Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/04/19 17:58
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 3 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Bei1 +XWiki.Xiaoling - Content
-
... ... @@ -16,33 +16,22 @@ 16 16 == 1.1 What is LoRaWAN Pressure Sensor == 17 17 18 18 19 -((( 20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 21 -))) 19 +The Dragino PS-LB series sensors are **(% style="color:blue" %)LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 22 22 23 -((( 24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 25 -))) 21 +The PS-LB series sensors include **(% style="color:blue" %)Thread Installation Type**(%%) and **(% style="color:blue" %)Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 26 26 27 -((( 28 28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 32 PS-LB supports BLE configure and wireless OTA update which make user easy to use. 33 -))) 34 34 35 -((( 36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 -))) 27 +PS-LB is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 38 38 39 -((( 40 40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 41 -))) 42 42 43 43 [[image:1675071321348-194.png]] 44 44 45 45 34 + 46 46 == 1.2 Features == 47 47 48 48 ... ... @@ -58,24 +58,23 @@ 58 58 * Uplink on periodically 59 59 * Downlink to change configure 60 60 * 8500mAh Battery for long term use 61 -* Controllable 3.3v,5v and 12v output to power external sensor 62 62 63 63 64 64 == 1.3 Specification == 65 65 66 66 67 -(% style="color:#037691" %) **Micro Controller:**55 +**(% style="color:#037691" %)Micro Controller:** 68 68 69 69 * MCU: 48Mhz ARM 70 70 * Flash: 256KB 71 71 * RAM: 64KB 72 72 73 -(% style="color:#037691" %) **Common DC Characteristics:**61 +**(% style="color:#037691" %)Common DC Characteristics:** 74 74 75 75 * Supply Voltage: 2.5v ~~ 3.6v 76 76 * Operating Temperature: -40 ~~ 85°C 77 77 78 -(% style="color:#037691" %) **LoRa Spec:**66 +**(% style="color:#037691" %)LoRa Spec:** 79 79 80 80 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 81 81 * Max +22 dBm constant RF output vs. ... ... @@ -82,19 +82,19 @@ 82 82 * RX sensitivity: down to -139 dBm. 83 83 * Excellent blocking immunity 84 84 85 -(% style="color:#037691" %) **Current Input Measuring :**73 +**(% style="color:#037691" %)Current Input Measuring :** 86 86 87 87 * Range: 0 ~~ 20mA 88 88 * Accuracy: 0.02mA 89 89 * Resolution: 0.001mA 90 90 91 -(% style="color:#037691" %) **Voltage Input Measuring:**79 +**(% style="color:#037691" %)Voltage Input Measuring:** 92 92 93 93 * Range: 0 ~~ 30v 94 94 * Accuracy: 0.02v 95 95 * Resolution: 0.001v 96 96 97 -(% style="color:#037691" %) **Battery:**85 +**(% style="color:#037691" %)Battery:** 98 98 99 99 * Li/SOCI2 un-chargeable battery 100 100 * Capacity: 8500mAh ... ... @@ -102,7 +102,7 @@ 102 102 * Max continuously current: 130mA 103 103 * Max boost current: 2A, 1 second 104 104 105 -(% style="color:#037691" %) **Power Consumption**93 +**(% style="color:#037691" %)Power Consumption** 106 106 107 107 * Sleep Mode: 5uA @ 3.3v 108 108 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm ... ... @@ -148,12 +148,13 @@ 148 148 149 149 150 150 139 + 151 151 == 1.6 Application and Installation == 152 152 153 153 === 1.6.1 Thread Installation Type === 154 154 155 155 156 -(% style="color:blue" %) **Application:**145 +**(% style="color:blue" %)Application:** 157 157 158 158 * Hydraulic Pressure 159 159 * Petrochemical Industry ... ... @@ -171,7 +171,7 @@ 171 171 === 1.6.2 Immersion Type === 172 172 173 173 174 -(% style="color:blue" %) **Application:**163 +**(% style="color:blue" %)Application:** 175 175 176 176 Liquid & Water Pressure / Level detect. 177 177 ... ... @@ -190,9 +190,9 @@ 190 190 == 1.7 Sleep mode and working mode == 191 191 192 192 193 -(% style="color:blue" %) **Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.182 +**(% style="color:blue" %)Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 194 194 195 -(% style="color:blue" %) **Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.184 +**(% style="color:blue" %)Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 196 196 197 197 198 198 == 1.8 Button & LEDs == ... ... @@ -202,19 +202,23 @@ 202 202 203 203 204 204 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 205 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action** 206 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 207 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 194 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action** 195 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|((( 196 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **(% style="color:blue" %)blue led** (%%)will blink once. 197 + 208 208 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 209 209 ))) 210 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 211 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 212 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 200 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|((( 201 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:#037691" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 202 + 203 +**(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network. 