<
From version < 47.1 >
edited by Bei Jinggeng
on 2023/02/22 17:55
To version < 42.15 >
edited by Xiaoling
on 2023/01/31 16:10
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Bei
1 +XWiki.Xiaoling
Content
... ... @@ -16,33 +16,22 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 -(((
20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 -)))
19 +The Dragino PS-LB series sensors are **(% style="color:blue" %)LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
22 22  
23 -(((
24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 -)))
21 +The PS-LB series sensors include **(% style="color:blue" %)Thread Installation Type**(%%) and **(% style="color:blue" %)Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
26 26  
27 -(((
28 28  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 32  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 -)))
34 34  
35 -(((
36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 -)))
27 +PS-LB is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
38 38  
39 -(((
40 40  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 -)))
42 42  
43 43  [[image:1675071321348-194.png]]
44 44  
45 45  
34 +
46 46  == 1.2 ​Features ==
47 47  
48 48  
... ... @@ -58,24 +58,23 @@
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * 8500mAh Battery for long term use
61 -* Controllable 3.3v,5v and 12v output to power external sensor
62 62  
63 63  
64 64  == 1.3 Specification ==
65 65  
66 66  
67 -(% style="color:#037691" %)**Micro Controller:**
55 +**(% style="color:#037691" %)Micro Controller:**
68 68  
69 69  * MCU: 48Mhz ARM
70 70  * Flash: 256KB
71 71  * RAM: 64KB
72 72  
73 -(% style="color:#037691" %)**Common DC Characteristics:**
61 +**(% style="color:#037691" %)Common DC Characteristics:**
74 74  
75 75  * Supply Voltage: 2.5v ~~ 3.6v
76 76  * Operating Temperature: -40 ~~ 85°C
77 77  
78 -(% style="color:#037691" %)**LoRa Spec:**
66 +**(% style="color:#037691" %)LoRa Spec:**
79 79  
80 80  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
81 81  * Max +22 dBm constant RF output vs.
... ... @@ -82,19 +82,19 @@
82 82  * RX sensitivity: down to -139 dBm.
83 83  * Excellent blocking immunity
84 84  
85 -(% style="color:#037691" %)**Current Input Measuring :**
73 +**(% style="color:#037691" %)Current Input Measuring :**
86 86  
87 87  * Range: 0 ~~ 20mA
88 88  * Accuracy: 0.02mA
89 89  * Resolution: 0.001mA
90 90  
91 -(% style="color:#037691" %)**Voltage Input Measuring:**
79 +**(% style="color:#037691" %)Voltage Input Measuring:**
92 92  
93 93  * Range: 0 ~~ 30v
94 94  * Accuracy: 0.02v
95 95  * Resolution: 0.001v
96 96  
97 -(% style="color:#037691" %)**Battery:**
85 +**(% style="color:#037691" %)Battery:**
98 98  
99 99  * Li/SOCI2 un-chargeable battery
100 100  * Capacity: 8500mAh
... ... @@ -102,7 +102,7 @@
102 102  * Max continuously current: 130mA
103 103  * Max boost current: 2A, 1 second
104 104  
105 -(% style="color:#037691" %)**Power Consumption**
93 +**(% style="color:#037691" %)Power Consumption**
106 106  
107 107  * Sleep Mode: 5uA @ 3.3v
108 108  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
... ... @@ -148,12 +148,13 @@
148 148  
149 149  
150 150  
139 +
151 151  == 1.6 Application and Installation ==
152 152  
153 153  === 1.6.1 Thread Installation Type ===
154 154  
155 155  
156 -(% style="color:blue" %)**Application:**
145 +**(% style="color:blue" %)Application:**
157 157  
158 158  * Hydraulic Pressure
159 159  * Petrochemical Industry
... ... @@ -171,7 +171,7 @@
171 171  === 1.6.2 Immersion Type ===
172 172  
173 173  
174 -(% style="color:blue" %)**Application:**
163 +**(% style="color:blue" %)Application:**
175 175  
176 176  Liquid & Water Pressure / Level detect.
177 177  
... ... @@ -190,9 +190,9 @@
190 190  == 1.7 Sleep mode and working mode ==
191 191  
192 192  
193 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
182 +**(% style="color:blue" %)Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
194 194  
195 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
184 +**(% style="color:blue" %)Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
196 196  
197 197  
198 198  == 1.8 Button & LEDs ==
... ... @@ -202,19 +202,23 @@
202 202  
203 203  
204 204  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
205 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
206 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
207 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
194 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action**
195 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
196 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **(% style="color:blue" %)blue led** (%%)will blink once.
