* Controllable 3.3v,5v and 12v output to power external sensor
62 62  
63 -
64 64  == 1.3 Specification ==
65 65  
66 66  
... ... @@ -107,7 +107,6 @@
107 107  * Sleep Mode: 5uA @ 3.3v
108 108  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
109 109  
110 -
111 111  == 1.4 Probe Types ==
112 112  
113 113  === 1.4.1 Thread Installation Type ===
... ... @@ -126,7 +126,6 @@
126 126  * Operating temperature: -20℃~~60℃
127 127  * Connector Type: Various Types, see order info
128 128  
129 -
130 130  === 1.4.2 Immersion Type ===
131 131  
132 132  
... ... @@ -143,11 +143,11 @@
143 143  * Operating temperature: -40℃~~85℃
144 144  * Material: 316 stainless steels
145 145  
146 -
147 147  == 1.5 Probe Dimension ==
148 148  
149 149  
150 150  
135 +
151 151  == 1.6 Application and Installation ==
152 152  
153 153  === 1.6.1 Thread Installation Type ===
... ... @@ -202,19 +202,18 @@
202 202  
203 203  
204 204  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
205 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
206 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
190 +|=(% style="width: 150px;" %)**Behavior on ACT**|=(% style="width: 90px;" %)**Function**|=**Action**
191 +|(% style="width:260px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
207 207  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
208 208  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
209 209  )))
210 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
195 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
211 211  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
212 212  (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
213 213  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
214 214  )))
215 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
200 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
216 216  
217 -
218 218  == 1.9 Pin Mapping ==
219 219  
220 220  
... ... @@ -239,6 +239,8 @@
239 239  == 1.11 Mechanical ==
240 240  
241 241  
226 +
227 +
242 242  [[image:1675143884058-338.png]]
243 243  
244 244  
... ... @@ -256,6 +256,7 @@
256 256  The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
257 257  
258 258  
245 +
259 259  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
260 260  
261 261  
... ... @@ -309,8 +309,18 @@
309 309  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
310 310  
311 311  
299 +
312 312  == 2.3 ​Uplink Payload ==
313 313  
302 +
303 +Uplink payloads have two types:
304 +
305 +* Distance Value: Use FPORT=2
306 +* Other control commands: Use other FPORT fields.
307 +
308 +The application server should parse the correct value based on FPORT settings.
309 +
310 +
314 314  === 2.3.1 Device Status, FPORT~=5 ===
315 315  
316 316  
... ... @@ -321,8 +321,8 @@
321 321  
322 322  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
323 323  |(% colspan="6" %)**Device Status (FPORT=5)**
324 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
325 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
321 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
322 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
326 326  
327 327  Example parse in TTNv3
328 328  
... ... @@ -392,14 +392,12 @@
392 392  |(% style="width:97px" %)(((
393 393  **Size(bytes)**
394 394  )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
395 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
392 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
396 396  
397 397  [[image:1675144608950-310.png]]
398 398  
399 399  
400 -=== ===
401 401  
402 -
403 403  === 2.3.3 Battery Info ===
404 404  
405 405  
... ... @@ -413,22 +413,19 @@
413 413  === 2.3.4 Probe Model ===
414 414  
415 415  
416 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
411 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
417 417  
418 418  
419 419  For example.
420 420  
421 421  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
422 -|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning**
423 -|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
424 -|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
425 -|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure
417 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
418 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
419 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
426 426  
427 -
421 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
428 428  
429 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
430 430  
431 -
432 432  === 2.3.5 0~~20mA value (IDC_IN) ===
433 433  
434 434  
... ... @@ -471,27 +471,10 @@
471 471  
472 472  0x01: Interrupt Uplink Packet.
473 473  
474 -=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 ===
475 475  
467 +=== 2.3.8 ​Decode payload in The Things Network ===
476 476  
477 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
478 -|(% style="width:94px" %)(((
479 -**Size(bytes)**
480 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n
481 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
482 -Voltage value, each 2 bytes is a set of voltage values.
