Last modified by Xiaoling on 2025/07/10 16:21

From version 46.1
edited by Bei Jinggeng
on 2023/02/22 17:45
Change comment: Uploaded new attachment "image-20230222174559-1.png", version {1}
To version 110.1
edited by Mengting Qiu
on 2025/01/16 18:00
Change comment: Uploaded new attachment "image-20250116180030-2.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -PS-LB -- LoRaWAN Air Water Pressure Sensor User Manual
1 +PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Bei
1 +XWiki.ting
Content
... ... @@ -1,9 +1,17 @@
1 -[[image:image-20230131115217-1.png]]
1 +
2 2  
3 3  
4 +(% style="text-align:center" %)
5 +[[image:image-20240109154731-4.png||height="671" width="945"]]
4 4  
5 -**Table of Contents:**
6 6  
8 +
9 +
10 +
11 +
12 +
13 +**Table of Contents :**
14 +
7 7  {{toc/}}
8 8  
9 9  
... ... @@ -17,27 +17,27 @@
17 17  
18 18  
19 19  (((
20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
28 +The Dragino PS-LB/LS series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB/LS can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 21  )))
22 22  
23 23  (((
24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
32 +The PS-LB/LS series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 25  )))
26 26  
27 27  (((
28 -The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 +The LoRa wireless technology used in PS-LB/LS allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 29  )))
30 30  
31 31  (((
32 -PS-LB supports BLE configure and wireless OTA update which make user easy to use.
40 +PS-LB/LS supports BLE configure and wireless OTA update which make user easy to use.
33 33  )))
34 34  
35 35  (((
36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
44 +PS-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + Li-ion battery **(%%), it is designed for long term use up to 5 years.
37 37  )))
38 38  
39 39  (((
40 -Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
48 +Each PS-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 41  )))
42 42  
43 43  [[image:1675071321348-194.png]]
... ... @@ -57,10 +57,10 @@
57 57  * Support wireless OTA update firmware
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 -* 8500mAh Battery for long term use
68 +* Controllable 3.3v,5v and 12v output to power external sensor
69 +* 8500mAh Li/SOCl2 Battery (PS-LB)
70 +* Solar panel + 3000mAh Li-ion battery (PS-LS)
61 61  
62 -
63 -
64 64  == 1.3 Specification ==
65 65  
66 66  
... ... @@ -72,12 +72,12 @@
72 72  
73 73  (% style="color:#037691" %)**Common DC Characteristics:**
74 74  
75 -* Supply Voltage: 2.5v ~~ 3.6v
83 +* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
76 76  * Operating Temperature: -40 ~~ 85°C
77 77  
78 78  (% style="color:#037691" %)**LoRa Spec:**
79 79  
80 -* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
88 +* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz,Band 2 (LF): 410 ~~ 528 Mhz
81 81  * Max +22 dBm constant RF output vs.
82 82  * RX sensitivity: down to -139 dBm.
83 83  * Excellent blocking immunity
... ... @@ -107,8 +107,6 @@
107 107  * Sleep Mode: 5uA @ 3.3v
108 108  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
109 109  
110 -
111 -
112 112  == 1.4 Probe Types ==
113 113  
114 114  === 1.4.1 Thread Installation Type ===
... ... @@ -127,35 +127,36 @@
127 127  * Operating temperature: -20℃~~60℃
128 128  * Connector Type: Various Types, see order info
129 129  
130 -
131 -
132 132  === 1.4.2 Immersion Type ===
133 133  
134 134  
135 -[[image:1675071521308-426.png]]
139 +[[image:image-20240109160445-5.png||height="221" width="166"]]
136 136  
137 137  * Immersion Type, Probe IP Level: IP68
138 138  * Measuring Range: Measure range can be customized, up to 100m.
139 139  * Accuracy: 0.2% F.S
140 140  * Long-Term Stability: ±0.2% F.S / Year
141 -* Overload 200% F.S
142 -* Zero Temperature Drift: ±2% F.S)
143 -* FS Temperature Drift: ±2% F.S
144 -* Storage temperature: -30℃~~80℃
145 -* Operating temperature: -40℃~~85℃
145 +* Storage temperature: -30°C~~80°C
146 +* Operating temperature: 0°C~~50°C
146 146  * Material: 316 stainless steels
147 147  
149 +=== 1.4.3 Wireless Differential Air Pressure Sensor ===
148 148  
151 +[[image:image-20240511174954-1.png]]
149 149  
150 -== 1.5 Probe Dimension ==
153 +* Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
154 +* Accuracy: 0.5% F.S, resolution is 0.05%.
155 +* Overload: 300% F.S
156 +* Zero temperature drift: ±0.03%F.S/°C
157 +* Operating temperature: -20°C~~60°C
158 +* Storage temperature:  -20°C~~60°C
159 +* Compensation temperature: 0~~50°C
151 151  
161 +== 1.5 Application and Installation ==
152 152  
163 +=== 1.5.1 Thread Installation Type ===
153 153  
154 -== 1.6 Application and Installation ==
155 155  
156 -=== 1.6.1 Thread Installation Type ===
157 -
158 -
159 159  (% style="color:blue" %)**Application:**
160 160  
161 161  * Hydraulic Pressure
... ... @@ -171,7 +171,7 @@
171 171  [[image:1675071670469-145.png]]
172 172  
173 173  
174 -=== 1.6.2 Immersion Type ===
181 +=== 1.5.2 Immersion Type ===
175 175  
176 176  
177 177  (% style="color:blue" %)**Application:**
... ... @@ -181,9 +181,13 @@
181 181  [[image:1675071725288-579.png]]
182 182  
183 183  
184 -The Immersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.
