<
From version < 45.5 >
edited by Xiaoling
on 2023/02/21 15:33
To version < 42.25 >
edited by Xiaoling
on 2023/01/31 16:42
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -16,33 +16,22 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 -(((
20 20  The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 -)))
22 22  
23 -(((
24 24  The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 -)))
26 26  
27 -(((
28 28  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 32  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 -)))
34 34  
35 -(((
36 36  PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 -)))
38 38  
39 -(((
40 40  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 -)))
42 42  
43 43  [[image:1675071321348-194.png]]
44 44  
45 45  
34 +
46 46  == 1.2 ​Features ==
47 47  
48 48  
... ... @@ -59,7 +59,6 @@
59 59  * Downlink to change configure
60 60  * 8500mAh Battery for long term use
61 61  
62 -
63 63  == 1.3 Specification ==
64 64  
65 65  
... ... @@ -106,7 +106,6 @@
106 106  * Sleep Mode: 5uA @ 3.3v
107 107  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
108 108  
109 -
110 110  == 1.4 Probe Types ==
111 111  
112 112  === 1.4.1 Thread Installation Type ===
... ... @@ -125,7 +125,6 @@
125 125  * Operating temperature: -20℃~~60℃
126 126  * Connector Type: Various Types, see order info
127 127  
128 -
129 129  === 1.4.2 Immersion Type ===
130 130  
131 131  
... ... @@ -142,11 +142,11 @@
142 142  * Operating temperature: -40℃~~85℃
143 143  * Material: 316 stainless steels
144 144  
145 -
146 146  == 1.5 Probe Dimension ==
147 147  
148 148  
149 149  
135 +
150 150  == 1.6 Application and Installation ==
151 151  
152 152  === 1.6.1 Thread Installation Type ===
... ... @@ -201,19 +201,18 @@
201 201  
202 202  
203 203  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
204 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
205 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
190 +|=(% style="width: 150px;" %)**Behavior on ACT**|=(% style="width: 90px;" %)**Function**|=**Action**
191 +|(% style="width:260px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
206 206  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
207 207  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
208 208  )))
209 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
195 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
210 210  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
211 211  (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
212 212  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
213 213  )))
214 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
200 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
215 215  
216 -
217 217  == 1.9 Pin Mapping ==
218 218  
219 219  
... ... @@ -238,6 +238,8 @@
238 238  == 1.11 Mechanical ==
239 239  
240 240  
226 +
227 +
241 241  [[image:1675143884058-338.png]]
242 242  
243 243  
... ... @@ -255,6 +255,7 @@
255 255  The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
256 256  
257 257  
245 +
258 258  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
259 259  
260 260  
... ... @@ -308,6 +308,7 @@
308 308  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
309 309  
310 310  
299 +
311 311  == 2.3 ​Uplink Payload ==
312 312  
313 313  
... ... @@ -329,8 +329,8 @@
329 329  
330 330  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
331 331  |(% colspan="6" %)**Device Status (FPORT=5)**
332 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
333 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
321 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
322 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
334 334  
335 335  Example parse in TTNv3
336 336  
... ... @@ -400,28 +400,15 @@
400 400  |(% style="width:97px" %)(((
401 401  **Size(bytes)**
402 402  )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
403 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
392 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
404 404  
405 405  [[image:1675144608950-310.png]]
406 406  
407 407  
408 -=== 2.3.3 Sensor value, FPORT~=7 ===
409 409  
398 +=== 2.3.3 Battery Info ===
410 410  
411 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
412 -|(% style="width:94px" %)(((
413 -**Size(bytes)**
414 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n
415 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
416 -Voltage value, each 2 bytes is a set of voltage values.
417 -)))
418 418  
419 -[[image:image-20230220171300-1.png||height="207" width="863"]]
420 -
421 -
422 -=== 2.3.4 Battery Info ===
423 -
424 -
425 425  Check the battery voltage for PS-LB.
426 426  
427 427  Ex1: 0x0B45 = 2885mV
... ... @@ -429,7 +429,7 @@
429 429  Ex2: 0x0B49 = 2889mV
430 430  
431 431  
432 -=== 2.3.5 Probe Model ===
408 +=== 2.3.4 Probe Model ===
433 433  
434 434  
435 435  PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
... ... @@ -445,7 +445,7 @@
445 445  The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
446 446  
447 447  
448 -=== 2.3.6 0~~20mA value (IDC_IN) ===
424 +=== 2.3.5 0~~20mA value (IDC_IN) ===
449 449  
450 450  
451 451  The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
... ... @@ -455,7 +455,7 @@
455 455  27AE(H) = 10158 (D)/1000 = 10.158mA.
