Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/04/19 17:58
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 3 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Bei1 +XWiki.Xiaoling - Content
-
... ... @@ -16,33 +16,22 @@ 16 16 == 1.1 What is LoRaWAN Pressure Sensor == 17 17 18 18 19 -((( 20 20 The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 21 -))) 22 22 23 -((( 24 24 The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 25 -))) 26 26 27 -((( 28 28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 32 PS-LB supports BLE configure and wireless OTA update which make user easy to use. 33 -))) 34 34 35 -((( 36 36 PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 -))) 38 38 39 -((( 40 40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 41 -))) 42 42 43 43 [[image:1675071321348-194.png]] 44 44 45 45 34 + 46 46 == 1.2 Features == 47 47 48 48 ... ... @@ -58,9 +58,7 @@ 58 58 * Uplink on periodically 59 59 * Downlink to change configure 60 60 * 8500mAh Battery for long term use 61 -* Controllable 3.3v,5v and 12v output to power external sensor 62 62 63 - 64 64 == 1.3 Specification == 65 65 66 66 ... ... @@ -107,7 +107,6 @@ 107 107 * Sleep Mode: 5uA @ 3.3v 108 108 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 109 109 110 - 111 111 == 1.4 Probe Types == 112 112 113 113 === 1.4.1 Thread Installation Type === ... ... @@ -126,7 +126,6 @@ 126 126 * Operating temperature: -20℃~~60℃ 127 127 * Connector Type: Various Types, see order info 128 128 129 - 130 130 === 1.4.2 Immersion Type === 131 131 132 132 ... ... @@ -143,11 +143,11 @@ 143 143 * Operating temperature: -40℃~~85℃ 144 144 * Material: 316 stainless steels 145 145 146 - 147 147 == 1.5 Probe Dimension == 148 148 149 149 150 150 135 + 151 151 == 1.6 Application and Installation == 152 152 153 153 === 1.6.1 Thread Installation Type === ... ... @@ -202,19 +202,18 @@ 202 202 203 203 204 204 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 205 -|=(% style="width: 1 67px;" %)**Behavior on ACT**|=(% style="width:117px;" %)**Function**|=(% style="width: 225px;" %)**Action**206 -|(% style="width: 167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((190 +|=(% style="width: 150px;" %)**Behavior on ACT**|=(% style="width: 90px;" %)**Function**|=**Action** 191 +|(% style="width:260px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|((( 207 207 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 208 208 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 209 209 ))) 210 -|(% style="width:1 67px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((195 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|((( 211 211 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 212 212 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 213 213 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 214 214 ))) 215 -|(% style="width:1 67px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red"%)**Redled**(%%)will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.200 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 216 216 217 - 218 218 == 1.9 Pin Mapping == 219 219 220 220 ... ... @@ -239,6 +239,8 @@ 239 239 == 1.11 Mechanical == 240 240 241 241 226 + 227 + 242 242 [[image:1675143884058-338.png]] 243 243 244 244 ... ... @@ -256,6 +256,7 @@ 256 256 The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 257 257 258 258 245 + 259 259 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 260 260 261 261 ... ... @@ -309,8 +309,18 @@ 309 309 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 310 310 311 311 299 + 312 312 == 2.3 Uplink Payload == 313 313 302 + 303 +Uplink payloads have two types: 304 + 305 +* Distance Value: Use FPORT=2 306 +* Other control commands: Use other FPORT fields. 307 + 308 +The application server should parse the correct value based on FPORT settings. 309 + 310 + 314 314 === 2.3.1 Device Status, FPORT~=5 === 315 315 316 316 ... ... @@ -321,8 +321,8 @@ 321 321 322 322 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 323 323 |(% colspan="6" %)**Device Status (FPORT=5)** 324 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**| (% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**325 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version| (% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT321 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2** 322 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT 326 326 327 327 Example parse in TTNv3 328 328 ... ... @@ -392,14 +392,12 @@ 392 392 |(% style="width:97px" %)((( 393 393 **Size(bytes)** 394 394 )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1** 395 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3. 