191 +Below is the wiring to for connect the probe to the device.
185 185  
193 +The Immersion Type Sensor has different variant which defined by Ixx. For example, this means two points:
186 186  
195 +* Cable Length: 10 Meters
196 +* Water Detect Range: 0 ~~ 10 Meters.
197 +
187 187  [[image:1675071736646-450.png]]
188 188  
189 189  
... ... @@ -190,45 +190,67 @@
190 190  [[image:1675071776102-240.png]]
191 191  
192 192  
193 -== 1.7 Sleep mode and working mode ==
194 194  
205 +=== 1.5.3 Wireless Differential Air Pressure Sensor ===
195 195  
207 +
208 +(% style="color:blue" %)**Application:**
209 +
210 +Indoor Air Control & Filter clogging Detect.
211 +
212 +[[image:image-20240513100129-6.png]]
213 +
214 +[[image:image-20240513100135-7.png]]
215 +
216 +
217 +Below is the wiring to for connect the probe to the device.
218 +
219 +[[image:image-20240513093957-1.png]]
220 +
221 +
222 +Size of wind pressure transmitter:
223 +
224 +[[image:image-20240513094047-2.png]]
225 +
226 +Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.
227 +
228 +
229 +== 1.6 Sleep mode and working mode ==
230 +
231 +
196 196  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
197 197  
198 198  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
199 199  
200 200  
201 -== 1.8 Button & LEDs ==
237 +== 1.7 Button & LEDs ==
202 202  
203 203  
204 -[[image:1675071855856-879.png]]
240 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]](% style="display:none" %)
205 205  
206 -
207 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
208 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
209 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
242 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
243 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
244 +|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
210 210  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
211 211  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
212 212  )))
213 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
214 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
215 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
248 +|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
249 +(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
250 +(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
216 216  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
217 217  )))
218 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
253 +|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
219 219  
255 +== 1.8 Pin Mapping ==
220 220  
221 221  
222 -== 1.9 Pin Mapping ==
223 -
224 -
225 225  [[image:1675072568006-274.png]]
226 226  
227 227  
228 -== 1.10 BLE connection ==
261 +== 1.9 BLE connection ==
229 229  
230 230  
231 -PS-LB support BLE remote configure.
264 +PS-LB/LS support BLE remote configure.
232 232  
233 233  
234 234  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -240,24 +240,26 @@
240 240  If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
241 241  
242 242  
243 -== 1.11 Mechanical ==
276 +== 1.10 Mechanical ==
244 244  
278 +=== 1.10.1 for LB version ===
245 245  
246 -[[image:1675143884058-338.png]]
247 247  
281 +[[image:image-20240109160800-6.png]]
248 248  
249 -[[image:1675143899218-599.png]]
250 250  
284 +=== 1.10.2 for LS version ===
251 251  
252 -[[image:1675143909447-639.png]]
253 253  
287 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/WebHome/image-20231231203439-3.png?width=886&height=385&rev=1.1||alt="image-20231231203439-3.png"]]
254 254  
255 -= 2. Configure PS-LB to connect to LoRaWAN network =
256 256  
290 += 2. Configure PS-LB/LS to connect to LoRaWAN network =
291 +
257 257  == 2.1 How it works ==
258 258  
259 259  
260 -The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
295 +The PS-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
261 261  
262 262  
263 263  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -265,7 +265,6 @@
265 265  
266 266  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
267 267  
268 -
269 269  [[image:1675144005218-297.png]]
270 270  
271 271  
... ... @@ -272,14 +272,13 @@
272 272  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
273 273  
274 274  
275 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
309 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB/LS.
276 276  
277 -Each PS-LB is shipped with a sticker with the default device EUI as below:
311 +Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
278 278  
279 -[[image:image-20230131134744-2.jpeg]]
313 +[[image:image-20230426085320-1.png||height="234" width="504"]]
280 280  
281 281  
282 -
283 283  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
284 284  
285 285  
... ... @@ -303,10 +303,10 @@
303 303  
304 304  [[image:1675144157838-392.png]]
305 305  
306 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
339 +(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB/LS
307 307  
308 308  
309 -Press the button for 5 seconds to activate the PS-LB.
342 +Press the button for 5 seconds to activate the PS-LB/LS.
310 310  
311 311  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
312 312  
... ... @@ -315,34 +315,24 @@
315 315  
316 316  == 2.3 ​Uplink Payload ==
317 317  
318 -
319 -Uplink payloads have two types:
320 -
321 -* Distance Value: Use FPORT=2
322 -* Other control commands: Use other FPORT fields.
323 -
324 -The application server should parse the correct value based on FPORT settings.
325 -
326 -
327 327  === 2.3.1 Device Status, FPORT~=5 ===
328 328  
329 329  
330 -Include device configure status. Once PS-LB Joined the network, it will uplink this message to the server.
354 +Include device configure status. Once PS-LB/LS Joined the network, it will uplink this message to the server.
331 331  
332 -Users can also use the downlink command(0x26 01) to ask PS-LB to resend this uplink.
356 +Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
333 333  
358 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
359 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
360 +|(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
361 +|(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
334 334  
335 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
336 -|(% colspan="6" %)**Device Status (FPORT=5)**
337 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
338 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
339 -
340 340  Example parse in TTNv3
341 341  
342 342  [[image:1675144504430-490.png]]
343 343  
344 344  
345 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
368 +(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB/LS, this value is 0x16
346 346  
347 347  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
348 348  
... ... @@ -401,59 +401,46 @@
401 401  Uplink payload includes in total 9 bytes.
