<
From version < 46.1 >
edited by Bei Jinggeng
on 2023/02/22 17:45
To version < 42.25 >
edited by Xiaoling
on 2023/01/31 16:42
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Bei
1 +XWiki.Xiaoling
Content
... ... @@ -16,33 +16,22 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 -(((
20 20  The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 -)))
22 22  
23 -(((
24 24  The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 -)))
26 26  
27 -(((
28 28  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 32  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 -)))
34 34  
35 -(((
36 36  PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 -)))
38 38  
39 -(((
40 40  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 -)))
42 42  
43 43  [[image:1675071321348-194.png]]
44 44  
45 45  
34 +
46 46  == 1.2 ​Features ==
47 47  
48 48  
... ... @@ -59,8 +59,6 @@
59 59  * Downlink to change configure
60 60  * 8500mAh Battery for long term use
61 61  
62 -
63 -
64 64  == 1.3 Specification ==
65 65  
66 66  
... ... @@ -107,8 +107,6 @@
107 107  * Sleep Mode: 5uA @ 3.3v
108 108  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
109 109  
110 -
111 -
112 112  == 1.4 Probe Types ==
113 113  
114 114  === 1.4.1 Thread Installation Type ===
... ... @@ -127,8 +127,6 @@
127 127  * Operating temperature: -20℃~~60℃
128 128  * Connector Type: Various Types, see order info
129 129  
130 -
131 -
132 132  === 1.4.2 Immersion Type ===
133 133  
134 134  
... ... @@ -145,12 +145,11 @@
145 145  * Operating temperature: -40℃~~85℃
146 146  * Material: 316 stainless steels
147 147  
148 -
149 -
150 150  == 1.5 Probe Dimension ==
151 151  
152 152  
153 153  
135 +
154 154  == 1.6 Application and Installation ==
155 155  
156 156  === 1.6.1 Thread Installation Type ===
... ... @@ -205,20 +205,18 @@
205 205  
206 206  
207 207  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
208 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
209 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
190 +|=(% style="width: 150px;" %)**Behavior on ACT**|=(% style="width: 90px;" %)**Function**|=**Action**
191 +|(% style="width:260px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
210 210  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
211 211  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
212 212  )))
213 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
195 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
214 214  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
215 215  (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
216 216  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
217 217  )))
218 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
200 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
219 219  
220 -
221 -
222 222  == 1.9 Pin Mapping ==
223 223  
224 224  
... ... @@ -243,6 +243,8 @@
243 243  == 1.11 Mechanical ==
244 244  
245 245  
226 +
227 +
246 246  [[image:1675143884058-338.png]]
247 247  
248 248  
... ... @@ -260,6 +260,7 @@
260 260  The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
261 261  
262 262  
245 +
263 263  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
264 264  
265 265  
... ... @@ -313,6 +313,7 @@
313 313  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
314 314  
315 315  
299 +
316 316  == 2.3 ​Uplink Payload ==
317 317  
318 318  
... ... @@ -334,8 +334,8 @@
334 334  
335 335  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
336 336  |(% colspan="6" %)**Device Status (FPORT=5)**
337 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
338 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
321 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
322 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
339 339  
340 340  Example parse in TTNv3
341 341  
... ... @@ -405,28 +405,15 @@
405 405  |(% style="width:97px" %)(((
406 406  **Size(bytes)**
407 407  )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
408 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
392 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
409 409  
410 410  [[image:1675144608950-310.png]]
411 411  
412 412  
413 -=== 2.3.3 Sensor value, FPORT~=7 ===
414 414  
398 +=== 2.3.3 Battery Info ===
415 415  
416 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
417 -|(% style="width:94px" %)(((
418 -**Size(bytes)**
419 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n
420 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
421 -Voltage value, each 2 bytes is a set of voltage values.
422 -)))
423 423  
424 -[[image:image-20230220171300-1.png||height="207" width="863"]]
425 -
426 -
427 -=== 2.3.4 Battery Info ===
428 -
429 -
430 430  Check the battery voltage for PS-LB.
431 431  
432 432  Ex1: 0x0B45 = 2885mV
... ... @@ -434,7 +434,7 @@
434 434  Ex2: 0x0B49 = 2889mV
435 435  
436 436  
437 -=== 2.3.5 Probe Model ===
408 +=== 2.3.4 Probe Model ===
438 438  
439 439  
440 440  PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
... ... @@ -450,7 +450,7 @@
450 450  The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
451 451  
452 452  
453 -=== 2.3.6 0~~20mA value (IDC_IN) ===
424 +=== 2.3.5 0~~20mA value (IDC_IN) ===
454 454  
455 455  
456 456  The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
... ... @@ -460,7 +460,7 @@
460 460  27AE(H) = 10158 (D)/1000 = 10.158mA.
