<
From version < 45.5 >
edited by Xiaoling
on 2023/02/21 15:33
To version < 42.15 >
edited by Xiaoling
on 2023/01/31 16:10
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -16,33 +16,22 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 -(((
20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 -)))
19 +The Dragino PS-LB series sensors are **(% style="color:blue" %)LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
22 22  
23 -(((
24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 -)))
21 +The PS-LB series sensors include **(% style="color:blue" %)Thread Installation Type**(%%) and **(% style="color:blue" %)Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
26 26  
27 -(((
28 28  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 32  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 -)))
34 34  
35 -(((
36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 -)))
27 +PS-LB is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
38 38  
39 -(((
40 40  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 -)))
42 42  
43 43  [[image:1675071321348-194.png]]
44 44  
45 45  
34 +
46 46  == 1.2 ​Features ==
47 47  
48 48  
... ... @@ -63,18 +63,18 @@
63 63  == 1.3 Specification ==
64 64  
65 65  
66 -(% style="color:#037691" %)**Micro Controller:**
55 +**(% style="color:#037691" %)Micro Controller:**
67 67  
68 68  * MCU: 48Mhz ARM
69 69  * Flash: 256KB
70 70  * RAM: 64KB
71 71  
72 -(% style="color:#037691" %)**Common DC Characteristics:**
61 +**(% style="color:#037691" %)Common DC Characteristics:**
73 73  
74 74  * Supply Voltage: 2.5v ~~ 3.6v
75 75  * Operating Temperature: -40 ~~ 85°C
76 76  
77 -(% style="color:#037691" %)**LoRa Spec:**
66 +**(% style="color:#037691" %)LoRa Spec:**
78 78  
79 79  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
80 80  * Max +22 dBm constant RF output vs.
... ... @@ -81,19 +81,19 @@
81 81  * RX sensitivity: down to -139 dBm.
82 82  * Excellent blocking immunity
83 83  
84 -(% style="color:#037691" %)**Current Input Measuring :**
73 +**(% style="color:#037691" %)Current Input Measuring :**
85 85  
86 86  * Range: 0 ~~ 20mA
87 87  * Accuracy: 0.02mA
88 88  * Resolution: 0.001mA
89 89  
90 -(% style="color:#037691" %)**Voltage Input Measuring:**
79 +**(% style="color:#037691" %)Voltage Input Measuring:**
91 91  
92 92  * Range: 0 ~~ 30v
93 93  * Accuracy: 0.02v
94 94  * Resolution: 0.001v
95 95  
96 -(% style="color:#037691" %)**Battery:**
85 +**(% style="color:#037691" %)Battery:**
97 97  
98 98  * Li/SOCI2 un-chargeable battery
99 99  * Capacity: 8500mAh
... ... @@ -101,7 +101,7 @@
101 101  * Max continuously current: 130mA
102 102  * Max boost current: 2A, 1 second
103 103  
104 -(% style="color:#037691" %)**Power Consumption**
93 +**(% style="color:#037691" %)Power Consumption**
105 105  
106 106  * Sleep Mode: 5uA @ 3.3v
107 107  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
... ... @@ -147,12 +147,13 @@
147 147  
148 148  
149 149  
139 +
150 150  == 1.6 Application and Installation ==
151 151  
152 152  === 1.6.1 Thread Installation Type ===
153 153  
154 154  
155 -(% style="color:blue" %)**Application:**
145 +**(% style="color:blue" %)Application:**
156 156  
157 157  * Hydraulic Pressure
158 158  * Petrochemical Industry
... ... @@ -170,7 +170,7 @@
170 170  === 1.6.2 Immersion Type ===
171 171  
172 172  
173 -(% style="color:blue" %)**Application:**
163 +**(% style="color:blue" %)Application:**
174 174  
175 175  Liquid & Water Pressure / Level detect.
176 176  
... ... @@ -189,9 +189,9 @@
189 189  == 1.7 Sleep mode and working mode ==
190 190  
191 191  
192 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
182 +**(% style="color:blue" %)Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
193 193  
194 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
184 +**(% style="color:blue" %)Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
195 195  
196 196  
197 197  == 1.8 Button & LEDs ==
... ... @@ -201,19 +201,23 @@
201 201  
202 202  
203 203  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
204 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
205 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
206 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
194 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action**
195 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
196 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **(% style="color:blue" %)blue led** (%%)will blink once.