197 +
208 208  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
209 209  )))
210 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
211 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
212 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
200 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
201 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:#037691" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
202 +
203 +**(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
204 +
213 213  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
214 214  )))
215 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
207 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
216 216  
217 217  
210 +
218 218  == 1.9 Pin Mapping ==
219 219  
220 220  
... ... @@ -239,6 +239,8 @@
239 239  == 1.11 Mechanical ==
240 240  
241 241  
235 +
236 +
242 242  [[image:1675143884058-338.png]]
243 243  
244 244  
... ... @@ -253,9 +253,10 @@
253 253  == 2.1 How it works ==
254 254  
255 255  
256 -The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
251 +The PS-LB is configured as **(% style="color:#037691" %)LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
257 257  
258 258  
254 +
259 259  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
260 260  
261 261  
... ... @@ -268,7 +268,7 @@
268 268  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
269 269  
270 270  
271 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
267 +**(% style="color:blue" %)Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
272 272  
273 273  Each PS-LB is shipped with a sticker with the default device EUI as below:
274 274  
... ... @@ -279,38 +279,48 @@
279 279  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
280 280  
281 281  
282 -(% style="color:blue" %)**Register the device**
278 +**(% style="color:blue" %)Register the device**
283 283  
284 284  [[image:1675144099263-405.png]]
285 285  
286 286  
287 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
283 +**(% style="color:blue" %)Add APP EUI and DEV EUI**
288 288  
289 289  [[image:1675144117571-832.png]]
290 290  
291 291  
292 -(% style="color:blue" %)**Add APP EUI in the application**
288 +**(% style="color:blue" %)Add APP EUI in the application**
293 293  
294 294  
295 295  [[image:1675144143021-195.png]]
296 296  
297 297  
298 -(% style="color:blue" %)**Add APP KEY**
294 +**(% style="color:blue" %)Add APP KEY**
299 299  
300 300  [[image:1675144157838-392.png]]
301 301  
302 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
298 +**(% style="color:blue" %)Step 2:**(%%) Activate on PS-LB
303 303  
304 304  
305 305  Press the button for 5 seconds to activate the PS-LB.
306 306  
307 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
303 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:blue" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. **(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
308 308  
309 309  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
310 310  
311 311  
308 +
312 312  == 2.3 ​Uplink Payload ==
313 313  
311 +
312 +Uplink payloads have two types:
313 +
314 +* Distance Value: Use FPORT=2
315 +* Other control commands: Use other FPORT fields.
316 +
317 +The application server should parse the correct value based on FPORT settings.
318 +
319 +
314 314  === 2.3.1 Device Status, FPORT~=5 ===
315 315  
316 316  
... ... @@ -321,8 +321,8 @@
321 321  
322 322  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
323 323  |(% colspan="6" %)**Device Status (FPORT=5)**
324 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
325 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
330 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
331 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
326 326  
327 327  Example parse in TTNv3
328 328  
... ... @@ -329,11 +329,11 @@
329 329  [[image:1675144504430-490.png]]
330 330  
331 331  
332 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
338 +**(% style="color:#037691" %)Sensor Model**(%%): For PS-LB, this value is 0x16
333 333  
334 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
340 +**(% style="color:#037691" %)Firmware Version**(%%): 0x0100, Means: v1.0.0 version
335 335  
336 -(% style="color:#037691" %)**Frequency Band**:
342 +**(% style="color:#037691" %)Frequency Band**:
337 337  
338 338  *0x01: EU868
339 339  
... ... @@ -364,7 +364,7 @@
364 364  *0x0e: MA869
365 365  
366 366  
367 -(% style="color:#037691" %)**Sub-Band**:
373 +**(% style="color:#037691" %)Sub-Band**:
368 368  
369 369  AU915 and US915:value 0x00 ~~ 0x08
370 370  
... ... @@ -373,7 +373,7 @@
373 373  Other Bands: Always 0x00
374 374  
375 375  
376 -(% style="color:#037691" %)**Battery Info**:
382 +**(% style="color:#037691" %)Battery Info**:
377 377  
378 378  Check the battery voltage.
