<
From version < 45.6 >
edited by Xiaoling
on 2023/02/21 15:37
To version < 42.15 >
edited by Xiaoling
on 2023/01/31 16:10
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -16,33 +16,22 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 -(((
20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 -)))
19 +The Dragino PS-LB series sensors are **(% style="color:blue" %)LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
22 22  
23 -(((
24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 -)))
21 +The PS-LB series sensors include **(% style="color:blue" %)Thread Installation Type**(%%) and **(% style="color:blue" %)Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
26 26  
27 -(((
28 28  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 32  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 -)))
34 34  
35 -(((
36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 -)))
27 +PS-LB is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
38 38  
39 -(((
40 40  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 -)))
42 42  
43 43  [[image:1675071321348-194.png]]
44 44  
45 45  
34 +
46 46  == 1.2 ​Features ==
47 47  
48 48  
... ... @@ -60,22 +60,21 @@
60 60  * 8500mAh Battery for long term use
61 61  
62 62  
63 -
64 64  == 1.3 Specification ==
65 65  
66 66  
67 -(% style="color:#037691" %)**Micro Controller:**
55 +**(% style="color:#037691" %)Micro Controller:**
68 68  
69 69  * MCU: 48Mhz ARM
70 70  * Flash: 256KB
71 71  * RAM: 64KB
72 72  
73 -(% style="color:#037691" %)**Common DC Characteristics:**
61 +**(% style="color:#037691" %)Common DC Characteristics:**
74 74  
75 75  * Supply Voltage: 2.5v ~~ 3.6v
76 76  * Operating Temperature: -40 ~~ 85°C
77 77  
78 -(% style="color:#037691" %)**LoRa Spec:**
66 +**(% style="color:#037691" %)LoRa Spec:**
79 79  
80 80  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
81 81  * Max +22 dBm constant RF output vs.
... ... @@ -82,19 +82,19 @@
82 82  * RX sensitivity: down to -139 dBm.
83 83  * Excellent blocking immunity
84 84  
85 -(% style="color:#037691" %)**Current Input Measuring :**
73 +**(% style="color:#037691" %)Current Input Measuring :**
86 86  
87 87  * Range: 0 ~~ 20mA
88 88  * Accuracy: 0.02mA
89 89  * Resolution: 0.001mA
90 90  
91 -(% style="color:#037691" %)**Voltage Input Measuring:**
79 +**(% style="color:#037691" %)Voltage Input Measuring:**
92 92  
93 93  * Range: 0 ~~ 30v
94 94  * Accuracy: 0.02v
95 95  * Resolution: 0.001v
96 96  
97 -(% style="color:#037691" %)**Battery:**
85 +**(% style="color:#037691" %)Battery:**
98 98  
99 99  * Li/SOCI2 un-chargeable battery
100 100  * Capacity: 8500mAh
... ... @@ -102,13 +102,12 @@
102 102  * Max continuously current: 130mA
103 103  * Max boost current: 2A, 1 second
104 104  
105 -(% style="color:#037691" %)**Power Consumption**
93 +**(% style="color:#037691" %)Power Consumption**
106 106  
107 107  * Sleep Mode: 5uA @ 3.3v
108 108  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
109 109  
110 110  
111 -
112 112  == 1.4 Probe Types ==
113 113  
114 114  === 1.4.1 Thread Installation Type ===
... ... @@ -128,7 +128,6 @@
128 128  * Connector Type: Various Types, see order info
129 129  
130 130  
131 -
132 132  === 1.4.2 Immersion Type ===
133 133  
134 134  
... ... @@ -146,17 +146,17 @@
146 146  * Material: 316 stainless steels
147 147  
148 148  
149 -
150 150  == 1.5 Probe Dimension ==
151 151  
152 152  
153 153  
139 +
154 154  == 1.6 Application and Installation ==
155 155  
156 156  === 1.6.1 Thread Installation Type ===
157 157  
158 158  
159 -(% style="color:blue" %)**Application:**
145 +**(% style="color:blue" %)Application:**
160 160  
161 161  * Hydraulic Pressure
162 162  * Petrochemical Industry
... ... @@ -174,7 +174,7 @@
174 174  === 1.6.2 Immersion Type ===
175 175  
176 176  
177 -(% style="color:blue" %)**Application:**
163 +**(% style="color:blue" %)Application:**
178 178  
179 179  Liquid & Water Pressure / Level detect.