204 + 213 213 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 214 214 ))) 215 -|(% style="width:1 67px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red"%)**Redled**(%%)will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.207 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 216 216 217 217 210 + 218 218 == 1.9 Pin Mapping == 219 219 220 220 ... ... @@ -239,6 +239,8 @@ 239 239 == 1.11 Mechanical == 240 240 241 241 235 + 236 + 242 242 [[image:1675143884058-338.png]] 243 243 244 244 ... ... @@ -253,9 +253,10 @@ 253 253 == 2.1 How it works == 254 254 255 255 256 -The PS-LB is configured as (% style="color:#037691" %) **LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.251 +The PS-LB is configured as **(% style="color:#037691" %)LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 257 257 258 258 254 + 259 259 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 260 260 261 261 ... ... @@ -268,7 +268,7 @@ 268 268 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 269 269 270 270 271 -(% style="color:blue" %) **Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.267 +**(% style="color:blue" %)Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB. 272 272 273 273 Each PS-LB is shipped with a sticker with the default device EUI as below: 274 274 ... ... @@ -279,38 +279,48 @@ 279 279 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 280 280 281 281 282 -(% style="color:blue" %) **Register the device**278 +**(% style="color:blue" %)Register the device** 283 283 284 284 [[image:1675144099263-405.png]] 285 285 286 286 287 -(% style="color:blue" %) **Add APP EUI and DEV EUI**283 +**(% style="color:blue" %)Add APP EUI and DEV EUI** 288 288 289 289 [[image:1675144117571-832.png]] 290 290 291 291 292 -(% style="color:blue" %) **Add APP EUI in the application**288 +**(% style="color:blue" %)Add APP EUI in the application** 293 293 294 294 295 295 [[image:1675144143021-195.png]] 296 296 297 297 298 -(% style="color:blue" %) **Add APP KEY**294 +**(% style="color:blue" %)Add APP KEY** 299 299 300 300 [[image:1675144157838-392.png]] 301 301 302 -(% style="color:blue" %) **Step 2:**(%%) Activate on PS-LB298 +**(% style="color:blue" %)Step 2:**(%%) Activate on PS-LB 303 303 304 304 305 305 Press the button for 5 seconds to activate the PS-LB. 306 306 307 -(% style="color:green" %) **Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.303 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:blue" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. **(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network. 308 308 309 309 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 310 310 311 311 308 + 312 312 == 2.3 Uplink Payload == 313 313 311 + 312 +Uplink payloads have two types: 313 + 314 +* Distance Value: Use FPORT=2 315 +* Other control commands: Use other FPORT fields. 316 + 317 +The application server should parse the correct value based on FPORT settings. 318 + 319 + 314 314 === 2.3.1 Device Status, FPORT~=5 === 315 315 316 316 ... ... @@ -321,8 +321,8 @@ 321 321 322 322 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 323 323 |(% colspan="6" %)**Device Status (FPORT=5)** 324 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**| (% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**325 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version| (% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT330 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2** 331 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT 326 326 327 327 Example parse in TTNv3 328 328 ... ... @@ -329,11 +329,11 @@ 329 329 [[image:1675144504430-490.png]] 330 330 331 331 332 -(% style="color:#037691" %) **Sensor Model**(%%): For PS-LB, this value is 0x16338 +**(% style="color:#037691" %)Sensor Model**(%%): For PS-LB, this value is 0x16 333 333 334 -(% style="color:#037691" %) **Firmware Version**(%%): 0x0100, Means: v1.0.0 version340 +**(% style="color:#037691" %)Firmware Version**(%%): 0x0100, Means: v1.0.0 version 335 335 336 -(% style="color:#037691" %) **Frequency Band**:342 +**(% style="color:#037691" %)Frequency Band**: 337 337 338 338 *0x01: EU868 339 339 ... ... @@ -364,7 +364,7 @@ 364 364 *0x0e: MA869 365 365 366 366 367 -(% style="color:#037691" %) **Sub-Band**:373 +**(% style="color:#037691" %)Sub-Band**: 368 368 369 369 AU915 and US915:value 0x00 ~~ 0x08 370 370 ... ... @@ -373,7 +373,7 @@ 373 373 Other Bands: Always 0x00 374 374 375 375 376 -(% style="color:#037691" %) **Battery Info**:382 +**(% style="color:#037691" %)Battery Info**: 377 377 378 378 Check the battery voltage. 