197 +
207 207  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
208 208  )))
209 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
210 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
211 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
200 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
201 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:#037691" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
202 +
203 +**(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
204 +
212 212  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
213 213  )))
214 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
207 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
215 215  
216 216  
210 +
217 217  == 1.9 Pin Mapping ==
218 218  
219 219  
... ... @@ -238,6 +238,8 @@
238 238  == 1.11 Mechanical ==
239 239  
240 240  
235 +
236 +
241 241  [[image:1675143884058-338.png]]
242 242  
243 243  
... ... @@ -252,9 +252,10 @@
252 252  == 2.1 How it works ==
253 253  
254 254  
255 -The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
251 +The PS-LB is configured as **(% style="color:#037691" %)LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
256 256  
257 257  
254 +
258 258  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
259 259  
260 260  
... ... @@ -267,7 +267,7 @@
267 267  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
268 268  
269 269  
270 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
267 +**(% style="color:blue" %)Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
271 271  
272 272  Each PS-LB is shipped with a sticker with the default device EUI as below:
273 273  
... ... @@ -278,36 +278,37 @@
278 278  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
279 279  
280 280  
281 -(% style="color:blue" %)**Register the device**
278 +**(% style="color:blue" %)Register the device**
282 282  
283 283  [[image:1675144099263-405.png]]
284 284  
285 285  
286 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
283 +**(% style="color:blue" %)Add APP EUI and DEV EUI**
287 287  
288 288  [[image:1675144117571-832.png]]
289 289  
290 290  
291 -(% style="color:blue" %)**Add APP EUI in the application**
288 +**(% style="color:blue" %)Add APP EUI in the application**
292 292  
293 293  
294 294  [[image:1675144143021-195.png]]
295 295  
296 296  
297 -(% style="color:blue" %)**Add APP KEY**
294 +**(% style="color:blue" %)Add APP KEY**
298 298  
299 299  [[image:1675144157838-392.png]]
300 300  
301 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
298 +**(% style="color:blue" %)Step 2:**(%%) Activate on PS-LB
302 302  
303 303  
304 304  Press the button for 5 seconds to activate the PS-LB.
305 305  
306 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
303 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:blue" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. **(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
307 307  
308 308  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
309 309  
310 310  
308 +
311 311  == 2.3 ​Uplink Payload ==
312 312  
313 313  
... ... @@ -329,8 +329,8 @@
329 329  
330 330  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
331 331  |(% colspan="6" %)**Device Status (FPORT=5)**
332 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
333 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
330 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
331 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
334 334  
335 335  Example parse in TTNv3
336 336  
... ... @@ -337,11 +337,11 @@
337 337  [[image:1675144504430-490.png]]
338 338  
339 339  
340 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
338 +**(% style="color:#037691" %)Sensor Model**(%%): For PS-LB, this value is 0x16
341 341  
342 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
340 +**(% style="color:#037691" %)Firmware Version**(%%): 0x0100, Means: v1.0.0 version
343 343  
344 -(% style="color:#037691" %)**Frequency Band**:
342 +**(% style="color:#037691" %)Frequency Band**:
345 345  
346 346  *0x01: EU868
347 347  
... ... @@ -372,7 +372,7 @@
372 372  *0x0e: MA869
373 373  
374 374  
375 -(% style="color:#037691" %)**Sub-Band**:
373 +**(% style="color:#037691" %)Sub-Band**:
376 376  
377 377  AU915 and US915:value 0x00 ~~ 0x08
378 378  
... ... @@ -381,7 +381,7 @@
381 381  Other Bands: Always 0x00
382 382  
383 383  
384 -(% style="color:#037691" %)**Battery Info**:
382 +**(% style="color:#037691" %)Battery Info**:
385 385  
386 386  Check the battery voltage.
387 387  
... ... @@ -399,29 +399,16 @@
399 399  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
400 400  |(% style="width:97px" %)(((
401 401  **Size(bytes)**
402 -)))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
403 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
400 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1**
401 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
404 404  
405 405  [[image:1675144608950-310.png]]
406 406  
407 407  
408 -=== 2.3.3 Sensor value, FPORT~=7 ===
409 409  
407 +=== 2.3.3 Battery Info ===
410 410  
411 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
412 -|(% style="width:94px" %)(((
413 -**Size(bytes)**
414 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n
415 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
416 -Voltage value, each 2 bytes is a set of voltage values.