180 180  
... ... @@ -193,9 +193,9 @@
193 193  == 1.7 Sleep mode and working mode ==
194 194  
195 195  
196 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
182 +**(% style="color:blue" %)Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
197 197  
198 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
184 +**(% style="color:blue" %)Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
199 199  
200 200  
201 201  == 1.8 Button & LEDs ==
... ... @@ -205,17 +205,20 @@
205 205  
206 206  
207 207  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
208 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
209 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
210 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
194 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action**
195 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
196 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **(% style="color:blue" %)blue led** (%%)will blink once.
197 +
211 211  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
212 212  )))
213 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
214 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
215 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
200 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
201 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:#037691" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
202 +
203 +**(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
204 +
216 216  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
217 217  )))
218 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
207 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
219 219  
220 220  
221 221  
... ... @@ -243,6 +243,8 @@
243 243  == 1.11 Mechanical ==
244 244  
245 245  
235 +
236 +
246 246  [[image:1675143884058-338.png]]
247 247  
248 248  
... ... @@ -257,9 +257,10 @@
257 257  == 2.1 How it works ==
258 258  
259 259  
260 -The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
251 +The PS-LB is configured as **(% style="color:#037691" %)LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
261 261  
262 262  
254 +
263 263  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
264 264  
265 265  
... ... @@ -272,7 +272,7 @@
272 272  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
273 273  
274 274  
275 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
267 +**(% style="color:blue" %)Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
276 276  
277 277  Each PS-LB is shipped with a sticker with the default device EUI as below:
278 278  
... ... @@ -283,36 +283,37 @@
283 283  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
284 284  
285 285  
286 -(% style="color:blue" %)**Register the device**
278 +**(% style="color:blue" %)Register the device**
287 287  
288 288  [[image:1675144099263-405.png]]
289 289  
290 290  
291 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
283 +**(% style="color:blue" %)Add APP EUI and DEV EUI**
292 292  
293 293  [[image:1675144117571-832.png]]
294 294  
295 295  
296 -(% style="color:blue" %)**Add APP EUI in the application**
288 +**(% style="color:blue" %)Add APP EUI in the application**
297 297  
298 298  
299 299  [[image:1675144143021-195.png]]
300 300  
301 301  
302 -(% style="color:blue" %)**Add APP KEY**
294 +**(% style="color:blue" %)Add APP KEY**
303 303  
304 304  [[image:1675144157838-392.png]]
305 305  
306 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
298 +**(% style="color:blue" %)Step 2:**(%%) Activate on PS-LB
307 307  
308 308  
309 309  Press the button for 5 seconds to activate the PS-LB.
310 310  
311 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
303 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:blue" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. **(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
312 312  
313 313  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
314 314  
315 315  
308 +
316 316  == 2.3 ​Uplink Payload ==
317 317  
318 318  
... ... @@ -334,8 +334,8 @@
334 334  
335 335  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
336 336  |(% colspan="6" %)**Device Status (FPORT=5)**
337 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
338 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
330 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
331 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
339 339  
340 340  Example parse in TTNv3
341 341  
... ... @@ -342,11 +342,11 @@
342 342  [[image:1675144504430-490.png]]
343 343  
344 344  
345 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
338 +**(% style="color:#037691" %)Sensor Model**(%%): For PS-LB, this value is 0x16
346 346  
347 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
340 +**(% style="color:#037691" %)Firmware Version**(%%): 0x0100, Means: v1.0.0 version
348 348  
349 -(% style="color:#037691" %)**Frequency Band**:
342 +**(% style="color:#037691" %)Frequency Band**:
350 350  
351 351  *0x01: EU868
352 352  
... ... @@ -377,7 +377,7 @@
377 377  *0x0e: MA869
378 378  
379 379  
380 -(% style="color:#037691" %)**Sub-Band**:
373 +**(% style="color:#037691" %)Sub-Band**:
381 381  
382 382  AU915 and US915:value 0x00 ~~ 0x08
383 383  
... ... @@ -386,7 +386,7 @@
386 386  Other Bands: Always 0x00
387 387  
388 388  
389 -(% style="color:#037691" %)**Battery Info**:
382 +**(% style="color:#037691" %)Battery Info**:
390 390  
391 391  Check the battery voltage.
392 392  
... ... @@ -404,29 +404,16 @@
404 404  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
405 405  |(% style="width:97px" %)(((
406 406  **Size(bytes)**
407 -)))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
408 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
400 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1**
401 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
409 409  
410 410  [[image:1675144608950-310.png]]
411 411  
412 412  
413 -=== 2.3.3 Sensor value, FPORT~=7 ===
414 414  
407 +=== 2.3.3 Battery Info ===
415 415  
416 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
417 -|(% style="width:94px" %)(((
418 -**Size(bytes)**
419 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n
420 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
421 -Voltage value, each 2 bytes is a set of voltage values.