379 379  
... ... @@ -391,15 +391,13 @@
391 391  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
392 392  |(% style="width:97px" %)(((
393 393  **Size(bytes)**
394 -)))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
395 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
400 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1**
401 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
396 396  
397 397  [[image:1675144608950-310.png]]
398 398  
399 399  
400 -=== ===
401 401  
402 -
403 403  === 2.3.3 Battery Info ===
404 404  
405 405  
... ... @@ -413,28 +413,25 @@
413 413  === 2.3.4 Probe Model ===
414 414  
415 415  
416 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
420 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
417 417  
418 418  
419 419  For example.
420 420  
421 421  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
422 -|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning**
423 -|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
424 -|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
425 -|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure
426 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
427 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
428 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
426 426  
427 -
430 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
428 428  
429 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
430 430  
431 -
432 432  === 2.3.5 0~~20mA value (IDC_IN) ===
433 433  
434 434  
435 435  The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
436 436  
437 -(% style="color:#037691" %)**Example**:
438 +**(% style="color:#037691" %)Example**:
438 438  
439 439  27AE(H) = 10158 (D)/1000 = 10.158mA.
440 440  
... ... @@ -444,7 +444,7 @@
444 444  
445 445  Measure the voltage value. The range is 0 to 30V.
446 446  
447 -(% style="color:#037691" %)**Example**:
448 +**(% style="color:#037691" %)Example**:
448 448  
449 449  138E(H) = 5006(D)/1000= 5.006V
450 450  
... ... @@ -454,44 +454,27 @@
454 454  
455 455  IN1 and IN2 are used as digital input pins.
456 456  
457 -(% style="color:#037691" %)**Example**:
458 +**(% style="color:#037691" %)Example**:
458 458  
459 -09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
460 +09 (H) :(0x09&0x08)>>3=1    IN1 pin is high level.
460 460  
461 -09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
462 +09 (H) :(0x09&0x04)>>2=0    IN2 pin is low level.
462 462  
463 463  
464 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
465 +This data field shows if this packet is generated by **(% style="color:blue" %)Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
465 465  
466 -(% style="color:#037691" %)**Example:**
467 +**(% style="color:#037691" %)Example:**
467 467  
468 -09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
469 +09 (H) :(0x09&0x02)>>1=1    The level of the interrupt pin.
469 469  
470 -09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
471 +09 (H) :0x09&0x01=1              0x00: Normal uplink packet.
471 471  
472 472  0x01: Interrupt Uplink Packet.
473 473  
474 -=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 ===
475 475  
476 +=== 2.3.8 ​Decode payload in The Things Network ===
476 476  
477 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
478 -|(% style="width:94px" %)(((
479 -**Size(bytes)**
480 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n
481 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
482 -Voltage value, each 2 bytes is a set of voltage values.
483 -)))
484 484  
485 -[[image:image-20230220171300-1.png||height="207" width="863"]]
486 -
487 -Multiple sets of data collected are displayed in this form:
488 -
489 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n]
490 -
491 -
492 -=== 2.3.9 ​Decode payload in The Things Network ===
493 -
494 -
495 495  While using TTN network, you can add the payload format to decode the payload.
496 496  
497 497  
... ... @@ -513,9 +513,9 @@
513 513  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
514 514  
515 515  
516 -(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
500 +**(% style="color:blue" %)Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
517 517  
518 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
502 +**(% style="color:blue" %)Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
519 519  
520 520  
521 521  [[image:1675144951092-237.png]]
... ... @@ -524,9 +524,9 @@
524 524  [[image:1675144960452-126.png]]
525 525  
526 526  
527 -(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
511 +**(% style="color:blue" %)Step 3:**(%%) Create an account or log in Datacake.
528 528  
529 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
513 +**(% style="color:#blue" %)Step 4:** (%%)Create PS-LB product.
530 530  
531 531  [[image:1675145004465-869.png]]
532 532  
... ... @@ -539,7 +539,7 @@
539 539  [[image:1675145029119-717.png]]
540 540  
541 541  
542 -(% style="color:blue" %)**Step 5: **(%%)add payload decode
526 +**(% style="color:blue" %)Step 5: **(%%)add payload decode
543 543  
544 544  [[image:1675145051360-659.png]]
545 545  
... ... @@ -547,6 +547,7 @@
547 547  [[image:1675145060812-420.png]]
548 548  
549 549  
534 +
550 550  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
551 551  
552 552  
... ... @@ -569,17 +569,19 @@
569 569  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
570 570  
571 571  
557 +
572 572  = 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
573 573  
574 574  
575 575  Use can configure PS-LB via AT Command or LoRaWAN Downlink.
576 576  
577 -* AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
563 +* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
578 578  * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
579 579  
566 +
580 580  There are two kinds of commands to configure PS-LB, they are:
581 581  
582 -* (% style="color:#037691" %)**General Commands**
569 +* **General Commands**.