402 402  
403 403  
404 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
405 -|(% style="width:97px" %)(((
427 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
428 +|(% style="background-color:#4f81bd; color:white; width:97px" %)(((
406 406  **Size(bytes)**
407 -)))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
408 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
430 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
431 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
409 409  
410 410  [[image:1675144608950-310.png]]
411 411  
412 412  
413 -=== 2.3.3 Sensor value, FPORT~=7 ===
436 +=== 2.3.3 Battery Info ===
414 414  
415 415  
416 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
417 -|(% style="width:94px" %)(((
418 -**Size(bytes)**
419 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n
420 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
421 -Voltage value, each 2 bytes is a set of voltage values.
422 -)))
439 +Check the battery voltage for PS-LB/LS.
423 423  
424 -[[image:image-20230220171300-1.png||height="207" width="863"]]
425 -
426 -
427 -=== 2.3.4 Battery Info ===
428 -
429 -
430 -Check the battery voltage for PS-LB.
431 -
432 432  Ex1: 0x0B45 = 2885mV
433 433  
434 434  Ex2: 0x0B49 = 2889mV
435 435  
436 436  
437 -=== 2.3.5 Probe Model ===
446 +=== 2.3.4 Probe Model ===
438 438  
439 439  
440 -PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
449 +PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
441 441  
442 442  
443 -For example.
452 +**For example.**
444 444  
445 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
446 -|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
447 -|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
448 -|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
454 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
455 +|(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
456 +|(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
457 +|(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
458 +|(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
449 449  
450 -The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
460 +The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
451 451  
452 452  
453 -=== 2.3.6 0~~20mA value (IDC_IN) ===
463 +=== 2.3.5 0~~20mA value (IDC_IN) ===
454 454  
455 455  
456 -The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
466 +The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
457 457  
458 458  (% style="color:#037691" %)**Example**:
459 459  
... ... @@ -460,9 +460,14 @@
460 460  27AE(H) = 10158 (D)/1000 = 10.158mA.
461 461  
462 462  
463 -=== 2.3.7 0~~30V value ( pin VDC_IN) ===
473 +Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
464 464  
475 +[[image:image-20230225154759-1.png||height="408" width="741"]]
465 465  
477 +
478 +=== 2.3.6 0~~30V value (pin VDC_IN) ===
479 +
480 +
466 466  Measure the voltage value. The range is 0 to 30V.
467 467  
468 468  (% style="color:#037691" %)**Example**:
... ... @@ -470,7 +470,7 @@
470 470  138E(H) = 5006(D)/1000= 5.006V
471 471  
472 472  
473 -=== 2.3.8 IN1&IN2&INT pin ===
488 +=== 2.3.7 IN1&IN2&INT pin ===
474 474  
475 475  
476 476  IN1 and IN2 are used as digital input pins.
... ... @@ -482,7 +482,7 @@
482 482  09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
483 483  
484 484  
485 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
500 +This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
486 486  
487 487  (% style="color:#037691" %)**Example:**
488 488  
... ... @@ -493,22 +493,39 @@
493 493  0x01: Interrupt Uplink Packet.
494 494  
495 495  
511 +=== 2.3.8 Sensor value, FPORT~=7 ===
512 +
513 +
514 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
515 +|(% style="background-color:#4f81bd; color:white; width:65px" %)(((
516 +**Size(bytes)**
517 +)))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
518 +|(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
519 +Voltage value, each 2 bytes is a set of voltage values.
520 +)))
521 +
522 +[[image:image-20230220171300-1.png||height="207" width="863"]]
523 +
524 +Multiple sets of data collected are displayed in this form:
525 +
526 +[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
527 +
528 +
496 496  === 2.3.9 ​Decode payload in The Things Network ===
497 497  
498 498  
499 499  While using TTN network, you can add the payload format to decode the payload.
500 500  
501 -
502 502  [[image:1675144839454-913.png]]
503 503  
504 504  
505 -PS-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
537 +PS-LB/LS TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
506 506  
507 507  
508 508  == 2.4 Uplink Interval ==
509 509  
510 510  
511 -The PS-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
543 +The PS-LB/LS by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
512 512  
513 513  
514 514  == 2.5 Show Data in DataCake IoT Server ==
... ... @@ -516,12 +516,10 @@
516 516  
517 517  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
518 518  
519 -
520 520  (% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
521 521  
522 522  (% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
523 523  
524 -
525 525  [[image:1675144951092-237.png]]
526 526  
527 527  
... ... @@ -530,7 +530,7 @@
530 530  
531 531  (% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
532 532  
533 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
563 +(% style="color:blue" %)**Step 4:** (%%)Create PS-LB/LS product.
534 534  
535 535  [[image:1675145004465-869.png]]
536 536  
... ... @@ -538,8 +538,6 @@
538 538  [[image:1675145018212-853.png]]
539 539  
540 540  
541 -
542 -
543 543  [[image:1675145029119-717.png]]
544 544  
545 545  
... ... @@ -553,68 +553,367 @@
553 553  
554 554  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
555 555  
556 -
557 557  [[image:1675145081239-376.png]]
558 558  
559 559  
560 -== 2.6 Frequency Plans ==
587 +== 2.6 Datalog Feature (Since V1.1) ==
561 561  
562 562  
563 -The PS-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
590 +When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot.