379 379 ... ... @@ -391,15 +391,13 @@ 391 391 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 392 392 |(% style="width:97px" %)((( 393 393 **Size(bytes)** 394 -)))|(% style="width:48px" %)**2**|(% style="width: 71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**395 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3. 4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.8IN126IN226INTpin"]]400 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1** 401 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] 396 396 397 397 [[image:1675144608950-310.png]] 398 398 399 399 400 -=== === 401 401 402 - 403 403 === 2.3.3 Battery Info === 404 404 405 405 ... ... @@ -413,28 +413,25 @@ 413 413 === 2.3.4 Probe Model === 414 414 415 415 416 -PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe.420 +PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 417 417 418 418 419 419 For example. 420 420 421 421 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 422 -|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning** 423 -|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 424 -|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 425 -|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure 426 +|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning** 427 +|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 428 +|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 426 426 427 - 430 +The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value. 428 428 429 -The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value. 430 430 431 - 432 432 === 2.3.5 0~~20mA value (IDC_IN) === 433 433 434 434 435 435 The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level. 436 436 437 -(% style="color:#037691" %) **Example**:438 +**(% style="color:#037691" %)Example**: 438 438 439 439 27AE(H) = 10158 (D)/1000 = 10.158mA. 440 440 ... ... @@ -444,7 +444,7 @@ 444 444 445 445 Measure the voltage value. The range is 0 to 30V. 446 446 447 -(% style="color:#037691" %) **Example**:448 +**(% style="color:#037691" %)Example**: 448 448 449 449 138E(H) = 5006(D)/1000= 5.006V 450 450 ... ... @@ -454,44 +454,27 @@ 454 454 455 455 IN1 and IN2 are used as digital input pins. 456 456 457 -(% style="color:#037691" %) **Example**:458 +**(% style="color:#037691" %)Example**: 458 458 459 -09 (H) :(0x09&0x08)>>3=1 IN1 pin is high level.460 +09 (H) :(0x09&0x08)>>3=1 IN1 pin is high level. 460 460 461 -09 (H) :(0x09&0x04)>>2=0 IN2 pin is low level.462 +09 (H) :(0x09&0x04)>>2=0 IN2 pin is low level. 462 462 463 463 464 -This data field shows if this packet is generated by (% style="color:blue" %) **Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.465 +This data field shows if this packet is generated by **(% style="color:blue" %)Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal. 465 465 466 -(% style="color:#037691" %) **Example:**467 +**(% style="color:#037691" %)Example:** 467 467 468 -09 (H) :(0x09&0x02)>>1=1 The level of the interrupt pin.469 +09 (H) :(0x09&0x02)>>1=1 The level of the interrupt pin. 469 469 470 -09 (H) :0x09&0x01=1 0x00: Normal uplink packet.471 +09 (H) :0x09&0x01=1 0x00: Normal uplink packet. 471 471 472 472 0x01: Interrupt Uplink Packet. 473 473 474 -=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 === 475 475 476 +=== 2.3.8 Decode payload in The Things Network === 476 476 477 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %) 478 -|(% style="width:94px" %)((( 479 -**Size(bytes)** 480 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n 481 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)((( 482 -Voltage value, each 2 bytes is a set of voltage values. 483 -))) 484 484 485 -[[image:image-20230220171300-1.png||height="207" width="863"]] 486 - 487 -Multiple sets of data collected are displayed in this form: 488 - 489 -[voltage value1], [voltage value2], [voltage value3],…[voltage value n] 490 - 491 - 492 -=== 2.3.9 Decode payload in The Things Network === 493 - 494 - 495 495 While using TTN network, you can add the payload format to decode the payload. 