583 583  
584 584  These commands are to configure:
585 585  
... ... @@ -591,7 +591,7 @@
591 591  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
592 592  
593 593  
594 -* (% style="color:#037691" %)**Commands special design for PS-LB**
581 +* **Commands special design for PS-LB**
595 595  
596 596  These commands only valid for PS-LB, as below:
597 597  
... ... @@ -601,28 +601,31 @@
601 601  
602 602  Feature: Change LoRaWAN End Node Transmit Interval.
603 603  
604 -(% style="color:blue" %)**AT Command: AT+TDC**
591 +**AT Command: AT+TDC**
605 605  
606 606  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
607 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
608 -|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
594 +|**Command Example**|**Function**|**Response**
595 +|AT+TDC=?|Show current transmit Interval|(((
609 609  30000
597 +
610 610  OK
599 +
611 611  the interval is 30000ms = 30s
612 612  )))
613 -|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
602 +|AT+TDC=60000|Set Transmit Interval|(((
614 614  OK
604 +
615 615  Set transmit interval to 60000ms = 60 seconds
616 616  )))
617 617  
618 -(% style="color:blue" %)**Downlink Command: 0x01**
608 +**Downlink Command: 0x01**
619 619  
620 620  Format: Command Code (0x01) followed by 3 bytes time value.
621 621  
622 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
612 +If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
623 623  
624 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
625 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
614 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
615 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
626 626  
627 627  
628 628  == 3.2 Set Interrupt Mode ==
... ... @@ -630,186 +630,162 @@
630 630  
631 631  Feature, Set Interrupt mode for GPIO_EXIT.
632 632  
633 -(% style="color:blue" %)**AT Command: AT+INTMOD**
623 +**AT Command: AT+INTMOD**
634 634  
635 635  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
636 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
637 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
626 +|**Command Example**|**Function**|**Response**
627 +|AT+INTMOD=?|Show current interrupt mode|(((
638 638  0
629 +
639 639  OK
640 -the mode is 0 =Disable Interrupt
631 +
632 +the mode is 0 = No interruption
641 641  )))
642 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
634 +|AT+INTMOD=2|(((
643 643  Set Transmit Interval
644 -0. (Disable Interrupt),
645 -~1. (Trigger by rising and falling edge)
646 -2. (Trigger by falling edge)
647 -3. (Trigger by rising edge)
648 -)))|(% style="width:157px" %)OK
649 649  
650 -(% style="color:blue" %)**Downlink Command: 0x06**
637 +~1. (Disable Interrupt),
651 651  
639 +2. (Trigger by rising and falling edge),
640 +
641 +3. (Trigger by falling edge)
642 +
643 +4. (Trigger by rising edge)
644 +)))|OK
645 +
646 +**Downlink Command: 0x06**
647 +
652 652  Format: Command Code (0x06) followed by 3 bytes.
653 653  
654 654  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
655 655  
656 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
657 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
652 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
653 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
658 658  
659 659  
656 +
660 660  == 3.3 Set the output time ==
661 661  
662 662  
663 663  Feature, Control the output 3V3 , 5V or 12V.
664 664  
665 -(% style="color:blue" %)**AT Command: AT+3V3T**
662 +**AT Command: AT+3V3T**
666 666  
667 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
668 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
669 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
664 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
665 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**
666 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
670 670  0
668 +
671 671  OK
672 672  )))
673 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
671 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
674 674  OK
673 +
675 675  default setting
676 676  )))
677 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
676 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
678 678  OK
678 +
679 +
679 679  )))
680 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
681 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
681 681  OK
683 +
684 +
682 682  )))
683 683  
684 -(% style="color:blue" %)**AT Command: AT+5VT**
685 685  
686 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
687 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
688 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
688 +**AT Command: AT+5VT**
689 +
690 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
691 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**
692 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
689 689  0
694 +
690 690  OK
691 691  )))
692 -|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
697 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
693 693  OK
699 +
694 694  default setting
695 695  )))
696 -|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
702 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
697 697  OK
704 +
705 +
698 698  )))
699 -|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
707 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
700 700  OK
709 +
710 +
701 701  )))
702 702  
703 -(% style="color:blue" %)**AT Command: AT+12VT**
704 704  
705 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
706 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
707 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
714 +**AT Command: AT+12VT**
715 +
716 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
717 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response**
718 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
708 708  0
720 +
709 709  OK
710 710  )))
711 -|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
712 -|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
723 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
724 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
713 713  OK
726 +
727 +
714 714  )))
715 715  
716 -(% style="color:blue" %)**Downlink Command: 0x07**
717 717  
731 +**Downlink Command: 0x07**
732 +
718 718  Format: Command Code (0x07) followed by 3 bytes.