422 -)))
423 423  
424 -[[image:image-20230220171300-1.png||height="207" width="863"]]
425 -
426 -
427 -=== 2.3.4 Battery Info ===
428 -
429 -
430 430  Check the battery voltage for PS-LB.
431 431  
432 432  Ex1: 0x0B45 = 2885mV
... ... @@ -434,7 +434,7 @@
434 434  Ex2: 0x0B49 = 2889mV
435 435  
436 436  
437 -=== 2.3.5 Probe Model ===
417 +=== 2.3.4 Probe Model ===
438 438  
439 439  
440 440  PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
... ... @@ -450,50 +450,50 @@
450 450  The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
451 451  
452 452  
453 -=== 2.3.6 0~~20mA value (IDC_IN) ===
433 +=== 2.3.5 0~~20mA value (IDC_IN) ===
454 454  
455 455  
456 456  The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
457 457  
458 -(% style="color:#037691" %)**Example**:
438 +**(% style="color:#037691" %)Example**:
459 459  
460 460  27AE(H) = 10158 (D)/1000 = 10.158mA.
461 461  
462 462  
463 -=== 2.3.7 0~~30V value ( pin VDC_IN) ===
443 +=== 2.3.6 0~~30V value ( pin VDC_IN) ===
464 464  
465 465  
466 466  Measure the voltage value. The range is 0 to 30V.
467 467  
468 -(% style="color:#037691" %)**Example**:
448 +**(% style="color:#037691" %)Example**:
469 469  
470 470  138E(H) = 5006(D)/1000= 5.006V
471 471  
472 472  
473 -=== 2.3.8 IN1&IN2&INT pin ===
453 +=== 2.3.7 IN1&IN2&INT pin ===
474 474  
475 475  
476 476  IN1 and IN2 are used as digital input pins.
477 477  
478 -(% style="color:#037691" %)**Example**:
458 +**(% style="color:#037691" %)Example**:
479 479  
480 -09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
460 +09 (H) :(0x09&0x08)>>3=1    IN1 pin is high level.
481 481  
482 -09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
462 +09 (H) :(0x09&0x04)>>2=0    IN2 pin is low level.
483 483  
484 484  
485 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
465 +This data field shows if this packet is generated by **(% style="color:blue" %)Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
486 486  
487 -(% style="color:#037691" %)**Example:**
467 +**(% style="color:#037691" %)Example:**
488 488  
489 -09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
469 +09 (H) :(0x09&0x02)>>1=1    The level of the interrupt pin.
490 490  
491 -09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
471 +09 (H) :0x09&0x01=1              0x00: Normal uplink packet.
492 492  
493 493  0x01: Interrupt Uplink Packet.
494 494  
495 495  
496 -=== 2.3.9 ​Decode payload in The Things Network ===
476 +=== 2.3.8 ​Decode payload in The Things Network ===
497 497  
498 498  
499 499  While using TTN network, you can add the payload format to decode the payload.
... ... @@ -517,9 +517,9 @@
517 517  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
518 518  
519 519  
520 -(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
500 +**(% style="color:blue" %)Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
521 521  
522 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
502 +**(% style="color:blue" %)Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
523 523  
524 524  
525 525  [[image:1675144951092-237.png]]
... ... @@ -528,9 +528,9 @@
528 528  [[image:1675144960452-126.png]]
529 529  
530 530  
531 -(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
511 +**(% style="color:blue" %)Step 3:**(%%) Create an account or log in Datacake.
532 532  
533 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
513 +**(% style="color:#blue" %)Step 4:** (%%)Create PS-LB product.
534 534  
535 535  [[image:1675145004465-869.png]]
536 536  
... ... @@ -543,7 +543,7 @@
543 543  [[image:1675145029119-717.png]]
544 544  
545 545  
546 -(% style="color:blue" %)**Step 5: **(%%)add payload decode
526 +**(% style="color:blue" %)Step 5: **(%%)add payload decode
547 547  
548 548  [[image:1675145051360-659.png]]
549 549  
... ... @@ -551,6 +551,7 @@
551 551  [[image:1675145060812-420.png]]
552 552  
553 553  
534 +
554 554  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
555 555  
556 556  
... ... @@ -573,17 +573,19 @@
573 573  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
574 574  
575 575  
557 +
576 576  = 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
577 577  
578 578  
579 579  Use can configure PS-LB via AT Command or LoRaWAN Downlink.
