Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/04/19 17:58
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 3 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Bei1 +XWiki.Xiaoling - Content
-
... ... @@ -16,33 +16,22 @@ 16 16 == 1.1 What is LoRaWAN Pressure Sensor == 17 17 18 18 19 -((( 20 20 The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 21 -))) 22 22 23 -((( 24 24 The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 25 -))) 26 26 27 -((( 28 28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 32 PS-LB supports BLE configure and wireless OTA update which make user easy to use. 33 -))) 34 34 35 -((( 36 36 PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 -))) 38 38 39 -((( 40 40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 41 -))) 42 42 43 43 [[image:1675071321348-194.png]] 44 44 45 45 34 + 46 46 == 1.2 Features == 47 47 48 48 ... ... @@ -58,9 +58,7 @@ 58 58 * Uplink on periodically 59 59 * Downlink to change configure 60 60 * 8500mAh Battery for long term use 61 -* Controllable 3.3v,5v and 12v output to power external sensor 62 62 63 - 64 64 == 1.3 Specification == 65 65 66 66 ... ... @@ -107,7 +107,6 @@ 107 107 * Sleep Mode: 5uA @ 3.3v 108 108 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 109 109 110 - 111 111 == 1.4 Probe Types == 112 112 113 113 === 1.4.1 Thread Installation Type === ... ... @@ -126,7 +126,6 @@ 126 126 * Operating temperature: -20℃~~60℃ 127 127 * Connector Type: Various Types, see order info 128 128 129 - 130 130 === 1.4.2 Immersion Type === 131 131 132 132 ... ... @@ -143,11 +143,11 @@ 143 143 * Operating temperature: -40℃~~85℃ 144 144 * Material: 316 stainless steels 145 145 146 - 147 147 == 1.5 Probe Dimension == 148 148 149 149 150 150 135 + 151 151 == 1.6 Application and Installation == 152 152 153 153 === 1.6.1 Thread Installation Type === ... ... @@ -202,17 +202,20 @@ 202 202 203 203 204 204 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 205 -| =(% style="width:67px;" %)**Behavior on ACT**|=(% style="width:17px;" %)**Function**|=(% style="width: 225px;" %)**Action**206 -|(% style="width:1 67px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((190 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action** 191 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|((( 207 207 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 193 + 208 208 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 209 209 ))) 210 -|(% style="width:1 67px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((196 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|((( 211 211 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 198 + 212 212 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 200 + 213 213 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 214 214 ))) 215 -|(% style="width:1 67px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red"%)**Redled**(%%)will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.203 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 216 216 217 217 218 218 == 1.9 Pin Mapping == ... ... @@ -239,6 +239,8 @@ 239 239 == 1.11 Mechanical == 240 240 241 241 230 + 231 + 242 242 [[image:1675143884058-338.png]] 243 243 244 244 ... ... @@ -256,6 +256,7 @@ 256 256 The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 257 257 258 258 249 + 259 259 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 260 260 261 261 ... ... @@ -309,8 +309,18 @@ 309 309 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 310 310 311 311 303 + 312 312 == 2.3 Uplink Payload == 313 313 306 + 307 +Uplink payloads have two types: 308 + 309 +* Distance Value: Use FPORT=2 310 +* Other control commands: Use other FPORT fields. 311 + 312 +The application server should parse the correct value based on FPORT settings. 313 + 314 + 314 314 === 2.3.1 Device Status, FPORT~=5 === 315 315 316 316 ... ... @@ -321,8 +321,8 @@ 321 321 322 322 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 323 323 |(% colspan="6" %)**Device Status (FPORT=5)** 324 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**| (% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**325 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version| (% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT325 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2** 326 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT 326 326 327 327 Example parse in TTNv3 328 328 ... ... @@ -391,15 +391,13 @@ 391 391 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 392 392 |(% style="width:97px" %)((( 393 393 **Size(bytes)** 394 -)))|(% style="width:48px" %)**2**|(% style="width: 71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**395 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3. 4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.8IN126IN226INTpin"]]395 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1** 396 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] 396 396 397 397 [[image:1675144608950-310.png]] 398 398 399 399 400 -=== === 401 401 402 - 403 403 === 2.3.3 Battery Info === 404 404 405 405 ... ... @@ -413,22 +413,19 @@ 413 413 === 2.3.4 Probe Model === 414 414 415 415 416 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe.415 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 417 417 418 418 419 419 For example. 