719 719  
720 720  The first byte is which power, the second and third bytes are the time to turn on.
721 721  
722 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
723 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
724 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
725 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
726 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
727 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
737 +* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
738 +* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
739 +* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
740 +* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
741 +* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
742 +* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
728 728  
729 729  
745 +
730 730  == 3.4 Set the Probe Model ==
731 731  
732 732  
733 -Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
749 +**AT Command: AT** **+PROBE**
734 734  
735 -**AT Command: AT** **+PROBE**
736 -
737 -AT+PROBE=aabb
738 -
739 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
740 -
741 -When aa=01, it is the pressure mode, which converts the current into a pressure value;
742 -
743 -bb represents which type of pressure sensor it is.
744 -
745 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
746 -
747 747  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
748 -|**Command Example**|**Function**|**Response**
749 -|AT +PROBE =?|Get or Set the probe model.|0
750 -OK
751 -|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK
752 -|(((
753 -AT +PROBE =000A
752 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response**
753 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
754 +0
754 754  
755 -
756 -)))|Set water depth sensor mode, 10m type.|OK
757 -|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK
758 -|AT +PROBE =0000|Initial state, no settings.|OK
759 -
760 -
761 -
762 -**Downlink Command: 0x08**
763 -
764 -Format: Command Code (0x08) followed by 2 bytes.
765 -
766 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
767 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
768 -
769 -
770 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
771 -
772 -
773 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
774 -
775 -(% style="color:blue" %)**AT Command: AT** **+STDC**
776 -
777 -AT+STDC=aa,bb,bb
778 -
779 -(% style="color:#037691" %)**aa:**(%%)
780 -**0:** means disable this function and use TDC to send packets.
781 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
782 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
783 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
784 -
785 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
786 -|**Command Example**|**Function**|**Response**
787 -|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18
788 788  OK
789 -|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(((
790 -Attention:Take effect after ATZ
791 -
792 -OK
793 793  )))
794 -|AT+STDC=0, 0,0|(((
795 -Use the TDC interval to send packets.(default)
758 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
759 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
760 +OK
796 796  
797 797  
798 -)))|(((
799 -Attention:Take effect after ATZ
800 -
801 -OK
802 802  )))
764 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
765 +OK
803 803  
804 804  
768 +)))
805 805  
806 -(% style="color:blue" %)**Downlink Command: 0xAE**
770 +**Downlink Command: 0x08**
807 807  
808 -Format: Command Code (0x08) followed by 5 bytes.
772 +Format: Command Code (0x08) followed by 2 bytes.
809 809  
810 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
774 +* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
775 +* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
811 811  
812 812  
778 +
813 813  = 4. Battery & how to replace =
814 814  
815 815  == 4.1 Battery Type ==
... ... @@ -817,6 +817,7 @@
817 817  
818 818  PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
819 819  
786 +
820 820  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
821 821  
822 822  [[image:1675146710956-626.png]]
... ... @@ -840,12 +840,17 @@
840 840  
841 841  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
842 842  
810 +
843 843  Instruction to use as below:
844 844  
845 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
846 846  
847 -(% style="color:blue" %)**Step 2:**(%%) Open it and choose
814 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
848 848  
816 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
817 +
818 +
819 +**Step 2:** Open it and choose
820 +
849 849  * Product Model
850 850  * Uplink Interval
851 851  * Working Mode
... ... @@ -926,11 +926,11 @@
926 926  = 9. ​Packing Info =
927 927  
928 928  
929 -(% style="color:#037691" %)**Package Includes**:
901 +**Package Includes**:
930 930  
931 931  * PS-LB LoRaWAN Pressure Sensor
932 932  
933 -(% style="color:#037691" %)**Dimension and weight**:
905 +**Dimension and weight**:
934 934  
935 935  * Device Size: cm
936 936  * Device Weight: g
... ... @@ -938,11 +938,11 @@
938 938  * Weight / pcs : g
939 939  
940 940  
913 +
941 941  = 10. Support =
942 942  
943 943  
944 944  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
945 -
946 946  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
947 947  
948 948  
image-20230201090514-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
image-20230222174559-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -19.4 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0