580 580  
581 -* AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
563 +* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
582 582  * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
583 583  
566 +
584 584  There are two kinds of commands to configure PS-LB, they are:
585 585  
586 -* (% style="color:#037691" %)**General Commands**
569 +* **General Commands**.
587 587  
588 588  These commands are to configure:
589 589  
... ... @@ -595,7 +595,7 @@
595 595  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
596 596  
597 597  
598 -* (% style="color:#037691" %)**Commands special design for PS-LB**
581 +* **Commands special design for PS-LB**
599 599  
600 600  These commands only valid for PS-LB, as below:
601 601  
... ... @@ -605,61 +605,69 @@
605 605  
606 606  Feature: Change LoRaWAN End Node Transmit Interval.
607 607  
608 -(% style="color:blue" %)**AT Command: AT+TDC**
591 +**AT Command: AT+TDC**
609 609  
610 610  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
611 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
612 -|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
594 +|**Command Example**|**Function**|**Response**
595 +|AT+TDC=?|Show current transmit Interval|(((
613 613  30000
597 +
614 614  OK
599 +
615 615  the interval is 30000ms = 30s
616 616  )))
617 -|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
602 +|AT+TDC=60000|Set Transmit Interval|(((
618 618  OK
604 +
619 619  Set transmit interval to 60000ms = 60 seconds
620 620  )))
621 621  
622 -(% style="color:blue" %)**Downlink Command: 0x01**
608 +**Downlink Command: 0x01**
623 623  
624 624  Format: Command Code (0x01) followed by 3 bytes time value.
625 625  
626 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
612 +If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
627 627  
628 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
629 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
614 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
615 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
630 630  
631 631  
632 -
633 633  == 3.2 Set Interrupt Mode ==
634 634  
635 635  
636 636  Feature, Set Interrupt mode for GPIO_EXIT.
637 637  
638 -(% style="color:blue" %)**AT Command: AT+INTMOD**
623 +**AT Command: AT+INTMOD**
639 639  
640 640  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
641 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
642 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
626 +|**Command Example**|**Function**|**Response**
627 +|AT+INTMOD=?|Show current interrupt mode|(((
643 643  0
629 +
644 644  OK
631 +
645 645  the mode is 0 = No interruption
646 646  )))
647 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
634 +|AT+INTMOD=2|(((
648 648  Set Transmit Interval
636 +
649 649  ~1. (Disable Interrupt),
650 -2. (Trigger by rising and falling edge)
638 +
639 +2. (Trigger by rising and falling edge),
640 +
651 651  3. (Trigger by falling edge)
642 +
652 652  4. (Trigger by rising edge)
653 -)))|(% style="width:157px" %)OK
644 +)))|OK
654 654  
655 -(% style="color:blue" %)**Downlink Command: 0x06**
646 +**Downlink Command: 0x06**
656 656  
657 657  Format: Command Code (0x06) followed by 3 bytes.
658 658  
659 659  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
660 660  
661 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
662 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
652 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
653 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
663 663  
664 664  
665 665  
... ... @@ -668,69 +668,87 @@
668 668  
669 669  Feature, Control the output 3V3 , 5V or 12V.
670 670  
671 -(% style="color:blue" %)**AT Command: AT+3V3T**
662 +**AT Command: AT+3V3T**
672 672  
673 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
674 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
675 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
664 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
665 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**
666 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
676 676  0
668 +
677 677  OK
678 678  )))
679 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
671 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
680 680  OK
673 +
681 681  default setting
682 682  )))
683 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
676 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
684 684  OK
678 +
679 +
685 685  )))
686 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
681 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
687 687  OK
683 +
684 +
688 688  )))
689 689  
690 -(% style="color:blue" %)**AT Command: AT+5VT**
691 691  
692 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
693 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
694 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
688 +**AT Command: AT+5VT**
689 +
690 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
691 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**
692 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
695 695  0
694 +
696 696  OK
697 697  )))
698 -|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
697 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
699 699  OK
699 +
700 700  default setting
701 701  )))
702 -|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
702 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
703 703  OK
704 +
705 +
704 704  )))
705 -|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
707 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
706 706  OK
709 +
710 +
707 707  )))
708 708  
709 -(% style="color:blue" %)**AT Command: AT+12VT**
710 710  
711 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
712 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
713 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
714 +**AT Command: AT+12VT**
715 +
716 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
717 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response**
718 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
714 714  0
720 +
715 715  OK
716 716  )))
717 -|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
718 -|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
723 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
724 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
719 719  OK
726 +
727 +
720 720  )))
721 721  
722 -(% style="color:blue" %)**Downlink Command: 0x07**
723 723  
731 +**Downlink Command: 0x07**
732 +
724 724  Format: Command Code (0x07) followed by 3 bytes.