456 456  
457 457  
458 -=== 2.3.7 0~~30V value ( pin VDC_IN) ===
434 +=== 2.3.6 0~~30V value ( pin VDC_IN) ===
459 459  
460 460  
461 461  Measure the voltage value. The range is 0 to 30V.
... ... @@ -465,7 +465,7 @@
465 465  138E(H) = 5006(D)/1000= 5.006V
466 466  
467 467  
468 -=== 2.3.8 IN1&IN2&INT pin ===
444 +=== 2.3.7 IN1&IN2&INT pin ===
469 469  
470 470  
471 471  IN1 and IN2 are used as digital input pins.
... ... @@ -488,7 +488,7 @@
488 488  0x01: Interrupt Uplink Packet.
489 489  
490 490  
491 -=== 2.3.9 ​Decode payload in The Things Network ===
467 +=== 2.3.8 ​Decode payload in The Things Network ===
492 492  
493 493  
494 494  While using TTN network, you can add the payload format to decode the payload.
... ... @@ -546,6 +546,7 @@
546 546  [[image:1675145060812-420.png]]
547 547  
548 548  
525 +
549 549  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
550 550  
551 551  
... ... @@ -579,7 +579,7 @@
579 579  
580 580  There are two kinds of commands to configure PS-LB, they are:
581 581  
582 -* (% style="color:#037691" %)**General Commands**
559 +* (% style="color:#037691" %)**General Commands**.
583 583  
584 584  These commands are to configure:
585 585  
... ... @@ -607,11 +607,14 @@
607 607  |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
608 608  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
609 609  30000
587 +
610 610  OK
589 +
611 611  the interval is 30000ms = 30s
612 612  )))
613 613  |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
614 614  OK
594 +
615 615  Set transmit interval to 60000ms = 60 seconds
616 616  )))
617 617  
... ... @@ -619,12 +619,11 @@
619 619  
620 620  Format: Command Code (0x01) followed by 3 bytes time value.
621 621  
622 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
602 +If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
623 623  
624 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
625 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
604 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
605 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
626 626  
627 -
628 628  == 3.2 Set Interrupt Mode ==
629 629  
630 630  
... ... @@ -633,19 +633,25 @@
633 633  (% style="color:blue" %)**AT Command: AT+INTMOD**
634 634  
635 635  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
636 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
637 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
615 +|=**Command Example**|=**Function**|=**Response**
616 +|AT+INTMOD=?|Show current interrupt mode|(((
638 638  0
618 +
639 639  OK
620 +
640 640  the mode is 0 = No interruption
641 641  )))
642 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
623 +|AT+INTMOD=2|(((
643 643  Set Transmit Interval
625 +
644 644  ~1. (Disable Interrupt),
645 -2. (Trigger by rising and falling edge)
627 +
628 +2. (Trigger by rising and falling edge),
629 +
646 646  3. (Trigger by falling edge)
631 +
647 647  4. (Trigger by rising edge)
648 -)))|(% style="width:157px" %)OK
633 +)))|OK
649 649  
650 650  (% style="color:blue" %)**Downlink Command: 0x06**
651 651  
... ... @@ -653,10 +653,9 @@
653 653  
654 654  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
655 655  
656 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
657 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
641 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
642 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
658 658  
659 -
660 660  == 3.3 Set the output time ==
661 661  
662 662  
... ... @@ -664,53 +664,68 @@
664 664  
665 665  (% style="color:blue" %)**AT Command: AT+3V3T**
666 666  
667 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
668 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
669 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
651 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
652 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 236px;" %)**Function**|=(% style="width: 117px;" %)**Response**
653 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
670 670  0
655 +
671 671  OK
672 672  )))
673 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
658 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
674 674  OK
660 +
675 675  default setting
676 676  )))
677 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
663 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
678 678  OK
665 +
666 +
679 679  )))
680 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
668 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
681 681  OK
670 +
671 +
682 682  )))
683 683  
684 684  (% style="color:blue" %)**AT Command: AT+5VT**
685 685  
686 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
687 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
688 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
676 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
677 +|=(% style="width: 158px;" %)**Command Example**|=(% style="width: 232px;" %)**Function**|=(% style="width: 119px;" %)**Response**
678 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
689 689  0
680 +
690 690  OK
691 691  )))
692 -|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
683 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
693 693  OK
685 +
694 694  default setting
695 695  )))
696 -|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
688 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
697 697  OK
690 +
691 +
698 698  )))
699 -|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
693 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
700 700  OK
695 +
696 +
701 701  )))
702 702  
703 703  (% style="color:blue" %)**AT Command: AT+12VT**
704 704  
705 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
706 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
707 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
701 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
702 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 268px;" %)**Function**|=**Response**
703 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
708 708  0
705 +
709 709  OK
710 710  )))
711 -|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
712 -|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
708 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
709 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
713 713  OK
711 +
712 +
714 714  )))
715 715  
716 716  (% style="color:blue" %)**Downlink Command: 0x07**
... ... @@ -719,31 +719,35 @@
719 719  
720 720  The first byte is which power, the second and third bytes are the time to turn on.