483 -)))
484 484  
485 -[[image:image-20230220171300-1.png||height="207" width="863"]]
486 -
487 -Multiple sets of data collected are displayed in this form:
488 -
489 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n]
490 -
491 -
492 -=== 2.3.9 ​Decode payload in The Things Network ===
493 -
494 -
495 495  While using TTN network, you can add the payload format to decode the payload.
496 496  
497 497  
... ... @@ -547,6 +547,7 @@
547 547  [[image:1675145060812-420.png]]
548 548  
549 549  
525 +
550 550  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
551 551  
552 552  
... ... @@ -569,6 +569,7 @@
569 569  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
570 570  
571 571  
548 +
572 572  = 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
573 573  
574 574  
... ... @@ -579,7 +579,7 @@
579 579  
580 580  There are two kinds of commands to configure PS-LB, they are:
581 581  
582 -* (% style="color:#037691" %)**General Commands**
559 +* (% style="color:#037691" %)**General Commands**.
583 583  
584 584  These commands are to configure:
585 585  
... ... @@ -619,12 +619,11 @@
619 619  
620 620  Format: Command Code (0x01) followed by 3 bytes time value.
621 621  
622 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
599 +If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
623 623  
624 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
625 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
601 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
602 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
626 626  
627 -
628 628  == 3.2 Set Interrupt Mode ==
629 629  
630 630  
... ... @@ -633,19 +633,19 @@
633 633  (% style="color:blue" %)**AT Command: AT+INTMOD**
634 634  
635 635  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
636 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
637 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
612 +|=**Command Example**|=**Function**|=**Response**
613 +|AT+INTMOD=?|Show current interrupt mode|(((
638 638  0
639 639  OK
640 -the mode is 0 =Disable Interrupt
616 +the mode is 0 = No interruption
641 641  )))
642 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
618 +|AT+INTMOD=2|(((
643 643  Set Transmit Interval
644 -0. (Disable Interrupt),
645 -~1. (Trigger by rising and falling edge)
646 -2. (Trigger by falling edge)
647 -3. (Trigger by rising edge)
648 -)))|(% style="width:157px" %)OK
620 +~1. (Disable Interrupt),
621 +2. (Trigger by rising and falling edge),
622 +3. (Trigger by falling edge)
623 +4. (Trigger by rising edge)
624 +)))|OK
649 649  
650 650  (% style="color:blue" %)**Downlink Command: 0x06**
651 651  
... ... @@ -653,10 +653,9 @@
653 653  
654 654  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
655 655  
656 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
657 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
632 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
633 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
658 658  
659 -
660 660  == 3.3 Set the output time ==
661 661  
662 662  
... ... @@ -664,52 +664,52 @@
664 664  
665 665  (% style="color:blue" %)**AT Command: AT+3V3T**
666 666  
667 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
668 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
669 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
642 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
643 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 236px;" %)**Function**|=(% style="width: 117px;" %)**Response**
644 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
670 670  0
671 671  OK
672 672  )))
673 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
648 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
674 674  OK
675 675  default setting
676 676  )))
677 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
652 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
678 678  OK
679 679  )))
680 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
655 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
681 681  OK
682 682  )))
683 683  
684 684  (% style="color:blue" %)**AT Command: AT+5VT**
685 685  
686 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
687 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
688 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
661 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
662 +|=(% style="width: 158px;" %)**Command Example**|=(% style="width: 232px;" %)**Function**|=(% style="width: 119px;" %)**Response**
663 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
689 689  0
690 690  OK
691 691  )))
692 -|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
667 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
693 693  OK
694 694  default setting
695 695  )))
696 -|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
671 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
697 697  OK
698 698  )))
699 -|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
674 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
700 700  OK
701 701  )))
702 702  
703 703  (% style="color:blue" %)**AT Command: AT+12VT**
704 704  
705 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
706 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
707 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
680 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
681 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 268px;" %)**Function**|=**Response**
682 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
708 708  0
709 709  OK
710 710  )))
711 -|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
712 -|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
686 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
687 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
713 713  OK
714 714  )))
715 715  
... ... @@ -719,97 +719,39 @@
719 719  
720 720  The first byte is which power, the second and third bytes are the time to turn on.
