<
From version < 45.4 >
edited by Xiaoling
on 2023/02/21 15:29
To version < 42.23 >
edited by Xiaoling
on 2023/01/31 16:34
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -16,33 +16,22 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 -(((
20 20  The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 -)))
22 22  
23 -(((
24 24  The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 -)))
26 26  
27 -(((
28 28  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 32  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 -)))
34 34  
35 -(((
36 36  PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 -)))
38 38  
39 -(((
40 40  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 -)))
42 42  
43 43  [[image:1675071321348-194.png]]
44 44  
45 45  
34 +
46 46  == 1.2 ​Features ==
47 47  
48 48  
... ... @@ -59,8 +59,6 @@
59 59  * Downlink to change configure
60 60  * 8500mAh Battery for long term use
61 61  
62 -
63 -
64 64  == 1.3 Specification ==
65 65  
66 66  
... ... @@ -107,8 +107,6 @@
107 107  * Sleep Mode: 5uA @ 3.3v
108 108  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
109 109  
110 -
111 -
112 112  == 1.4 Probe Types ==
113 113  
114 114  === 1.4.1 Thread Installation Type ===
... ... @@ -127,8 +127,6 @@
127 127  * Operating temperature: -20℃~~60℃
128 128  * Connector Type: Various Types, see order info
129 129  
130 -
131 -
132 132  === 1.4.2 Immersion Type ===
133 133  
134 134  
... ... @@ -145,12 +145,11 @@
145 145  * Operating temperature: -40℃~~85℃
146 146  * Material: 316 stainless steels
147 147  
148 -
149 -
150 150  == 1.5 Probe Dimension ==
151 151  
152 152  
153 153  
135 +
154 154  == 1.6 Application and Installation ==
155 155  
156 156  === 1.6.1 Thread Installation Type ===
... ... @@ -205,20 +205,18 @@
205 205  
206 206  
207 207  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
208 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
209 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
190 +|=(% style="width: 150px;" %)**Behavior on ACT**|=(% style="width: 90px;" %)**Function**|=**Action**
191 +|(% style="width:260px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
210 210  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
211 211  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
212 212  )))
213 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
195 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
214 214  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
215 215  (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
216 216  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
217 217  )))
218 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
200 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
219 219  
220 -
221 -
222 222  == 1.9 Pin Mapping ==
223 223  
224 224  
... ... @@ -243,6 +243,8 @@
243 243  == 1.11 Mechanical ==
244 244  
245 245  
226 +
227 +
246 246  [[image:1675143884058-338.png]]
247 247  
248 248  
... ... @@ -260,6 +260,7 @@
260 260  The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
261 261  
262 262  
245 +
263 263  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
264 264  
265 265  
... ... @@ -313,6 +313,7 @@
313 313  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
314 314  
315 315  
299 +
316 316  == 2.3 ​Uplink Payload ==
317 317  
318 318  
... ... @@ -334,8 +334,8 @@
334 334  
335 335  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
336 336  |(% colspan="6" %)**Device Status (FPORT=5)**
337 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
338 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
321 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
322 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
339 339  
340 340  Example parse in TTNv3
341 341  
... ... @@ -404,29 +404,16 @@
404 404  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
405 405  |(% style="width:97px" %)(((
406 406  **Size(bytes)**
407 -)))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
408 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
391 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1**
392 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
409 409  
410 410  [[image:1675144608950-310.png]]
411 411  
412 412  
413 -=== 2.3.3 Sensor value, FPORT~=7 ===
414 414  
398 +=== 2.3.3 Battery Info ===
415 415  
416 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
417 -|(% style="width:94px" %)(((
418 -**Size(bytes)**
419 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n
420 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
421 -Voltage value, each 2 bytes is a set of voltage values.
422 -)))
423 423  
424 -[[image:image-20230220171300-1.png||height="207" width="863"]]
425 -
426 -
427 -=== 2.3.4 Battery Info ===
428 -
429 -
430 430  Check the battery voltage for PS-LB.
431 431  
432 432  Ex1: 0x0B45 = 2885mV
... ... @@ -434,7 +434,7 @@
434 434  Ex2: 0x0B49 = 2889mV
435 435  
436 436  
437 -=== 2.3.5 Probe Model ===
408 +=== 2.3.4 Probe Model ===
438 438  
439 439  
440 440  PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
... ... @@ -450,7 +450,7 @@
450 450  The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
451 451  
452 452  
453 -=== 2.3.6 0~~20mA value (IDC_IN) ===
424 +=== 2.3.5 0~~20mA value (IDC_IN) ===
454 454  
455 455  
456 456  The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
... ... @@ -460,7 +460,7 @@
460 460  27AE(H) = 10158 (D)/1000 = 10.158mA.
461 461  
462 462  
463 -=== 2.3.7 0~~30V value ( pin VDC_IN) ===
434 +=== 2.3.6 0~~30V value ( pin VDC_IN) ===
464 464  
465 465  
466 466  Measure the voltage value. The range is 0 to 30V.