721 721  
722 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
723 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
724 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
725 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
726 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
727 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
721 +* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
722 +* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
723 +* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
724 +* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
725 +* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
726 +* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
728 728  
729 -
730 730  == 3.4 Set the Probe Model ==
731 731  
732 732  
733 733  (% style="color:blue" %)**AT Command: AT** **+PROBE**
734 734  
735 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:448px" %)
736 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 204px;" %)**Function**|=(% style="width: 85px;" %)**Response**
737 -|(% style="width:154px" %)AT +PROBE =?|(% style="width:204px" %)Get or Set the probe model.|(% style="width:85px" %)(((
733 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
734 +|=(% style="width: 157px;" %)**Command Example**|=(% style="width: 267px;" %)**Function**|=**Response**
735 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
738 738  0
737 +
739 739  OK
740 740  )))
741 -|(% style="width:154px" %)AT +PROBE =0003|(% style="width:204px" %)Set water depth sensor mode, 3m type.|(% style="width:85px" %)OK
742 -|(% style="width:154px" %)AT +PROBE =0101|(% style="width:204px" %)Set pressure transmitters mode, first type.|(% style="width:85px" %)(((
740 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
741 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
743 743  OK
743 +
744 +
744 744  )))
745 -|(% style="width:154px" %)AT +PROBE =0000|(% style="width:204px" %)Initial state, no settings.|(% style="width:85px" %)(((
746 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
746 746  OK
748 +
749 +
747 747  )))
748 748  
749 749  (% style="color:blue" %)**Downlink Command: 0x08**
... ... @@ -750,41 +750,9 @@
750 750  
751 751  Format: Command Code (0x08) followed by 2 bytes.
752 752  
753 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
754 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
756 +* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
757 +* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
755 755  
756 -
757 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
758 -
759 -
760 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
761 -
762 -(% style="color:blue" %)**AT Command: AT** **+STDC**
763 -
764 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
765 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
766 -|(% style="width:156px" %)AT+STDC=?|(% style="width:137px" %)(((
767 -Get the mode of multiple acquisitions and one uplink
768 -)))|(((
769 -1,10,18
770 -OK
771 -)))
772 -|(% style="width:156px" %)AT+STDC=1,10,18|(% style="width:137px" %)Set the mode of multiple acquisitions and one uplink|(((
773 -OK
774 -(% style="color:#037691" %)**aa:**(%%)
775 -**0:** means disable this function and use TDC to send packets.
776 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
777 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
778 -(% style="color:#037691" %)**cc: **(%%)the number of collection times, the value is 1~~120
779 -)))
780 -
781 -(% style="color:blue" %)**Downlink Command: 0xAE**
782 -
783 -Format: Command Code (0x08) followed by 5 bytes.
784 -
785 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
786 -
787 -
788 788  = 4. Battery & how to replace =
789 789  
790 790  == 4.1 Battery Type ==
... ... @@ -792,6 +792,7 @@
792 792  
793 793  PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
794 794  
766 +
795 795  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
796 796  
797 797  [[image:1675146710956-626.png]]
... ... @@ -815,10 +815,15 @@
815 815  
816 816  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
817 817  
790 +
818 818  Instruction to use as below:
819 819  
820 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
821 821  
794 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
795 +
796 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
797 +
798 +
822 822  (% style="color:blue" %)**Step 2:**(%%) Open it and choose
823 823  
824 824  * Product Model
... ... @@ -912,7 +912,6 @@
912 912  * Package Size / pcs : cm
913 913  * Weight / pcs : g
914 914  
915 -
916 916  = 10. Support =
917 917  
918 918  
image-20230201090514-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0