496 496 497 497 ... ... @@ -513,9 +513,9 @@ 513 513 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 514 514 515 515 516 -(% style="color:blue" %) **Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.500 +**(% style="color:blue" %)Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time. 517 517 518 -(% style="color:blue" %) **Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:502 +**(% style="color:blue" %)Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 519 519 520 520 521 521 [[image:1675144951092-237.png]] ... ... @@ -524,9 +524,9 @@ 524 524 [[image:1675144960452-126.png]] 525 525 526 526 527 -(% style="color:blue" %) **Step 3:**(%%) Create an account or log in Datacake.511 +**(% style="color:blue" %)Step 3:**(%%) Create an account or log in Datacake. 528 528 529 -(% style="color:blue" %) **Step 4:** (%%)Create PS-LB product.513 +**(% style="color:#blue" %)Step 4:** (%%)Create PS-LB product. 530 530 531 531 [[image:1675145004465-869.png]] 532 532 ... ... @@ -539,7 +539,7 @@ 539 539 [[image:1675145029119-717.png]] 540 540 541 541 542 -(% style="color:blue" %) **Step 5: **(%%)add payload decode526 +**(% style="color:blue" %)Step 5: **(%%)add payload decode 543 543 544 544 [[image:1675145051360-659.png]] 545 545 ... ... @@ -547,6 +547,7 @@ 547 547 [[image:1675145060812-420.png]] 548 548 549 549 534 + 550 550 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 551 551 552 552 ... ... @@ -569,17 +569,19 @@ 569 569 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]] 570 570 571 571 557 + 572 572 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink = 573 573 574 574 575 575 Use can configure PS-LB via AT Command or LoRaWAN Downlink. 576 576 577 -* AT Command Connection: See [[FAQ>> ||anchor="H7.FAQ"]].563 +* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]]. 578 578 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 579 579 566 + 580 580 There are two kinds of commands to configure PS-LB, they are: 581 581 582 -* (% style="color:#037691" %)**General Commands**569 +* **General Commands**. 583 583 584 584 These commands are to configure: 585 585 ... ... @@ -591,7 +591,7 @@ 591 591 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 592 592 593 593 594 -* (% style="color:#037691" %)**Commands special design for PS-LB**581 +* **Commands special design for PS-LB** 595 595 596 596 These commands only valid for PS-LB, as below: 597 597 ... ... @@ -601,28 +601,31 @@ 601 601 602 602 Feature: Change LoRaWAN End Node Transmit Interval. 603 603 604 - (% style="color:blue" %)**AT Command: AT+TDC**591 +**AT Command: AT+TDC** 605 605 606 606 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 607 -| =(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**608 -| (% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((594 +|**Command Example**|**Function**|**Response** 595 +|AT+TDC=?|Show current transmit Interval|((( 609 609 30000 597 + 610 610 OK 599 + 611 611 the interval is 30000ms = 30s 612 612 ))) 613 -| (% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((602 +|AT+TDC=60000|Set Transmit Interval|((( 614 614 OK 604 + 615 615 Set transmit interval to 60000ms = 60 seconds 616 616 ))) 617 617 618 - (% style="color:blue" %)**Downlink Command: 0x01**608 +**Downlink Command: 0x01** 619 619 620 620 Format: Command Code (0x01) followed by 3 bytes time value. 621 621 622 -If the downlink payload=0100003C, it means set the END Node 's Transmit Interval to 0x00003C=60(S), while type code is 01.612 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 623 623 624 -* Example 1: Downlink Payload: 0100001E 625 -* Example 2: Downlink Payload: 0100003C 614 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 615 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 626 626 627 627 628 628 == 3.2 Set Interrupt Mode == ... ... @@ -630,186 +630,162 @@ 630 630 631 631 Feature, Set Interrupt mode for GPIO_EXIT. 632 632 633 - (% style="color:blue" %)**AT Command: AT+INTMOD**623 +**AT Command: AT+INTMOD** 634 634 635 635 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 636 -| =(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**637 -| (% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((626 +|**Command Example**|**Function**|**Response** 627 +|AT+INTMOD=?|Show current interrupt mode|((( 638 638 0 629 + 639 639 OK 640 -the mode is 0 =Disable Interrupt 631 + 632 +the mode is 0 = No interruption 641 641 ))) 642 -| (% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((634 +|AT+INTMOD=2|((( 643 643 Set Transmit Interval 644 -0. (Disable Interrupt), 645 -~1. (Trigger by rising and falling edge) 646 -2. (Trigger by falling edge) 647 -3. (Trigger by rising edge) 648 -)))|(% style="width:157px" %)OK 649 649 650 - (%style="color:blue"%)**Downlink Command: 0x06**637 +~1. (Disable Interrupt), 651 651 639 +2. (Trigger by rising and falling edge), 640 + 641 +3. (Trigger by falling edge) 642 + 643 +4. (Trigger by rising edge) 644 +)))|OK 645 + 646 +**Downlink Command: 0x06** 647 + 652 652 Format: Command Code (0x06) followed by 3 bytes. 