564 564  
565 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
566 566  
593 +=== 2.6.1 Unix TimeStamp ===
567 567  
568 -== 2.7 ​Firmware Change Log ==
569 569  
596 +PS-LB uses Unix TimeStamp format based on
570 570  
598 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861618065-927.png?width=705&height=109&rev=1.1||alt="1652861618065-927.png" height="109" width="705"]]
599 +
600 +Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
601 +
602 +Below is the converter example:
603 +
604 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861637105-371.png?width=732&height=428&rev=1.1||alt="1652861637105-371.png"]]
605 +
606 +
607 +=== 2.6.2 Set Device Time ===
608 +
609 +
610 +There are two ways to set the device's time:
611 +
612 +
613 +(% style="color:blue" %)**1. Through LoRaWAN MAC Command (Default settings)**
614 +
615 +Users need to set SYNCMOD=1 to enable sync time via the MAC command.
616 +
617 +Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
618 +
619 +(% style="color:red" %)**Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.**
620 +
621 +
622 +(% style="color:blue" %)** 2. Manually Set Time**
623 +
624 +Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
625 +
626 +
627 +=== 2.6.3 Poll sensor value ===
628 +
629 +
630 +Users can poll sensor values based on timestamps. Below is the downlink command.
631 +
632 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
633 +|=(% colspan="4" style="width: 154px;background-color:#4F81BD;color:white" %)**Downlink Command to poll Open/Close status (0x31)**
634 +|(% style="background-color:#f2f2f2; width:70px" %)**1byte**|(% style="background-color:#f2f2f2; width:140px" %)**4bytes**|(% style="background-color:#f2f2f2; width:140px" %)(((
635 +(((
636 +**4bytes**
637 +)))
638 +
639 +
640 +
641 +)))|(% style="background-color:#f2f2f2; width:150px" %)**1byte**
642 +|(% style="background-color:#f2f2f2; width:70px" %)31|(% style="background-color:#f2f2f2; width:140px" %)Timestamp start|(% style="background-color:#f2f2f2; width:140px" %)Timestamp end|(% style="background-color:#f2f2f2; width:150px" %)Uplink Interval
643 +
644 +Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
645 +
646 +For example, downlink command[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
647 +
648 +Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
649 +
650 +Uplink Internal =5s,means PS-LB will send one packet every 5s. range 5~~255s.
651 +
652 +
653 +=== 2.6.4 Decoder in TTN V3 ===
654 +
655 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
656 +
657 +Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
658 +
659 +
660 +== 2.7 Frequency Plans ==
661 +
662 +
663 +The PS-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
664 +
665 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/a>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
666 +
667 +
668 +== 2.8 Report on Change Feature (Since firmware V1.2) ==
669 +
670 +=== 2.8.1 Uplink payload(Enable ROC) ===
671 +
672 +
673 +Used to Monitor the IDC and VDC increments, and send ROC uplink when the IDC or VDC changes exceed.
674 +
675 +With ROC enabled, the payload is as follows:
676 +
677 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
678 +|(% style="background-color:#4f81bd; color:white; width:97px" %)(((
679 +**Size(bytes)**
680 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
681 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
682 +[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag
683 +)))
684 +
685 +(% style="color:blue" %)**IN1 &IN2 , Interrupt  flag , ROC_flag:**
686 +
687 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
688 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bit)**|(% style="background-color:#4f81bd; color:white; width:60px" %)**bit7**|(% style="background-color:#4f81bd; color:white; width:62px" %)**bit6**|(% style="background-color:#4f81bd; color:white; width:62px" %)**bit5**|(% style="background-color:#4f81bd; color:white; width:65px" %)**bit4**|(% style="background-color:#4f81bd; color:white; width:56px" %)**bit3**|(% style="background-color:#4f81bd; color:white; width:55px" %)**bit2**|(% style="background-color:#4f81bd; color:white; width:55px" %)**bit1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**bit0**
689 +|(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status
690 +
691 +* (% style="color:#037691" %)**IDC_Roc_flagL**
692 +
693 +80 (H): (0x80&0x80)=80(H)=**1**000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
694 +
695 +60 (H): (0x60&0x80)=0  bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
696 +
697 +
698 +* (% style="color:#037691" %)**IDC_Roc_flagH**
699 +
700 +60 (H): (0x60&0x40)=60(H)=0**1**000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
701 +
702 +80 (H): (0x80&0x40)=0  bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
703 +
704 +
705 +* (% style="color:#037691" %)**VDC_Roc_flagL**
706 +
707 +20 (H): (0x20&0x20)=20(H)=00**1**0 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
708 +
709 +90 (H): (0x90&0x20)=0  bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
710 +
711 +
712 +* (% style="color:#037691" %)**VDC_Roc_flagH**
713 +
714 +90 (H): (0x90&0x10)=10(H)=000**1** 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
715 +
716 +20 (H): (0x20&0x10)=0  bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
717 +
718 +
719 +* (% style="color:#037691" %)**IN1_pin_level & IN2_pin_level**
720 +
721 +IN1 and IN2 are used as digital input pins.
722 +
723 +80 (H): (0x80&0x08)=0  IN1 pin is low level.
724 +
725 +80 (H): (0x09&0x04)=0    IN2 pin is low level.
726 +
727 +
728 +* (% style="color:#037691" %)**Exti_pin_level &Exti_status**
729 +
730 +This data field shows whether the packet is generated by an interrupt pin.
731 +
732 +Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the **GPIO_EXTI** pin.
733 +
734 +**Exti_pin_level:**  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
735 +
736 +**Exti_status: **80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
737 +
738 +
739 +=== 2.8.2 Set the Report on Change ===
740 +
741 +
742 +Feature: Get or Set the Report on Change.
743 +
744 +
745 +==== 2.8.2.1 Wave alarm mode ====
746 +
747 +Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed.