417 -)))
418 418  
419 -[[image:image-20230220171300-1.png||height="207" width="863"]]
420 -
421 -
422 -=== 2.3.4 Battery Info ===
423 -
424 -
425 425  Check the battery voltage for PS-LB.
426 426  
427 427  Ex1: 0x0B45 = 2885mV
... ... @@ -429,7 +429,7 @@
429 429  Ex2: 0x0B49 = 2889mV
430 430  
431 431  
432 -=== 2.3.5 Probe Model ===
417 +=== 2.3.4 Probe Model ===
433 433  
434 434  
435 435  PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
... ... @@ -445,50 +445,50 @@
445 445  The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
446 446  
447 447  
448 -=== 2.3.6 0~~20mA value (IDC_IN) ===
433 +=== 2.3.5 0~~20mA value (IDC_IN) ===
449 449  
450 450  
451 451  The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
452 452  
453 -(% style="color:#037691" %)**Example**:
438 +**(% style="color:#037691" %)Example**:
454 454  
455 455  27AE(H) = 10158 (D)/1000 = 10.158mA.
456 456  
457 457  
458 -=== 2.3.7 0~~30V value ( pin VDC_IN) ===
443 +=== 2.3.6 0~~30V value ( pin VDC_IN) ===
459 459  
460 460  
461 461  Measure the voltage value. The range is 0 to 30V.
462 462  
463 -(% style="color:#037691" %)**Example**:
448 +**(% style="color:#037691" %)Example**:
464 464  
465 465  138E(H) = 5006(D)/1000= 5.006V
466 466  
467 467  
468 -=== 2.3.8 IN1&IN2&INT pin ===
453 +=== 2.3.7 IN1&IN2&INT pin ===
469 469  
470 470  
471 471  IN1 and IN2 are used as digital input pins.
472 472  
473 -(% style="color:#037691" %)**Example**:
458 +**(% style="color:#037691" %)Example**:
474 474  
475 -09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
460 +09 (H) :(0x09&0x08)>>3=1    IN1 pin is high level.
476 476  
477 -09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
462 +09 (H) :(0x09&0x04)>>2=0    IN2 pin is low level.
478 478  
479 479  
480 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
465 +This data field shows if this packet is generated by **(% style="color:blue" %)Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
481 481  
482 -(% style="color:#037691" %)**Example:**
467 +**(% style="color:#037691" %)Example:**
483 483  
484 -09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
469 +09 (H) :(0x09&0x02)>>1=1    The level of the interrupt pin.
485 485  
486 -09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
471 +09 (H) :0x09&0x01=1              0x00: Normal uplink packet.
487 487  
488 488  0x01: Interrupt Uplink Packet.
489 489  
490 490  
491 -=== 2.3.9 ​Decode payload in The Things Network ===
476 +=== 2.3.8 ​Decode payload in The Things Network ===
492 492  
493 493  
494 494  While using TTN network, you can add the payload format to decode the payload.
... ... @@ -512,9 +512,9 @@
512 512  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
513 513  
514 514  
515 -(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
500 +**(% style="color:blue" %)Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
516 516  
517 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
502 +**(% style="color:blue" %)Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
518 518  
519 519  
520 520  [[image:1675144951092-237.png]]
... ... @@ -523,9 +523,9 @@
523 523  [[image:1675144960452-126.png]]
524 524  
525 525  
526 -(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
511 +**(% style="color:blue" %)Step 3:**(%%) Create an account or log in Datacake.
527 527  
528 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
513 +**(% style="color:#blue" %)Step 4:** (%%)Create PS-LB product.
529 529  
530 530  [[image:1675145004465-869.png]]
531 531  
... ... @@ -538,7 +538,7 @@
538 538  [[image:1675145029119-717.png]]
539 539  
540 540  
541 -(% style="color:blue" %)**Step 5: **(%%)add payload decode
526 +**(% style="color:blue" %)Step 5: **(%%)add payload decode
542 542  
543 543  [[image:1675145051360-659.png]]
544 544  
... ... @@ -546,6 +546,7 @@
546 546  [[image:1675145060812-420.png]]
547 547  
548 548  
534 +
549 549  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
550 550  
551 551  
... ... @@ -574,12 +574,13 @@
574 574  
575 575  Use can configure PS-LB via AT Command or LoRaWAN Downlink.
576 576  
577 -* AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
563 +* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
578 578  * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
579 579  
566 +
580 580  There are two kinds of commands to configure PS-LB, they are:
581 581  
582 -* (% style="color:#037691" %)**General Commands**
569 +* **General Commands**.