461 461  
462 462  
463 -=== 2.3.7 0~~30V value ( pin VDC_IN) ===
434 +=== 2.3.6 0~~30V value ( pin VDC_IN) ===
464 464  
465 465  
466 466  Measure the voltage value. The range is 0 to 30V.
... ... @@ -470,7 +470,7 @@
470 470  138E(H) = 5006(D)/1000= 5.006V
471 471  
472 472  
473 -=== 2.3.8 IN1&IN2&INT pin ===
444 +=== 2.3.7 IN1&IN2&INT pin ===
474 474  
475 475  
476 476  IN1 and IN2 are used as digital input pins.
... ... @@ -493,7 +493,7 @@
493 493  0x01: Interrupt Uplink Packet.
494 494  
495 495  
496 -=== 2.3.9 ​Decode payload in The Things Network ===
467 +=== 2.3.8 ​Decode payload in The Things Network ===
497 497  
498 498  
499 499  While using TTN network, you can add the payload format to decode the payload.
... ... @@ -551,6 +551,7 @@
551 551  [[image:1675145060812-420.png]]
552 552  
553 553  
525 +
554 554  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
555 555  
556 556  
... ... @@ -573,6 +573,7 @@
573 573  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
574 574  
575 575  
548 +
576 576  = 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
577 577  
578 578  
... ... @@ -583,7 +583,7 @@
583 583  
584 584  There are two kinds of commands to configure PS-LB, they are:
585 585  
586 -* (% style="color:#037691" %)**General Commands**
559 +* (% style="color:#037691" %)**General Commands**.
587 587  
588 588  These commands are to configure:
589 589  
... ... @@ -611,11 +611,14 @@
611 611  |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
612 612  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
613 613  30000
587 +
614 614  OK
589 +
615 615  the interval is 30000ms = 30s
616 616  )))
617 617  |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
618 618  OK
594 +
619 619  Set transmit interval to 60000ms = 60 seconds
620 620  )))
621 621  
... ... @@ -623,13 +623,11 @@
623 623  
624 624  Format: Command Code (0x01) followed by 3 bytes time value.
625 625  
626 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
602 +If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
627 627  
628 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
629 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
604 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
605 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
630 630  
631 -
632 -
633 633  == 3.2 Set Interrupt Mode ==
634 634  
635 635  
... ... @@ -638,19 +638,25 @@
638 638  (% style="color:blue" %)**AT Command: AT+INTMOD**
639 639  
640 640  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
641 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
642 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
615 +|=**Command Example**|=**Function**|=**Response**
616 +|AT+INTMOD=?|Show current interrupt mode|(((
643 643  0
618 +
644 644  OK
620 +
645 645  the mode is 0 = No interruption
646 646  )))
647 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
623 +|AT+INTMOD=2|(((
648 648  Set Transmit Interval
625 +
649 649  ~1. (Disable Interrupt),
650 -2. (Trigger by rising and falling edge)
627 +
628 +2. (Trigger by rising and falling edge),
629 +
651 651  3. (Trigger by falling edge)
631 +
652 652  4. (Trigger by rising edge)
653 -)))|(% style="width:157px" %)OK
633 +)))|OK
654 654  
655 655  (% style="color:blue" %)**Downlink Command: 0x06**
656 656  
... ... @@ -658,11 +658,9 @@
658 658  
659 659  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
660 660  
661 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
662 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
641 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
642 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
663 663  
664 -
665 -
666 666  == 3.3 Set the output time ==
667 667  
668 668  
... ... @@ -670,53 +670,68 @@
670 670  
671 671  (% style="color:blue" %)**AT Command: AT+3V3T**
672 672  
673 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
674 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
675 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
651 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
652 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 236px;" %)**Function**|=(% style="width: 117px;" %)**Response**
653 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
676 676  0
655 +
677 677  OK
678 678  )))
679 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
658 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
680 680  OK
660 +
681 681  default setting
682 682  )))
683 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
663 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
684 684  OK
665 +
666 +
685 685  )))
686 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
668 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
687 687  OK
670 +
671 +
688 688  )))
689 689  
690 690  (% style="color:blue" %)**AT Command: AT+5VT**
691 691  
692 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
693 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
694 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
676 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
677 +|=(% style="width: 158px;" %)**Command Example**|=(% style="width: 232px;" %)**Function**|=(% style="width: 119px;" %)**Response**
678 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
695 695  0
680 +
696 696  OK
697 697  )))
698 -|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
683 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
699 699  OK
685 +
700 700  default setting
701 701  )))
702 -|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
688 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
703 703  OK
690 +
691 +
704 704  )))
705 -|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
693 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
706 706  OK
695 +
696 +
707 707  )))
708 708  
709 709  (% style="color:blue" %)**AT Command: AT+12VT**
710 710  
711 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
712 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
713 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
701 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
702 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 268px;" %)**Function**|=**Response**
703 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
714 714  0
705 +
715 715  OK
716 716  )))
717 -|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
718 -|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
708 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
709 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
719 719  OK
711 +
712 +
720 720  )))
721 721  
722 722  (% style="color:blue" %)**Downlink Command: 0x07**
... ... @@ -725,32 +725,35 @@
725 725  
726 726  The first byte is which power, the second and third bytes are the time to turn on.