4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.8IN126IN226INTpin"]]392 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] 396 396 397 397 [[image:1675144608950-310.png]] 398 398 399 399 400 -=== === 401 401 402 - 403 403 === 2.3.3 Battery Info === 404 404 405 405 ... ... @@ -413,22 +413,19 @@ 413 413 === 2.3.4 Probe Model === 414 414 415 415 416 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe.411 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 417 417 418 418 419 419 For example. 420 420 421 421 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 422 -|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning** 423 -|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 424 -|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 425 -|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure 417 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning** 418 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 419 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 426 426 427 - 421 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value. 428 428 429 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value. 430 430 431 - 432 432 === 2.3.5 0~~20mA value (IDC_IN) === 433 433 434 434 ... ... @@ -471,27 +471,10 @@ 471 471 472 472 0x01: Interrupt Uplink Packet. 473 473 474 -=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 === 475 475 467 +=== 2.3.8 Decode payload in The Things Network === 476 476 477 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %) 478 -|(% style="width:94px" %)((( 479 -**Size(bytes)** 480 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n 481 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)((( 482 -Voltage value, each 2 bytes is a set of voltage values. 483 -))) 484 484 485 -[[image:image-20230220171300-1.png||height="207" width="863"]] 486 - 487 -Multiple sets of data collected are displayed in this form: 488 - 489 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n] 490 - 491 - 492 -=== 2.3.9 Decode payload in The Things Network === 493 - 494 - 495 495 While using TTN network, you can add the payload format to decode the payload. 496 496 497 497 ... ... @@ -547,6 +547,7 @@ 547 547 [[image:1675145060812-420.png]] 548 548 549 549 525 + 550 550 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 551 551 552 552 ... ... @@ -569,6 +569,7 @@ 569 569 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]] 570 570 571 571 548 + 572 572 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink = 573 573 574 574 ... ... @@ -579,7 +579,7 @@ 579 579 580 580 There are two kinds of commands to configure PS-LB, they are: 581 581 582 -* (% style="color:#037691" %)**General Commands** 559 +* (% style="color:#037691" %)**General Commands**. 583 583 584 584 These commands are to configure: 585 585 ... ... @@ -619,12 +619,11 @@ 619 619 620 620 Format: Command Code (0x01) followed by 3 bytes time value. 621 621 622 -If the downlink payload=0100003C, it means set the END Node 's Transmit Interval to 0x00003C=60(S), while type code is 01.599 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 623 623 624 -* Example 1: Downlink Payload: 0100001E 625 -* Example 2: Downlink Payload: 0100003C 601 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 602 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 626 626 627 - 628 628 == 3.2 Set Interrupt Mode == 629 629 630 630 ... ... @@ -633,19 +633,19 @@ 633 633 (% style="color:blue" %)**AT Command: AT+INTMOD** 634 634 635 635 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 636 -|= (% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**637 -| (% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((612 +|=**Command Example**|=**Function**|=**Response** 613 +|AT+INTMOD=?