748 +
749 +* (% style="color:#037691" %)**Change value: **(%%)The amount by which the next detection value increases/decreases relative to the previous detection value.
750 +* (% style="color:#037691" %)**Comparison value:**(%%) A parameter to compare with the latest ROC test.
751 +
752 +(% style="color:blue" %)**AT Command: AT+ROC**
753 +
754 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
755 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)**Parameters**|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation**
756 +|(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
757 +0,0,0,0(default)
758 +OK
759 +)))
760 +|(% colspan="1" rowspan="4" style="width:143px" %)(((
761 +
762 +
763 +
764 +
765 +AT+ROC=a,b,c,d
766 +)))|(% style="width:154px" %)(((
767 +
768 +
769 +
770 +
771 +
772 +
773 +**a**: Enable or disable the ROC
774 +)))|(% style="width:197px" %)(((
775 +**0:** off
776 +**1:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
777 +
778 +**2: **Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
779 +)))
780 +|(% style="width:154px" %)**b**: Set the detection interval|(% style="width:197px" %)(((
781 +Range:  0~~65535s
782 +)))
783 +|(% style="width:154px" %)**c**: Setting the IDC change value|(% style="width:197px" %)Unit: uA
784 +|(% style="width:154px" %)**d**: Setting the VDC change value|(% style="width:197px" %)Unit: mV
785 +
786 +**Example:**
787 +
788 +* AT+ROC=0,0,0,0  ~/~/The ROC function is not used.
789 +* AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed.
790 +* AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage.
791 +* AT+ROC=2,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed.
792 +
793 +(% style="color:blue" %)**Downlink Command: 0x09 aa bb cc dd**
794 +
795 +Format: Function code (0x09) followed by 4 bytes.
796 +
797 +(% style="color:blue" %)**aa: **(% style="color:#037691" %)**1 byte;**(%%) Set the wave alarm mode.
798 +
799 +(% style="color:blue" %)**bb: **(% style="color:#037691" %)**2 bytes;**(%%) Set the detection interval. (second)
800 +
801 +(% style="color:blue" %)**cc: **(% style="color:#037691" %)**2 bytes;**(%%) Setting the IDC change threshold. (uA)
802 +
803 +(% style="color:blue" %)**dd: **(% style="color:#037691" %)**2 bytes;**(%%) Setting the VDC change threshold. (mV)
804 +
805 +**Example:**
806 +
807 +* Downlink Payload: **09 01 00 3C 0B B8 01 F4 ** ~/~/Equal to AT+ROC=1,60,3000, 500
808 +* Downlink Payload: **09 01 00 3C 0B B8 00 00 ** ~/~/Equal to AT+ROC=1,60,3000,0
809 +* Downlink Payload: **09 02 00 3C 0B B8 00 00 ** ~/~/Equal to AT+ROC=2,60,3000,0
810 +
811 +(% style="color:blue" %)**Screenshot of parsing example in TTN:**
812 +
813 +* AT+ROC=1,60,3000, 500.
814 +
815 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB-NA--LoRaWAN_Analog_Sensor_User_Manual/WebHome/image-20241019170902-1.png?width=1454&height=450&rev=1.1||alt="image-20241019170902-1.png"]]
816 +
817 +
818 +==== 2.8.2.2 Over-threshold alarm mode ====
819 +
820 +Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded.
821 +
822 +(% style="color:blue" %)**AT Command: AT+ROC=3,a,b,c,d,e**
823 +
824 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
825 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)**Parameters**|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation**
826 +|(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
827 +0,0,0,0(default)
828 +OK
829 +)))
830 +|(% colspan="1" rowspan="5" style="width:143px" %)(((
831 +
832 +
833 +
834 +
835 +AT+ROC=(% style="color:blue" %)**3**(%%),a,b,c,d,e
836 +)))|(% style="width:160px" %)(((
837 +**a: **Set the detection interval
838 +)))|(% style="width:185px" %)(((
839 +Range:  0~~65535s
840 +)))
841 +|(% style="width:160px" %)**b**: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
842 +**0:** Less than the set IDC threshold, Alarm
843 +
844 +**1:** Greater than the set IDC threshold, Alarm
845 +)))
846 +|(% style="width:160px" %)(((
847 +**c**:  IDC alarm threshold
848 +)))|(% style="width:185px" %)(((
849 +Unit: uA
850 +)))
851 +|(% style="width:160px" %)**d**: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
852 +**0:** Less than the set VDC threshold, Alarm
853 +
854 +**1:** Greater than the set VDC threshold, Alarm
855 +)))
856 +|(% style="width:160px" %)**e:** VDC alarm threshold|(% style="width:185px" %)Unit: mV
857 +
858 +**Example:**
859 +
860 +* AT+ROC=3,60,0,3000,0,5000  ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
861 +* AT+ROC=3,180,1,3000,1,5000  ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
862 +* AT+ROC=3,300,0,3000,1,5000  ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
863 +
864 +(% style="color:blue" %)**Downlink Command: 0x09 03 aa bb cc dd ee**
865 +
866 +Format: Function code (0x09) followed by 03 and the remaining 5 bytes.
867 +
868 +(% style="color:blue" %)**aa: **(% style="color:#037691" %)**2 bytes;**(%%) Set the detection interval.(second)
869 +
870 +(% style="color:blue" %)**bb: **(% style="color:#037691" %)**1 byte; **(%%)Set the IDC alarm trigger condition.