727 727  
728 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
729 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
730 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
731 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
732 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
733 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
721 +* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
722 +* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
723 +* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
724 +* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
725 +* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
726 +* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
734 734  
735 -
736 -
737 737  == 3.4 Set the Probe Model ==
738 738  
739 739  
740 740  (% style="color:blue" %)**AT Command: AT** **+PROBE**
741 741  
742 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:448px" %)
743 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 204px;" %)**Function**|=(% style="width: 85px;" %)**Response**
744 -|(% style="width:154px" %)AT +PROBE =?|(% style="width:204px" %)Get or Set the probe model.|(% style="width:85px" %)(((
733 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
734 +|=(% style="width: 157px;" %)**Command Example**|=(% style="width: 267px;" %)**Function**|=**Response**
735 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
745 745  0
737 +
746 746  OK
747 747  )))
748 -|(% style="width:154px" %)AT +PROBE =0003|(% style="width:204px" %)Set water depth sensor mode, 3m type.|(% style="width:85px" %)OK
749 -|(% style="width:154px" %)AT +PROBE =0101|(% style="width:204px" %)Set pressure transmitters mode, first type.|(% style="width:85px" %)(((
740 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
741 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
750 750  OK
743 +
744 +
751 751  )))
752 -|(% style="width:154px" %)AT +PROBE =0000|(% style="width:204px" %)Initial state, no settings.|(% style="width:85px" %)(((
746 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
753 753  OK
748 +
749 +
754 754  )))
755 755  
756 756  (% style="color:blue" %)**Downlink Command: 0x08**
... ... @@ -757,43 +757,9 @@
757 757  
758 758  Format: Command Code (0x08) followed by 2 bytes.
759 759  
760 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
761 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
756 +* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
757 +* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
762 762  
763 -
764 -
765 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
766 -
767 -
768 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
769 -
770 -(% style="color:blue" %)**AT Command: AT** **+STDC**
771 -
772 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
773 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
774 -|(% style="width:156px" %)AT+STDC=?|(% style="width:137px" %)(((
775 -Get the mode of multiple acquisitions and one uplink
776 -)))|(((
777 -1,10,18
778 -OK
779 -)))
780 -|(% style="width:156px" %)AT+STDC=1,10,18|(% style="width:137px" %)Set the mode of multiple acquisitions and one uplink|(((
781 -OK
782 -(% style="color:#037691" %)**aa:**(%%)
783 -**0:** means disable this function and use TDC to send packets.
784 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
785 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
786 -(% style="color:#037691" %)**cc: **(%%)the number of collection times, the value is 1~~120
787 -)))
788 -
789 -(% style="color:blue" %)**Downlink Command: 0xAE**
790 -
791 -Format: Command Code (0x08) followed by 5 bytes.
792 -
793 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
794 -
795 -
796 -
797 797  = 4. Battery & how to replace =
798 798  
799 799  == 4.1 Battery Type ==
... ... @@ -801,6 +801,7 @@
801 801  
802 802  PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
803 803  
766 +
804 804  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
805 805  
806 806  [[image:1675146710956-626.png]]
... ... @@ -824,10 +824,15 @@
824 824  
825 825  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
826 826  
790 +
827 827  Instruction to use as below:
828 828  
829 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
830 830  
794 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
795 +
796 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
797 +
798 +
831 831  (% style="color:blue" %)**Step 2:**(%%) Open it and choose
832 832  
833 833  * Product Model
... ... @@ -921,8 +921,6 @@
921 921  * Package Size / pcs : cm
922 922  * Weight / pcs : g
923 923  
924 -
925 -
926 926  = 10. Support =
927 927  
928 928  
image-20230201090514-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
image-20230222174559-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -19.4 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0