420 420 421 421 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 422 -|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning** 423 -|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 424 -|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 425 -|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure 421 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning** 422 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 423 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 426 426 427 - 425 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value. 428 428 429 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value. 430 430 431 - 432 432 === 2.3.5 0~~20mA value (IDC_IN) === 433 433 434 434 ... ... @@ -471,27 +471,10 @@ 471 471 472 472 0x01: Interrupt Uplink Packet. 473 473 474 -=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 === 475 475 471 +=== 2.3.8 Decode payload in The Things Network === 476 476 477 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %) 478 -|(% style="width:94px" %)((( 479 -**Size(bytes)** 480 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n 481 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)((( 482 -Voltage value, each 2 bytes is a set of voltage values. 483 -))) 484 484 485 -[[image:image-20230220171300-1.png||height="207" width="863"]] 486 - 487 -Multiple sets of data collected are displayed in this form: 488 - 489 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n] 490 - 491 - 492 -=== 2.3.9 Decode payload in The Things Network === 493 - 494 - 495 495 While using TTN network, you can add the payload format to decode the payload. 496 496 497 497 ... ... @@ -547,6 +547,7 @@ 547 547 [[image:1675145060812-420.png]] 548 548 549 549 529 + 550 550 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 551 551 552 552 ... ... @@ -569,6 +569,7 @@ 569 569 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]] 570 570 571 571 552 + 572 572 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink = 573 573 574 574 ... ... @@ -579,7 +579,7 @@ 579 579 580 580 There are two kinds of commands to configure PS-LB, they are: 581 581 582 -* (% style="color:#037691" %) **General Commands**563 +* **(% style="color:#037691" %)General Commands**. 583 583 584 584 These commands are to configure: 585 585 ... ... @@ -591,7 +591,7 @@ 591 591 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 592 592 593 593 594 -* (% style="color:#037691" %) **Commands special design for PS-LB**575 +* **(% style="color:#037691" %)Commands special design for PS-LB** 595 595 596 596 These commands only valid for PS-LB, as below: 597 597 ... ... @@ -601,60 +601,68 @@ 601 601 602 602 Feature: Change LoRaWAN End Node Transmit Interval. 603 603 604 - (% style="color:blue" %)**AT Command: AT+TDC**585 +**AT Command: AT+TDC** 605 605 606 606 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 607 -| =(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**608 -| (% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((588 +|**Command Example**|**Function**|**Response** 589 +|AT+TDC=?|Show current transmit Interval|((( 609 609 30000 591 + 610 610 OK 593 + 611 611 the interval is 30000ms = 30s 612 612 ))) 613 -| (% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((596 +|AT+TDC=60000|Set Transmit Interval|((( 614 614 OK 598 + 615 615 Set transmit interval to 60000ms = 60 seconds 616 616 ))) 617 617 618 - (% style="color:blue" %)**Downlink Command: 0x01**602 +**Downlink Command: 0x01** 619 619 620 620 Format: Command Code (0x01) followed by 3 bytes time value. 621 621 622 -If the downlink payload=0100003C, it means set the END Node 's Transmit Interval to 0x00003C=60(S), while type code is 01.606 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 623 623 624 -* Example 1: Downlink Payload: 0100001E 625 -* Example 2: Downlink Payload: 0100003C 608 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 609 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 626 626 627 - 628 628 == 3.2 Set Interrupt Mode == 629 629 630 630 631 631 Feature, Set Interrupt mode for GPIO_EXIT. 632 632 633 - (% style="color:blue" %)**AT Command: AT+INTMOD**616 +**AT Command: AT+INTMOD** 634 634 635 635 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 636 -| =(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**637 -| (% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((619 +|**Command Example**|**Function**|**Response** 620 +|AT+INTMOD=?