725 725  
726 726  The first byte is which power, the second and third bytes are the time to turn on.
727 727  
728 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
729 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
730 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
731 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
732 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
733 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
737 +* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
738 +* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
739 +* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
740 +* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
741 +* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
742 +* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
734 734  
735 735  
736 736  
... ... @@ -737,63 +737,36 @@
737 737  == 3.4 Set the Probe Model ==
738 738  
739 739  
740 -(% style="color:blue" %)**AT Command: AT** **+PROBE**
749 +**AT Command: AT** **+PROBE**
741 741  
742 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:448px" %)
743 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 204px;" %)**Function**|=(% style="width: 85px;" %)**Response**
744 -|(% style="width:154px" %)AT +PROBE =?|(% style="width:204px" %)Get or Set the probe model.|(% style="width:85px" %)(((
751 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
752 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response**
753 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
745 745  0
755 +
746 746  OK
747 747  )))
748 -|(% style="width:154px" %)AT +PROBE =0003|(% style="width:204px" %)Set water depth sensor mode, 3m type.|(% style="width:85px" %)OK
749 -|(% style="width:154px" %)AT +PROBE =0101|(% style="width:204px" %)Set pressure transmitters mode, first type.|(% style="width:85px" %)(((
758 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
759 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
750 750  OK
761 +
762 +
751 751  )))
752 -|(% style="width:154px" %)AT +PROBE =0000|(% style="width:204px" %)Initial state, no settings.|(% style="width:85px" %)(((
764 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
753 753  OK
766 +
767 +
754 754  )))
755 755  
756 -(% style="color:blue" %)**Downlink Command: 0x08**
770 +**Downlink Command: 0x08**
757 757  
758 758  Format: Command Code (0x08) followed by 2 bytes.
759 759  
760 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
761 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
774 +* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
775 +* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
762 762  
763 763  
764 764  
765 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
766 -
767 -
768 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
769 -
770 -(% style="color:blue" %)**AT Command: AT** **+STDC**
771 -
772 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
773 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
774 -|(% style="width:156px" %)AT+STDC=?|(% style="width:137px" %)(((
775 -Get the mode of multiple acquisitions and one uplink
776 -)))|(((
777 -1,10,18
778 -OK
779 -)))
780 -|(% style="width:156px" %)AT+STDC=1,10,18|(% style="width:137px" %)Set the mode of multiple acquisitions and one uplink|(((
781 -OK
782 -(% style="color:#037691" %)**aa:**(%%)
783 -**0:** means disable this function and use TDC to send packets.
784 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
785 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
786 -(% style="color:#037691" %)**cc: **(%%)the number of collection times, the value is 1~~120
787 -)))
788 -
789 -(% style="color:blue" %)**Downlink Command: 0xAE**
790 -
791 -Format: Command Code (0x08) followed by 5 bytes.
792 -
793 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
794 -
795 -
796 -
797 797  = 4. Battery & how to replace =
798 798  
799 799  == 4.1 Battery Type ==
... ... @@ -801,6 +801,7 @@
801 801  
802 802  PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
803 803  
786 +
804 804  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
805 805  
806 806  [[image:1675146710956-626.png]]
... ... @@ -824,12 +824,17 @@
824 824  
825 825  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
826 826  
810 +
827 827  Instruction to use as below:
828 828  
829 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
830 830  
831 -(% style="color:blue" %)**Step 2:**(%%) Open it and choose
814 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
832 832  
816 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
817 +
818 +
819 +**Step 2:** Open it and choose
820 +
833 833  * Product Model
834 834  * Uplink Interval
835 835  * Working Mode
... ... @@ -910,11 +910,11 @@
910 910  = 9. ​Packing Info =
911 911  
912 912  
913 -(% style="color:#037691" %)**Package Includes**:
901 +**Package Includes**:
914 914  
915 915  * PS-LB LoRaWAN Pressure Sensor
916 916  
917 -(% style="color:#037691" %)**Dimension and weight**:
905 +**Dimension and weight**:
918 918  
919 919  * Device Size: cm
920 920  * Device Weight: g
... ... @@ -927,7 +927,6 @@
927 927  
928 928  
929 929  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
930 -
931 931  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
932 932  
933 933  
image-20230201090514-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0