871 +
872 +(% style="color:blue" %)**cc: **(% style="color:#037691" %)**2 bytes;**(%%) IDC alarm threshold.(uA)
873 +
874 +
875 +(% style="color:blue" %)**dd: **(% style="color:#037691" %)**1 byte;**(%%) Set the VDC alarm trigger condition.
876 +
877 +(% style="color:blue" %)**ee: **(% style="color:#037691" %)**2 bytes; **(%%)VDC alarm threshold.(mV)
878 +
879 +**Example:**
880 +
881 +* Downlink Payload: **09 03 00 3C 00 0B B8 00 13 38** ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
882 +* Downlink Payload: **09 03 00 b4 01 0B B8 01 13 38**  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
883 +* Downlink Payload: **09 03 01 2C 00 0B B8 01 13 38**  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
884 +
885 +(% style="color:blue" %)**Screenshot of parsing example in TTN:**
886 +
887 +* AT+ROC=3,60,0,3000,0,5000
888 +
889 +
890 +
891 +
892 +== 2.9 ​Firmware Change Log ==
893 +
894 +
571 571  **Firmware download link:**
572 572  
573 573  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
574 574  
575 575  
576 -= 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
900 += 3. Configure PS-LB/LS =
577 577  
902 +== 3.1 Configure Methods ==
578 578  
579 -Use can configure PS-LB via AT Command or LoRaWAN Downlink.
580 580  
581 -* AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
582 -* LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
905 +PS-LB/LS supports below configure method:
583 583  
584 -There are two kinds of commands to configure PS-LB, they are:
907 +* AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
908 +* AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
909 +* LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
585 585  
586 -* (% style="color:#037691" %)**General Commands**
911 +== 3.2 General Commands ==
587 587  
913 +
588 588  These commands are to configure:
589 589  
590 590  * General system settings like: uplink interval.
591 591  * LoRaWAN protocol & radio related command.
592 592  
593 -They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
919 +They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
594 594  
595 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
921 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
596 596  
597 597  
598 -* (% style="color:#037691" %)**Commands special design for PS-LB**
924 +== 3.3 Commands special design for PS-LB/LS ==
599 599  
600 -These commands only valid for PS-LB, as below:
601 601  
927 +These commands only valid for PS-LB/LS, as below:
602 602  
603 -== 3.1 Set Transmit Interval Time ==
604 604  
930 +=== 3.3.1 Set Transmit Interval Time ===
605 605  
932 +
606 606  Feature: Change LoRaWAN End Node Transmit Interval.
607 607  
608 608  (% style="color:blue" %)**AT Command: AT+TDC**
609 609  
610 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
611 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
612 -|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
937 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
938 +|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Response**
939 +|(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
613 613  30000
614 614  OK
615 615  the interval is 30000ms = 30s
616 616  )))
617 -|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
944 +|(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
618 618  OK
619 619  Set transmit interval to 60000ms = 60 seconds
620 620  )))
... ... @@ -628,29 +628,27 @@
628 628  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
629 629  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
630 630  
958 +=== 3.3.2 Set Interrupt Mode ===
631 631  
632 632  
633 -== 3.2 Set Interrupt Mode ==
634 -
635 -
636 636  Feature, Set Interrupt mode for GPIO_EXIT.
637 637  
638 638  (% style="color:blue" %)**AT Command: AT+INTMOD**
639 639  
640 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
641 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
642 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
965 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
966 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Response**
967 +|(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
643 643  0
644 644  OK
645 -the mode is 0 = No interruption
970 +the mode is 0 =Disable Interrupt
646 646  )))
647 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
972 +|(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
648 648  Set Transmit Interval
649 -~1. (Disable Interrupt),
650 -2. (Trigger by rising and falling edge)
651 -3. (Trigger by falling edge)
652 -4. (Trigger by rising edge)
653 -)))|(% style="width:157px" %)OK
974 +0. (Disable Interrupt),
975 +~1. (Trigger by rising and falling edge)
976 +2. (Trigger by falling edge)
977 +3. (Trigger by rising edge)
978 +)))|(% style="background-color:#f2f2f2; width:157px" %)OK
654 654  
655 655  (% style="color:blue" %)**Downlink Command: 0x06**
656 656  
... ... @@ -661,61 +661,59 @@
661 661  * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
662 662  * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
663 663  
989 +=== 3.3.3 Set the output time ===
664 664  
665 665  
666 -== 3.3 Set the output time ==
667 -
668 -
669 669  Feature, Control the output 3V3 , 5V or 12V.