|Show current interrupt mode|((( 638 638 0 622 + 639 639 OK 640 -the mode is 0 =Disable Interrupt 624 + 625 +the mode is 0 = No interruption 641 641 ))) 642 -| (% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((627 +|AT+INTMOD=2|((( 643 643 Set Transmit Interval 644 -0. (Disable Interrupt), 645 -~1. (Trigger by rising and falling edge) 646 -2. (Trigger by falling edge) 647 -3. (Trigger by rising edge) 648 -)))|(% style="width:157px" %)OK 649 649 650 - (%style="color:blue"%)**Downlink Command: 0x06**630 +~1. (Disable Interrupt), 651 651 632 +2. (Trigger by rising and falling edge), 633 + 634 +3. (Trigger by falling edge) 635 + 636 +4. (Trigger by rising edge) 637 +)))|OK 638 + 639 +**Downlink Command: 0x06** 640 + 652 652 Format: Command Code (0x06) followed by 3 bytes. 653 653 654 654 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 655 655 656 -* Example 1: Downlink Payload: 06000000 657 -* Example 2: Downlink Payload: 06000003 645 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 646 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 658 658 659 659 660 660 == 3.3 Set the output time == ... ... @@ -662,152 +662,116 @@ 662 662 663 663 Feature, Control the output 3V3 , 5V or 12V. 664 664 665 - (% style="color:blue" %)**AT Command: AT+3V3T**654 +**AT Command: AT+3V3T** 666 666 667 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 474px" %)668 -| =(% style="width:4px;" %)**Command Example**|=(% style="width:01px;" %)**Function**|=(% style="width:6px;" %)**Response**669 -|(% style="width:15 4px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((656 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 657 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response** 658 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)((( 670 670 0 660 + 671 671 OK 672 672 ))) 673 -|(% style="width:15 4px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((663 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)((( 674 674 OK 665 + 675 675 default setting 676 676 ))) 677 -|(% style="width:15 4px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((668 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)((( 678 678 OK 670 + 671 + 679 679 ))) 680 -|(% style="width:15 4px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((673 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)((( 681 681 OK 675 + 676 + 682 682 ))) 683 683 684 - (% style="color:blue" %)**AT Command: AT+5VT**679 +**AT Command: AT+5VT** 685 685 686 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 470px" %)687 -| =(% style="width:5px;" %)**Command Example**|=(% style="width:196px;" %)**Function**|=(% style="width:4px;" %)**Response**688 -|(% style="width:15 5px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((681 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 682 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response** 683 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)((( 689 689 0 685 + 690 690 OK 691 691 ))) 692 -|(% style="width:15 5px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((688 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)((( 693 693 OK 690 + 694 694 default setting 695 695 ))) 696 -|(% style="width:15 5px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((693 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)((( 697 697 OK 695 + 696 + 698 698 ))) 699 -|(% style="width:15 5px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((698 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)((( 700 700 OK 700 + 701 + 701 701 ))) 702 702 703 - (% style="color:blue" %)**AT Command: AT+12VT**704 +**AT Command: AT+12VT** 704 704 705 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 443px" %)706 -| =(% style="width:;" %)**Command Example**|=(% style="width:199px;" %)**Function**|=(% style="width: 83px;" %)**Response**707 -|(% style="width:156px" %)AT+12VT=?|(% style="width: 199px" %)Show 12V open time.|(% style="width:83px" %)(((706 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 707 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response** 708 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|((( 708 708 0 710 + 709 709 OK 710 710 ))) 711 -|(% style="width:156px" %)AT+12VT=0|(% style="width: 199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK712 -|(% style="width:156px" %)AT+12VT=500|(% style="width: 199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((713 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK 714 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|((( 713 713 OK 716 + 717 + 714 714 ))) 715 715 716 - (% style="color:blue" %)**Downlink Command: 0x07**720 +**Downlink Command: 0x07** 717 717 718 718 Format: Command Code (0x07) followed by 3 bytes. 