583 583  
584 584  These commands are to configure:
585 585  
... ... @@ -591,7 +591,7 @@
591 591  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
592 592  
593 593  
594 -* (% style="color:#037691" %)**Commands special design for PS-LB**
581 +* **Commands special design for PS-LB**
595 595  
596 596  These commands only valid for PS-LB, as below:
597 597  
... ... @@ -601,28 +601,31 @@
601 601  
602 602  Feature: Change LoRaWAN End Node Transmit Interval.
603 603  
604 -(% style="color:blue" %)**AT Command: AT+TDC**
591 +**AT Command: AT+TDC**
605 605  
606 606  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
607 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
608 -|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
594 +|**Command Example**|**Function**|**Response**
595 +|AT+TDC=?|Show current transmit Interval|(((
609 609  30000
597 +
610 610  OK
599 +
611 611  the interval is 30000ms = 30s
612 612  )))
613 -|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
602 +|AT+TDC=60000|Set Transmit Interval|(((
614 614  OK
604 +
615 615  Set transmit interval to 60000ms = 60 seconds
616 616  )))
617 617  
618 -(% style="color:blue" %)**Downlink Command: 0x01**
608 +**Downlink Command: 0x01**
619 619  
620 620  Format: Command Code (0x01) followed by 3 bytes time value.
621 621  
622 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
612 +If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
623 623  
624 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
625 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
614 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
615 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
626 626  
627 627  
628 628  == 3.2 Set Interrupt Mode ==
... ... @@ -630,161 +630,162 @@
630 630  
631 631  Feature, Set Interrupt mode for GPIO_EXIT.
632 632  
633 -(% style="color:blue" %)**AT Command: AT+INTMOD**
623 +**AT Command: AT+INTMOD**
634 634  
635 635  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
636 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
637 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
626 +|**Command Example**|**Function**|**Response**
627 +|AT+INTMOD=?|Show current interrupt mode|(((
638 638  0
629 +
639 639  OK
631 +
640 640  the mode is 0 = No interruption
641 641  )))
642 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
634 +|AT+INTMOD=2|(((
643 643  Set Transmit Interval
636 +
644 644  ~1. (Disable Interrupt),
645 -2. (Trigger by rising and falling edge)
638 +
639 +2. (Trigger by rising and falling edge),
640 +
646 646  3. (Trigger by falling edge)
642 +
647 647  4. (Trigger by rising edge)
648 -)))|(% style="width:157px" %)OK
644 +)))|OK
649 649  
650 -(% style="color:blue" %)**Downlink Command: 0x06**
646 +**Downlink Command: 0x06**
651 651  
652 652  Format: Command Code (0x06) followed by 3 bytes.
653 653  
654 654  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
655 655  
656 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
657 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
652 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
653 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
658 658  
659 659  
656 +
660 660  == 3.3 Set the output time ==
661 661  
662 662  
663 663  Feature, Control the output 3V3 , 5V or 12V.
664 664  
665 -(% style="color:blue" %)**AT Command: AT+3V3T**
662 +**AT Command: AT+3V3T**
666 666  
667 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
668 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
669 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
664 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
665 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**
666 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
670 670  0
668 +
671 671  OK
672 672  )))
673 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
671 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
674 674  OK
673 +
675 675  default setting
676 676  )))
677 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
676 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
678 678  OK
678 +
679 +
679 679  )))
680 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
681 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
681 681  OK
683 +
684 +
682 682  )))
683 683  
684 -(% style="color:blue" %)**AT Command: AT+5VT**
685 685  
686 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
687 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
688 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
688 +**AT Command: AT+5VT**
689 +
690 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
691 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**
692 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
689 689  0
694 +
690 690  OK
691 691  )))
692 -|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
697 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
693 693  OK
699 +
694 694  default setting
695 695  )))
696 -|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
702 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
697 697  OK
704 +
705 +
698 698  )))
699 -|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
707 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
700 700  OK
709 +
710 +
701 701  )))
702 702  
703 -(% style="color:blue" %)**AT Command: AT+12VT**
704 704  
705 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
706 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
707 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
714 +**AT Command: AT+12VT**
715 +
716 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
717 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response**
718 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
708 708  0
720 +
709 709  OK
710 710  )))
711 -|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
712 -|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
723 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
724 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
713 713  OK
726 +
727 +
714 714  )))
715 715  
716 -(% style="color:blue" %)**Downlink Command: 0x07**
717 717  
731 +**Downlink Command: 0x07**
732 +
718 718  Format: Command Code (0x07) followed by 3 bytes.