653 653 654 654 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 655 655 656 -* Example 1: Downlink Payload: 06000000 657 -* Example 2: Downlink Payload: 06000003 652 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 653 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 658 658 659 659 656 + 660 660 == 3.3 Set the output time == 661 661 662 662 663 663 Feature, Control the output 3V3 , 5V or 12V. 664 664 665 - (% style="color:blue" %)**AT Command: AT+3V3T**662 +**AT Command: AT+3V3T** 666 666 667 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 474px" %)668 -| =(% style="width:4px;" %)**Command Example**|=(% style="width:01px;" %)**Function**|=(% style="width:6px;" %)**Response**669 -|(% style="width:15 4px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((664 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 665 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response** 666 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)((( 670 670 0 668 + 671 671 OK 672 672 ))) 673 -|(% style="width:15 4px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((671 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)((( 674 674 OK 673 + 675 675 default setting 676 676 ))) 677 -|(% style="width:15 4px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((676 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)((( 678 678 OK 678 + 679 + 679 679 ))) 680 -|(% style="width:15 4px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((681 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)((( 681 681 OK 683 + 684 + 682 682 ))) 683 683 684 -(% style="color:blue" %)**AT Command: AT+5VT** 685 685 686 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %) 687 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response** 688 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)((( 688 +**AT Command: AT+5VT** 689 + 690 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 691 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response** 692 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)((( 689 689 0 694 + 690 690 OK 691 691 ))) 692 -|(% style="width:15 5px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((697 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)((( 693 693 OK 699 + 694 694 default setting 695 695 ))) 696 -|(% style="width:15 5px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((702 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)((( 697 697 OK 704 + 705 + 698 698 ))) 699 -|(% style="width:15 5px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((707 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)((( 700 700 OK 709 + 710 + 701 701 ))) 702 702 703 -(% style="color:blue" %)**AT Command: AT+12VT** 704 704 705 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %) 706 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response** 707 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)((( 714 +**AT Command: AT+12VT** 715 + 716 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 717 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response** 718 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|((( 708 708 0 720 + 709 709 OK 710 710 ))) 711 -|(% style="width:156px" %)AT+12VT=0|(% style="width: 199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK712 -|(% style="width:156px" %)AT+12VT=500|(% style="width: 199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((723 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK 724 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|((( 713 713 OK 726 + 727 + 714 714 ))) 715 715 716 -(% style="color:blue" %)**Downlink Command: 0x07** 717 717 731 +**Downlink Command: 0x07** 732 + 718 718 Format: Command Code (0x07) followed by 3 bytes. 719 719 720 720 The first byte is which power, the second and third bytes are the time to turn on. 721 721 722 -* Example 1: Downlink Payload: 070101F4 **~-~-->**723 -* Example 2: Downlink Payload: 0701FFFF **~-~-->**AT+3V3T=65535724 -* Example 3: Downlink Payload: 070203E8 **~-~-->**AT+5VT=1000725 -* Example 4: Downlink Payload: 07020000 **~-~-->**AT+5VT=0726 -* Example 5: Downlink Payload: 070301F4 **~-~-->**AT+12VT=500727 -* Example 6: Downlink Payload: 07030000 **~-~-->**AT+12VT=0737 +* Example 1: Downlink Payload: 070101F4 -> AT+3V3T=500 738 +* Example 2: Downlink Payload: 0701FFFF -> AT+3V3T=65535 739 +* Example 3: Downlink Payload: 070203E8 -> AT+5VT=1000 740 +* Example 4: Downlink Payload: 07020000 -> AT+5VT=0 741 +* Example 5: Downlink Payload: 070301F4 -> AT+12VT=500 742 +* Example 6: Downlink Payload: 07030000 -> AT+12VT=0 728 728 729 729 745 + 730 730 == 3.4 Set the Probe Model == 731 731 732 732 733 - Usersneed toconfigure this parameteraccording to the type of external probe. In this way, the server candecodeaccordingto this value, and convert the current value output by the sensor into water depth or pressure value.749 +**AT Command: AT** **+PROBE** 734 734 735 -**AT Command: AT** **+PROBE** 736 - 737 -AT+PROBE=aabb 738 - 739 -When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters. 740 - 741 -When aa=01, it is the pressure mode, which converts the current into a pressure value; 742 - 743 -bb represents which type of pressure sensor it is. 744 - 745 -(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C) 746 - 747 747 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 748 -|**Command Example**|**Function**|**Response** 749 -|AT +PROBE =?