719 719 720 720 The first byte is which power, the second and third bytes are the time to turn on. 721 721 722 -* Example 1: Downlink Payload: 070101F4 **~-~-->**723 -* Example 2: Downlink Payload: 0701FFFF **~-~-->**AT+3V3T=65535724 -* Example 3: Downlink Payload: 070203E8 **~-~-->**AT+5VT=1000725 -* Example 4: Downlink Payload: 07020000 **~-~-->**AT+5VT=0726 -* Example 5: Downlink Payload: 070301F4 **~-~-->**AT+12VT=500727 -* Example 6: Downlink Payload: 07030000 **~-~-->**AT+12VT=0726 +* Example 1: Downlink Payload: 070101F4 -> AT+3V3T=500 727 +* Example 2: Downlink Payload: 0701FFFF -> AT+3V3T=65535 728 +* Example 3: Downlink Payload: 070203E8 -> AT+5VT=1000 729 +* Example 4: Downlink Payload: 07020000 -> AT+5VT=0 730 +* Example 5: Downlink Payload: 070301F4 -> AT+12VT=500 731 +* Example 6: Downlink Payload: 07030000 -> AT+12VT=0 728 728 729 729 730 730 == 3.4 Set the Probe Model == 731 731 732 732 733 - Usersneed toconfigure this parameteraccording to the type of external probe. In this way, the server candecodeaccordingto this value, and convert the current value output by the sensor into water depth or pressure value.737 +**AT Command: AT** **+PROBE** 734 734 735 -**AT Command: AT** **+PROBE** 736 - 737 -AT+PROBE=aabb 738 - 739 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters. 740 - 741 -When aa=01, it is the pressure mode, which converts the current into a pressure value; 742 - 743 -bb represents which type of pressure sensor it is. 744 - 745 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C) 746 - 747 747 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 748 -|**Command Example**|**Function**|**Response** 749 -|AT +PROBE =?|Get or Set the probe model.|0 750 -OK 751 -|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK 752 -|((( 753 -AT +PROBE =000A 740 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response** 741 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|((( 742 +0 754 754 755 - 756 -)))|Set water depth sensor mode, 10m type.|OK 757 -|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK 758 -|AT +PROBE =0000|Initial state, no settings.|OK 759 - 760 - 761 - 762 -**Downlink Command: 0x08** 763 - 764 -Format: Command Code (0x08) followed by 2 bytes. 765 - 766 -* Example 1: Downlink Payload: 080003 **~-~-->** AT+PROBE=0003 767 -* Example 2: Downlink Payload: 080101 **~-~-->** AT+PROBE=0101 768 - 769 - 770 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) == 771 - 772 - 773 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time. 774 - 775 -(% style="color:blue" %)**AT Command: AT** **+STDC** 776 - 777 -AT+STDC=aa,bb,bb 778 - 779 -(% style="color:#037691" %)**aa:**(%%) 780 -**0:** means disable this function and use TDC to send packets. 781 -**1:** means enable this function, use the method of multiple acquisitions to send packets. 782 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535 783 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120 784 - 785 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 786 -|**Command Example**|**Function**|**Response** 787 -|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18 788 788 OK 789 -|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|((( 790 -Attention:Take effect after ATZ 791 - 792 -OK 793 793 ))) 794 -|AT+STDC=0, 0,0|((( 795 -Use the TDC interval to send packets.(default) 746 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK 747 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|((( 748 +OK 796 796 797 797 798 -)))|((( 799 -Attention:Take effect after ATZ 800 - 801 -OK 802 802 ))) 752 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|((( 753 +OK 803 803 804 804 756 +))) 805 805 806 - (% style="color:blue" %)**Downlink Command: 0xAE**758 +**Downlink Command: 0x08** 807 807 808 -Format: Command Code (0x08) followed by 5bytes.760 +Format: Command Code (0x08) followed by 2 bytes. 809 809 810 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->** AT+STDC=1,600,18 762 +* Example 1: Downlink Payload: 080003 -> AT+PROBE=0003 763 +* Example 2: Downlink Payload: 080101 -> AT+PROBE=0101 811 811 812 812 813 813 = 4. Battery & how to replace = ... ... @@ -817,6 +817,7 @@ 817 817 818 818 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 819 819 773 + 820 820 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 821 821 822 822 [[image:1675146710956-626.png]] ... ... @@ -840,12 +840,17 @@ 840 840 841 841 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 842 842 797 + 843 843 Instruction to use as below: 844 844 845 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 846 846 847 - (% style="color:blue" %)**Step2:**(%%)Openand choose801 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 848 848 803 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 804 + 805 + 806 +**Step 2:** Open it and choose 807 + 849 849 * Product Model 850 850 * Uplink Interval 851 851 * Working Mode ... ... @@ -926,11 +926,11 @@ 926 926 = 9. Packing Info = 927 927 928 928 929 - (% style="color:#037691" %)**Package Includes**:888 +**Package Includes**: 930 930 931 931 * PS-LB LoRaWAN Pressure Sensor 932 932 933 - (% style="color:#037691" %)**Dimension and weight**:892 +**Dimension and weight**: 934 934 935 935 * Device Size: cm 936 936 * Device Weight: g ... ... @@ -942,7 +942,6 @@ 942 942 943 943 944 944 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 945 - 946 946 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 947 947 948 948
- image-20230201090514-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -560.9 KB - Content
- image-20230220171300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.0 KB - Content
- image-20230222174559-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -19.4 KB - Content