|Show current interrupt mode|((( 638 638 0 639 639 OK 640 -the mode is 0 = DisableInterrupt616 +the mode is 0 = No interruption 641 641 ))) 642 -| (% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((618 +|AT+INTMOD=2|((( 643 643 Set Transmit Interval 644 - 0. (Disable Interrupt),645 - ~1. (Trigger by rising and falling edge)646 - 2. (Trigger by falling edge)647 - 3. (Trigger by rising edge)648 -)))| (% style="width:157px" %)OK620 +~1. (Disable Interrupt), 621 +2. (Trigger by rising and falling edge), 622 +3. (Trigger by falling edge) 623 +4. (Trigger by rising edge) 624 +)))|OK 649 649 650 650 (% style="color:blue" %)**Downlink Command: 0x06** 651 651 ... ... @@ -653,10 +653,9 @@ 653 653 654 654 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 655 655 656 -* Example 1: Downlink Payload: 06000000 657 -* Example 2: Downlink Payload: 06000003 632 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 633 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 658 658 659 - 660 660 == 3.3 Set the output time == 661 661 662 662 ... ... @@ -664,52 +664,52 @@ 664 664 665 665 (% style="color:blue" %)**AT Command: AT+3V3T** 666 666 667 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 474px" %)668 -|=(% style="width: 15 4px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**669 -|(% style="width:15 4px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((642 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 643 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 236px;" %)**Function**|=(% style="width: 117px;" %)**Response** 644 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)((( 670 670 0 671 671 OK 672 672 ))) 673 -|(% style="width:15 4px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((648 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)((( 674 674 OK 675 675 default setting 676 676 ))) 677 -|(% style="width:15 4px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((652 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)((( 678 678 OK 679 679 ))) 680 -|(% style="width:15 4px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((655 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)((( 681 681 OK 682 682 ))) 683 683 684 684 (% style="color:blue" %)**AT Command: AT+5VT** 685 685 686 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 470px" %)687 -|=(% style="width: 15 5px;" %)**Command Example**|=(% style="width:196px;" %)**Function**|=(% style="width: 114px;" %)**Response**688 -|(% style="width:15 5px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((661 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 662 +|=(% style="width: 158px;" %)**Command Example**|=(% style="width: 232px;" %)**Function**|=(% style="width: 119px;" %)**Response** 663 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)((( 689 689 0 690 690 OK 691 691 ))) 692 -|(% style="width:15 5px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((667 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)((( 693 693 OK 694 694 default setting 695 695 ))) 696 -|(% style="width:15 5px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((671 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)((( 697 697 OK 698 698 ))) 699 -|(% style="width:15 5px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((674 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)((( 700 700 OK 701 701 ))) 702 702 703 703 (% style="color:blue" %)**AT Command: AT+12VT** 704 704 705 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 443px" %)706 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**707 -|(% style="width:156px" %)AT+12VT=?|(% style="width: 199px" %)Show 12V open time.|(% style="width:83px" %)(((680 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 681 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 268px;" %)**Function**|=**Response** 682 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|((( 708 708 0 709 709 OK 710 710 ))) 711 -|(% style="width:156px" %)AT+12VT=0|(% style="width: 199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK712 -|(% style="width:156px" %)AT+12VT=500|(% style="width: 199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((686 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK 687 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|((( 713 713 OK 714 714 ))) 715 715 ... ... @@ -719,97 +719,39 @@ 719 719 720 720 The first byte is which power, the second and third bytes are the time to turn on. 721 721 722 -* Example 1: Downlink Payload: 070101F4 **~-~-->**723 -* Example 2: Downlink Payload: 0701FFFF **~-~-->**AT+3V3T=65535724 -* Example 3: Downlink Payload: 070203E8 **~-~-->**AT+5VT=1000725 -* Example 4: Downlink Payload: 07020000 **~-~-->**AT+5VT=0726 -* Example 5: Downlink Payload: 070301F4 **~-~-->**AT+12VT=500727 -* Example 6: Downlink Payload: 07030000 **~-~-->**AT+12VT=0697 +* Example 1: Downlink Payload: 070101F4 -> AT+3V3T=500 698 +* Example 2: Downlink Payload: 0701FFFF -> AT+3V3T=65535 699 +* Example 3: Downlink Payload: 070203E8 -> AT+5VT=1000 700 +* Example 4: Downlink Payload: 07020000 -> AT+5VT=0 701 +* Example 5: Downlink Payload: 070301F4 -> AT+12VT=500 702 +* Example 6: Downlink