670 670  
671 671  (% style="color:blue" %)**AT Command: AT+3V3T**
672 672  
673 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
674 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
675 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
996 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
997 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 201px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
998 +|(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
676 676  0
677 677  OK
678 678  )))
679 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
1002 +|(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
680 680  OK
681 681  default setting
682 682  )))
683 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
1006 +|(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
684 684  OK
685 685  )))
686 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
1009 +|(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
687 687  OK
688 688  )))
689 689  
690 690  (% style="color:blue" %)**AT Command: AT+5VT**
691 691  
692 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
693 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
694 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
1015 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
1016 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1017 +|(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
695 695  0
696 696  OK
697 697  )))
698 -|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
1021 +|(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
699 699  OK
700 700  default setting
701 701  )))
702 -|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
1025 +|(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
703 703  OK
704 704  )))
705 -|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
1028 +|(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
706 706  OK
707 707  )))
708 708  
709 709  (% style="color:blue" %)**AT Command: AT+12VT**
710 710  
711 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
712 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
713 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
1034 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
1035 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 199px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1036 +|(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
714 714  0
715 715  OK
716 716  )))
717 -|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
718 -|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
1040 +|(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
1041 +|(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
719 719  OK
720 720  )))
721 721  
... ... @@ -732,180 +732,182 @@
732 732  * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
733 733  * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
734 734  
1058 +(% style="color:red" %)**Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.**
735 735  
1060 +(% style="color:red" %)**Therefore, the corresponding downlink command is increased by one byte to five bytes.**
736 736  
737 -== 3.4 Set the Probe Model ==
1062 +**Example: **
738 738  
1064 +* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 **01** 01 D4 C0  **~-~-->**  AT+3V3T=120000
1065 +* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 **02** 01 86 A0  **~-~-->**  AT+5VT=100000
1066 +* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 **03** 01 38 80  **~-~-->**  AT+12VT=80000
739 739  
740 -(% style="color:blue" %)**AT Command: AT** **+PROBE**
1068 +=== 3.3.4 Set the Probe Model ===
741 741  
742 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:448px" %)
743 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 204px;" %)**Function**|=(% style="width: 85px;" %)**Response**
744 -|(% style="width:154px" %)AT +PROBE =?|(% style="width:204px" %)Get or Set the probe model.|(% style="width:85px" %)(((
745 -0
746 -OK
747 -)))
748 -|(% style="width:154px" %)AT +PROBE =0003|(% style="width:204px" %)Set water depth sensor mode, 3m type.|(% style="width:85px" %)OK
749 -|(% style="width:154px" %)AT +PROBE =0101|(% style="width:204px" %)Set pressure transmitters mode, first type.|(% style="width:85px" %)(((
750 -OK
751 -)))
752 -|(% style="width:154px" %)AT +PROBE =0000|(% style="width:204px" %)Initial state, no settings.|(% style="width:85px" %)(((
753 -OK
754 -)))
755 755  
756 -(% style="color:blue" %)**Downlink Command: 0x08**
1071 +Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
757 757  
758 -Format: Command Code (0x08) followed by 2 bytes.
1073 +(% style="color:blue" %)**AT Command: AT** **+PROBE**
759 759  
760 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
761 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
1075 +AT+PROBE=aabb
762 762  
1077 +When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
763 763  
1079 +When aa=01, it is the pressure mode, which converts the current into a pressure value;
764 764  
765 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
1081 +bb represents which type of pressure sensor it is.
766 766  
1083 +(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
767 767  
768 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
1085 +When aa=02, it is the Differential Pressure Sensor , which converts the current into a pressure value;
769 769  
770 -(% style="color:blue" %)**AT Command: AT** **+STDC**
1087 +bb represents which type of pressure sensor it is.
771 771  
772 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
773 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
774 -|(% style="width:156px" %)AT+STDC=?|(% style="width:137px" %)(((
775 -Get the mode of multiple acquisitions and one uplink
776 -)))|(((
777 -1,10,18
1089 +(0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C)
1090 +
1091 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1092 +|(% style="background-color:#4f81bd; color:white; width:154px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:269px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1093 +|(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
778 778  OK
779 -)))
780 -|(% style="width:156px" %)AT+STDC=1,10,18|(% style="width:137px" %)Set the mode of multiple acquisitions and one uplink|(((
781 -OK
782 -(% style="color:#037691" %)**aa:**(%%)
783 -**0:** means disable this function and use TDC to send packets.
784 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
785 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
786 -(% style="color:#037691" %)**cc: **(%%)the number of collection times, the value is 1~~120
787 -)))
1095 +|(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
1096 +|(% style="background-color:#f2f2f2; width:154px" %)(((
1097 +AT+PROBE=000A
1098 +)))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
1099 +|(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
1100 +|(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
1101 +|(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
788 788  
789 -(% style="color:blue" %)**Downlink Command: 0xAE**
1103 +(% style="color:blue" %)**Downlink Command: 0x08**
790 790  
791 -Format: Command Code (0x08) followed by 5 bytes.
1105 +Format: Command Code (0x08) followed by 2 bytes.
792 792  
793 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
1107 +* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
1108 +* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
794 794  
1110 +=== 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
795 795  
796 796  
797 -= 4. Battery & how to replace =
1113 +Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time.
798 798  
799 -== 4.1 Battery Type ==
1115 +(% style="color:blue" %)**AT Command: AT** **+STDC**
800 800  
1117 +AT+STDC=aa,bb,bb
801 801  
802 -PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1119 +(% style="color:#037691" %)**aa:**(%%)
1120 +**0:** means disable this function and use TDC to send packets.
1121 +**1:** means that the function is enabled to send packets by collecting VDC data for multiple times.
1122 +**2:** means that the function is enabled to send packets by collecting IDC data for multiple times.
1123 +(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
1124 +(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
803 803  
804 -The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1126 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1127 +|(% style="background-color:#4f81bd; color:white; width:160px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:215px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1128 +|(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
1129 +OK
1130 +|(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1131 +Attention:Take effect after ATZ
805 805  
806 -[[image:1675146710956-626.png]]
1133 +OK
1134 +)))
1135 +|(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
1136 +Use the TDC interval to send packets.(default)
807 807  
1138 +
1139 +)))|(% style="background-color:#f2f2f2" %)(((
1140 +Attention:Take effect after ATZ
808 808  
809 -Minimum Working Voltage for the PS-LB:
1142 +OK
1143 +)))
810 810  
811 -PS-LB:  2.45v ~~ 3.6v
1145 +(% style="color:blue" %)**Downlink Command: 0xAE**
812 812  
1147 +Format: Command Code (0xAE) followed by 4 bytes.
813 813  
814 -== 4.2 Replace Battery ==
1149 +* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
815 815  
1151 += 4. Battery & Power Consumption =
816 816  
817 -Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
818 818  
819 -And make sure the positive and negative pins match.