719 719  
720 720  The first byte is which power, the second and third bytes are the time to turn on.
721 721  
722 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
723 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
724 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
725 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
726 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
727 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
737 +* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
738 +* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
739 +* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
740 +* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
741 +* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
742 +* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
728 728  
729 729  
745 +
730 730  == 3.4 Set the Probe Model ==
731 731  
732 732  
733 -(% style="color:blue" %)**AT Command: AT** **+PROBE**
749 +**AT Command: AT** **+PROBE**
734 734  
735 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:448px" %)
736 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 204px;" %)**Function**|=(% style="width: 85px;" %)**Response**
737 -|(% style="width:154px" %)AT +PROBE =?|(% style="width:204px" %)Get or Set the probe model.|(% style="width:85px" %)(((
751 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
752 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response**
753 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
738 738  0
755 +
739 739  OK
740 740  )))
741 -|(% style="width:154px" %)AT +PROBE =0003|(% style="width:204px" %)Set water depth sensor mode, 3m type.|(% style="width:85px" %)OK
742 -|(% style="width:154px" %)AT +PROBE =0101|(% style="width:204px" %)Set pressure transmitters mode, first type.|(% style="width:85px" %)(((
758 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
759 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
743 743  OK
761 +
762 +
744 744  )))
745 -|(% style="width:154px" %)AT +PROBE =0000|(% style="width:204px" %)Initial state, no settings.|(% style="width:85px" %)(((
764 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
746 746  OK
766 +
767 +
747 747  )))
748 748  
749 -(% style="color:blue" %)**Downlink Command: 0x08**
770 +**Downlink Command: 0x08**
750 750  
751 751  Format: Command Code (0x08) followed by 2 bytes.
752 752  
753 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
754 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
774 +* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
775 +* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
755 755  
756 756  
757 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
758 758  
759 -
760 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
761 -
762 -(% style="color:blue" %)**AT Command: AT** **+STDC**
763 -
764 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
765 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
766 -|(% style="width:156px" %)AT+STDC=?|(% style="width:137px" %)(((
767 -Get the mode of multiple acquisitions and one uplink
768 -)))|(((
769 -1,10,18
770 -OK
771 -)))
772 -|(% style="width:156px" %)AT+STDC=1,10,18|(% style="width:137px" %)Set the mode of multiple acquisitions and one uplink|(((
773 -OK
774 -(% style="color:#037691" %)**aa:**(%%)
775 -**0:** means disable this function and use TDC to send packets.
776 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
777 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
778 -(% style="color:#037691" %)**cc: **(%%)the number of collection times, the value is 1~~120
779 -)))
780 -
781 -(% style="color:blue" %)**Downlink Command: 0xAE**
782 -
783 -Format: Command Code (0x08) followed by 5 bytes.
784 -
785 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
786 -
787 -
788 788  = 4. Battery & how to replace =
789 789  
790 790  == 4.1 Battery Type ==
... ... @@ -792,6 +792,7 @@
792 792  
793 793  PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
794 794  
786 +
795 795  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
796 796  
797 797  [[image:1675146710956-626.png]]
... ... @@ -815,12 +815,17 @@
815 815  
816 816  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
817 817  
810 +
818 818  Instruction to use as below:
819 819  
820 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
821 821  
822 -(% style="color:blue" %)**Step 2:**(%%) Open it and choose
814 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
823 823  
816 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
817 +
818 +
819 +**Step 2:** Open it and choose
820 +
824 824  * Product Model
825 825  * Uplink Interval
826 826  * Working Mode
... ... @@ -901,11 +901,11 @@
901 901  = 9. ​Packing Info =
902 902  
903 903  
904 -(% style="color:#037691" %)**Package Includes**:
901 +**Package Includes**:
905 905  
906 906  * PS-LB LoRaWAN Pressure Sensor
907 907  
908 -(% style="color:#037691" %)**Dimension and weight**:
905 +**Dimension and weight**:
909 909  
910 910  * Device Size: cm
911 911  * Device Weight: g
... ... @@ -913,11 +913,11 @@
913 913  * Weight / pcs : g
914 914  
915 915  
913 +
916 916  = 10. Support =
917 917  
918 918  
919 919  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
920 -
921 921  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
922 922  
923 923  
image-20230201090514-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0