721 721  
722 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
723 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
724 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
725 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
726 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
727 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
697 +* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
698 +* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
699 +* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
700 +* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
701 +* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
702 +* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
728 728  
729 -
730 730  == 3.4 Set the Probe Model ==
731 731  
732 732  
733 -Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
707 +(% style="color:blue" %)**AT Command: AT** **+PROBE**
734 734  
735 -**AT Command: AT** **+PROBE**
736 -
737 -AT+PROBE=aabb
738 -
739 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
740 -
741 -When aa=01, it is the pressure mode, which converts the current into a pressure value;
742 -
743 -bb represents which type of pressure sensor it is.
744 -
745 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
746 -
747 747  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
748 -|**Command Example**|**Function**|**Response**
749 -|AT +PROBE =?|Get or Set the probe model.|0
710 +|=(% style="width: 157px;" %)**Command Example**|=(% style="width: 267px;" %)**Function**|=**Response**
711 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
712 +0
750 750  OK
751 -|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK
752 -|(((
753 -AT +PROBE =000A
754 -
755 -
756 -)))|Set water depth sensor mode, 10m type.|OK
757 -|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK
758 -|AT +PROBE =0000|Initial state, no settings.|OK
759 -
760 -
761 -
762 -**Downlink Command: 0x08**
763 -
764 -Format: Command Code (0x08) followed by 2 bytes.
765 -
766 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
767 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
768 -
769 -
770 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
771 -
772 -
773 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
774 -
775 -(% style="color:blue" %)**AT Command: AT** **+STDC**
776 -
777 -AT+STDC=aa,bb,bb
778 -
779 -(% style="color:#037691" %)**aa:**(%%)
780 -**0:** means disable this function and use TDC to send packets.
781 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
782 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
783 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
784 -
785 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
786 -|**Command Example**|**Function**|**Response**
787 -|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18
714 +)))
715 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
716 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
788 788  OK
789 -|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(((
790 -Attention:Take effect after ATZ
791 -
792 -OK
793 793  )))
794 -|AT+STDC=0, 0,0|(((
795 -Use the TDC interval to send packets.(default)
796 -
797 -
798 -)))|(((
799 -Attention:Take effect after ATZ
800 -
719 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
801 801  OK
802 802  )))
803 803  
804 -
723 +(% style="color:blue" %)**Downlink Command: 0x08**
805 805  
806 -(% style="color:blue" %)**Downlink Command: 0xAE**
725 +Format: Command Code (0x08) followed by 2 bytes.
807 807  
808 -Format: Command Code (0x08) followed by 5 bytes.
727 +* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
728 +* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
809 809  
810 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
811 -
812 -
813 813  = 4. Battery & how to replace =
814 814  
815 815  == 4.1 Battery Type ==
... ... @@ -817,6 +817,7 @@
817 817  
818 818  PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
819 819  
737 +
820 820  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
821 821  
822 822  [[image:1675146710956-626.png]]
... ... @@ -840,10 +840,15 @@
840 840  
841 841  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
842 842  
761 +
843 843  Instruction to use as below:
844 844  
845 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
846 846  
765 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
766 +
767 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
768 +
769 +
847 847  (% style="color:blue" %)**Step 2:**(%%) Open it and choose
848 848  
849 849  * Product Model
... ... @@ -937,7 +937,6 @@
937 937  * Package Size / pcs : cm
938 938  * Weight / pcs : g
939 939  
940 -
941 941  = 10. Support =
942 942  
943 943  
image-20230201090514-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
image-20230222174559-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -19.4 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0