1154 +PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
820 820  
1156 +[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
821 821  
822 -== 4.3 Power Consumption Analyze ==
823 823  
1159 += 5. OTA firmware update =
824 824  
825 -Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
826 826  
827 -Instruction to use as below:
1162 +Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
828 828  
829 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
830 830  
831 -(% style="color:blue" %)**Step 2:**(%%) Open it and choose
1165 += 6. FAQ =
832 832  
833 -* Product Model
834 -* Uplink Interval
835 -* Working Mode
1167 +== 6.1 How to use AT Command via UART to access device? ==
836 836  
837 -And the Life expectation in difference case will be shown on the right.
838 838  
839 -[[image:1675146895108-304.png]]
1170 +See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
840 840  
841 841  
842 -The battery related documents as below:
1173 +== 6.2 How to update firmware via UART port? ==
843 843  
844 -* [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
845 -* [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
846 -* [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
847 847  
848 -[[image:image-20230131145708-3.png]]
1176 +See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
849 849  
850 850  
851 -=== 4.3.1 ​Battery Note ===
1179 +== 6.3 How to change the LoRa Frequency Bands/Region? ==
852 852  
853 853  
854 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1182 +You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
1183 +When downloading the images, choose the required image file for download. ​
855 855  
856 856  
857 -=== 4.3.2 Replace the battery ===
1186 +== 6.4 How to measure the depth of other liquids other than water? ==
858 858  
859 859  
860 -You can change the battery in the PS-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
1189 +Test the current values at the depth of different liquids and convert them to a linear scale.
1190 +Replace its ratio with the ratio of water to current in the decoder.
861 861  
862 -The default battery pack of PS-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1192 +**Example:**
863 863  
1194 +Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
864 864  
865 -= 5. Remote Configure device =
1196 +**Calculate scale factor:**
1197 +Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
866 866  
867 -== 5.1 Connect via BLE ==
1199 +**Calculation formula:**
868 868  
1201 +Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
869 869  
870 -Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
1203 +**Actual calculations:**
871 871  
1205 +Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
872 872  
873 -== 5.2 AT Command Set ==
1207 +**Error:**
874 874  
1209 +0.009810726
875 875  
876 876  
877 -= 6. OTA firmware update =
1212 +[[image:image-20240329175044-1.png]]
878 878  
1214 += 7. Troubleshooting =
879 879  
880 -Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1216 +== 7.1 Water Depth Always shows 0 in payload ==
881 881  
882 882  
883 -= 7. FAQ =
1219 +If your device's IDC_intput_mA is normal, but your reading always shows 0, please refer to the following points:
884 884  
885 -== 7.1 How to use AT Command to access device? ==
1221 +~1. Please set it to mod1
886 886  
1223 +2. Please set the command [[AT+PROBE>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB%20--%20LoRaWAN%20Pressure%20Sensor/#H3.3.4SettheProbeModel]] according to the model of your sensor
887 887  
888 -See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1225 +3. Check the connection status of the sensor
889 889  
890 890  
891 -== 7.2 How to update firmware via UART port? ==
892 -
893 -
894 -See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
895 -
896 -
897 -== 7.3 How to change the LoRa Frequency Bands/Region? ==
898 -
899 -
900 -You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
901 -When downloading the images, choose the required image file for download. ​
902 -
903 -
904 904  = 8. Order Info =
905 905  
906 906  
907 -[[image:image-20230131153105-4.png]]
1231 +(% style="display:none" %)
908 908  
1233 +[[image:image-20241021093209-1.png]]
909 909  
910 910  = 9. ​Packing Info =
911 911  
... ... @@ -912,7 +912,7 @@
912 912  
913 913  (% style="color:#037691" %)**Package Includes**:
914 914  
915 -* PS-LB LoRaWAN Pressure Sensor
1240 +* PS-LB or PS-LS LoRaWAN Pressure Sensor
916 916  
917 917  (% style="color:#037691" %)**Dimension and weight**:
918 918  
... ... @@ -921,13 +921,9 @@
921 921  * Package Size / pcs : cm
922 922  * Weight / pcs : g
923 923  
924 -
925 -
926 926  = 10. Support =
927 927  
928 928  
929 929  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
930 930  
931 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
932 -
933 -
1254 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].
image-20230225154759-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +468.9 KB
Content
image-20230426085320-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +190.0 KB
Content
image-20231120110833-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +255.7 KB
Content
image-20231120110949-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +217.3 KB
Content
image-20231120111036-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +273.4 KB
Content
image-20231120111226-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +340.3 KB
Content
image-20240109154009-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +297.0 KB
Content
image-20240109154121-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +414.4 KB
Content
image-20240109154227-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +342.4 KB
Content
image-20240109154731-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +511.6 KB
Content
image-20240109160445-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.8 KB
Content
image-20240109160800-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +60.1 KB
Content
image-20240109172423-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +62.3 KB
Content
image-20240329175044-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +55.2 KB
Content
image-20240511174954-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +65.9 KB
Content
image-20240513093957-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +320.4 KB
Content
image-20240513094047-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +62.7 KB
Content
image-20240513094054-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +201.1 KB
Content
image-20240513095921-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +130.4 KB
Content
image-20240513095927-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +98.0 KB
Content
image-20240513100129-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +130.4 KB
Content
image-20240513100135-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +98.0 KB
Content
image-20240817150702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +38.4 KB
Content
image-20241021093209-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +52.1 KB
Content
image-20250116175954-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +68.6 KB
Content
image-20250116180030-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +69.2 KB
Content