|Get or Set the probe model.|0 750 -OK 751 -|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK 752 -|((( 753 -AT +PROBE =000A 752 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response** 753 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|((( 754 +0 754 754 755 - 756 -)))|Set water depth sensor mode, 10m type.|OK 757 -|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK 758 -|AT +PROBE =0000|Initial state, no settings.|OK 759 - 760 - 761 - 762 -**Downlink Command: 0x08** 763 - 764 -Format: Command Code (0x08) followed by 2 bytes. 765 - 766 -* Example 1: Downlink Payload: 080003 **~-~-->** AT+PROBE=0003 767 -* Example 2: Downlink Payload: 080101 **~-~-->** AT+PROBE=0101 768 - 769 - 770 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) == 771 - 772 - 773 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time. 774 - 775 -(% style="color:blue" %)**AT Command: AT** **+STDC** 776 - 777 -AT+STDC=aa,bb,bb 778 - 779 -(% style="color:#037691" %)**aa:**(%%) 780 -**0:** means disable this function and use TDC to send packets. 781 -**1:** means enable this function, use the method of multiple acquisitions to send packets. 782 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535 783 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120 784 - 785 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 786 -|**Command Example**|**Function**|**Response** 787 -|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18 788 788 OK 789 -|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|((( 790 -Attention:Take effect after ATZ 791 - 792 -OK 793 793 ))) 794 -|AT+STDC=0, 0,0|((( 795 -Use the TDC interval to send packets.(default) 758 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK 759 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|((( 760 +OK 796 796 797 797 798 -)))|((( 799 -Attention:Take effect after ATZ 800 - 801 -OK 802 802 ))) 764 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|((( 765 +OK 803 803 804 804 768 +))) 805 805 806 - (% style="color:blue" %)**Downlink Command: 0xAE**770 +**Downlink Command: 0x08** 807 807 808 -Format: Command Code (0x08) followed by 5bytes.772 +Format: Command Code (0x08) followed by 2 bytes. 809 809 810 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->** AT+STDC=1,600,18 774 +* Example 1: Downlink Payload: 080003 -> AT+PROBE=0003 775 +* Example 2: Downlink Payload: 080101 -> AT+PROBE=0101 811 811 812 812 778 + 813 813 = 4. Battery & how to replace = 814 814 815 815 == 4.1 Battery Type == ... ... @@ -817,6 +817,7 @@ 817 817 818 818 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 819 819 786 + 820 820 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 821 821 822 822 [[image:1675146710956-626.png]] ... ... @@ -840,12 +840,17 @@ 840 840 841 841 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 842 842 810 + 843 843 Instruction to use as below: 844 844 845 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 846 846 847 - (% style="color:blue" %)**Step2:**(%%)Openand choose814 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 848 848 816 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 817 + 818 + 819 +**Step 2:** Open it and choose 820 + 849 849 * Product Model 850 850 * Uplink Interval 851 851 * Working Mode ... ... @@ -926,11 +926,11 @@ 926 926 = 9. Packing Info = 927 927 928 928 929 - (% style="color:#037691" %)**Package Includes**:901 +**Package Includes**: 930 930 931 931 * PS-LB LoRaWAN Pressure Sensor 932 932 933 - (% style="color:#037691" %)**Dimension and weight**:905 +**Dimension and weight**: 934 934 935 935 * Device Size: cm 936 936 * Device Weight: g ... ... @@ -938,11 +938,11 @@ 938 938 * Weight / pcs : g 939 939 940 940 913 + 941 941 = 10. Support = 942 942 943 943 944 944 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 945 - 946 946 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 947 947 948 948
- image-20230201090514-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -560.9 KB - Content
- image-20230220171300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.0 KB - Content
- image-20230222174559-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -19.4 KB - Content