Payload: 07030000 -> AT+12VT=0 728 728 729 - 730 730 == 3.4 Set the Probe Model == 731 731 732 732 733 - Usersneed to configure thisparameter according to the type of externalprobe. In this way, the servercan decode according to this value, and convert the current valueoutputby the sensor into waterdepthorpressure value.707 +(% style="color:blue" %)**AT Command: AT** **+PROBE** 734 734 735 -**AT Command: AT** **+PROBE** 736 - 737 -AT+PROBE=aabb 738 - 739 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters. 740 - 741 -When aa=01, it is the pressure mode, which converts the current into a pressure value; 742 - 743 -bb represents which type of pressure sensor it is. 744 - 745 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C) 746 - 747 747 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 748 -|**Command Example**|**Function**|**Response** 749 -|AT +PROBE =?|Get or Set the probe model.|0 710 +|=(% style="width: 157px;" %)**Command Example**|=(% style="width: 267px;" %)**Function**|=**Response** 711 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|((( 712 +0 750 750 OK 751 -|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK 752 -|((( 753 -AT +PROBE =000A 754 - 755 - 756 -)))|Set water depth sensor mode, 10m type.|OK 757 -|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK 758 -|AT +PROBE =0000|Initial state, no settings.|OK 759 - 760 - 761 - 762 -**Downlink Command: 0x08** 763 - 764 -Format: Command Code (0x08) followed by 2 bytes. 765 - 766 -* Example 1: Downlink Payload: 080003 **~-~-->** AT+PROBE=0003 767 -* Example 2: Downlink Payload: 080101 **~-~-->** AT+PROBE=0101 768 - 769 - 770 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) == 771 - 772 - 773 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time. 774 - 775 -(% style="color:blue" %)**AT Command: AT** **+STDC** 776 - 777 -AT+STDC=aa,bb,bb 778 - 779 -(% style="color:#037691" %)**aa:**(%%) 780 -**0:** means disable this function and use TDC to send packets. 781 -**1:** means enable this function, use the method of multiple acquisitions to send packets. 782 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535 783 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120 784 - 785 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 786 -|**Command Example**|**Function**|**Response** 787 -|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18 714 +))) 715 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK 716 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|((( 788 788 OK 789 -|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|((( 790 -Attention:Take effect after ATZ 791 - 792 -OK 793 793 ))) 794 -|AT+STDC=0, 0,0|((( 795 -Use the TDC interval to send packets.(default) 796 - 797 - 798 -)))|((( 799 -Attention:Take effect after ATZ 800 - 719 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|((( 801 801 OK 802 802 ))) 803 803 804 - 723 +(% style="color:blue" %)**Downlink Command: 0x08** 805 805 806 - (% style="color:blue"%)**DownlinkCommand:0xAE**725 +Format: Command Code (0x08) followed by 2 bytes. 807 807 808 -Format: Command Code (0x08) followed by 5 bytes. 727 +* Example 1: Downlink Payload: 080003 -> AT+PROBE=0003 728 +* Example 2: Downlink Payload: 080101 -> AT+PROBE=0101 809 809 810 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->** AT+STDC=1,600,18 811 - 812 - 813 813 = 4. Battery & how to replace = 814 814 815 815 == 4.1 Battery Type == ... ... @@ -817,6 +817,7 @@ 817 817 818 818 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 819 819 737 + 820 820 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 821 821 822 822 [[image:1675146710956-626.png]] ... ... @@ -840,10 +840,15 @@ 840 840 841 841 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 842 842 761 + 843 843 Instruction to use as below: 844 844 845 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 846 846 765 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 766 + 767 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 768 + 769 + 847 847 (% style="color:blue" %)**Step 2:**(%%) Open it and choose 848 848 849 849 * Product Model ... ... @@ -937,7 +937,6 @@ 937 937 * Package Size / pcs : cm 938 938 * Weight / pcs : g 939 939 940 - 941 941 = 10. Support = 942 942 943 943
- image-20230201090514-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -560.9 KB - Content
- image-20230220171300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.0 KB - Content
- image-20230222174559-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -19.4 KB - Content