... ... @@ -470,7 +470,7 @@
470 470  138E(H) = 5006(D)/1000= 5.006V
471 471  
472 472  
473 -=== 2.3.8 IN1&IN2&INT pin ===
444 +=== 2.3.7 IN1&IN2&INT pin ===
474 474  
475 475  
476 476  IN1 and IN2 are used as digital input pins.
... ... @@ -493,7 +493,7 @@
493 493  0x01: Interrupt Uplink Packet.
494 494  
495 495  
496 -=== 2.3.9 ​Decode payload in The Things Network ===
467 +=== 2.3.8 ​Decode payload in The Things Network ===
497 497  
498 498  
499 499  While using TTN network, you can add the payload format to decode the payload.
... ... @@ -551,6 +551,7 @@
551 551  [[image:1675145060812-420.png]]
552 552  
553 553  
525 +
554 554  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
555 555  
556 556  
... ... @@ -584,7 +584,7 @@
584 584  
585 585  There are two kinds of commands to configure PS-LB, they are:
586 586  
587 -* (% style="color:#037691" %)**General Commands**
559 +* (% style="color:#037691" %)**General Commands**.
588 588  
589 589  These commands are to configure:
590 590  
... ... @@ -609,14 +609,17 @@
609 609  (% style="color:blue" %)**AT Command: AT+TDC**
610 610  
611 611  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
612 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
613 -|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
584 +|**Command Example**|**Function**|**Response**
585 +|AT+TDC=?|Show current transmit Interval|(((
614 614  30000
587 +
615 615  OK
589 +
616 616  the interval is 30000ms = 30s
617 617  )))
618 -|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
592 +|AT+TDC=60000|Set Transmit Interval|(((
619 619  OK
594 +
620 620  Set transmit interval to 60000ms = 60 seconds
621 621  )))
622 622  
... ... @@ -624,13 +624,12 @@
624 624  
625 625  Format: Command Code (0x01) followed by 3 bytes time value.
626 626  
627 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
602 +If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
628 628  
629 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
630 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
604 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
605 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
631 631  
632 632  
633 -
634 634  == 3.2 Set Interrupt Mode ==
635 635  
636 636  
... ... @@ -639,19 +639,25 @@
639 639  (% style="color:blue" %)**AT Command: AT+INTMOD**
640 640  
641 641  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
642 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
643 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
616 +|**Command Example**|**Function**|**Response**
617 +|AT+INTMOD=?|Show current interrupt mode|(((
644 644  0
619 +
645 645  OK
621 +
646 646  the mode is 0 = No interruption
647 647  )))
648 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
624 +|AT+INTMOD=2|(((
649 649  Set Transmit Interval
626 +
650 650  ~1. (Disable Interrupt),
651 -2. (Trigger by rising and falling edge)
628 +
629 +2. (Trigger by rising and falling edge),
630 +
652 652  3. (Trigger by falling edge)
632 +
653 653  4. (Trigger by rising edge)
654 -)))|(% style="width:157px" %)OK
634 +)))|OK
655 655  
656 656  (% style="color:blue" %)**Downlink Command: 0x06**
657 657  
... ... @@ -659,11 +659,9 @@
659 659  
660 660  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
661 661  
662 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
663 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
642 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
643 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
664 664  
665 -
666 -
667 667  == 3.3 Set the output time ==
668 668  
669 669  
... ... @@ -671,53 +671,68 @@
671 671  
672 672  (% style="color:blue" %)**AT Command: AT+3V3T**
673 673  
674 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
675 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
676 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
652 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
653 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**
654 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
677 677  0
656 +
678 678  OK
679 679  )))
680 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
659 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
681 681  OK
661 +
682 682  default setting
683 683  )))
684 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
664 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
685 685  OK
666 +
667 +
686 686  )))
687 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
669 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
688 688  OK
671 +
672 +
689 689  )))
690 690  
691 691  (% style="color:blue" %)**AT Command: AT+5VT**
692 692  
693 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
694 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
695 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
677 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
678 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**
679 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
696 696  0
681 +
697 697  OK
698 698  )))
699 -|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
684 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
700 700  OK
686 +
701 701  default setting
702 702  )))
703 -|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
689 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
704 704  OK
691 +
692 +
705 705  )))
706 -|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
694 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
707 707  OK
696 +
697 +
708 708  )))
709 709  
710 710  (% style="color:blue" %)**AT Command: AT+12VT**
711 711  
712 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
713 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
714 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
702 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
703 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response**
704 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
715 715  0
706 +
716 716  OK
717 717  )))
718 -|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
719 -|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
709 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
710 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
720 720  OK
712 +
713 +
721 721  )))
722 722  
723 723  (% style="color:blue" %)**Downlink Command: 0x07**
... ... @@ -726,32 +726,35 @@
726 726  
727 727  The first byte is which power, the second and third bytes are the time to turn on.
728 728  
729 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
730 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
731 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
732 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
733 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
734 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
722 +* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
723 +* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
724 +* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
725 +* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
726 +* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
727 +* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
735 735  
736 -
737 -
738 738  == 3.4 Set the Probe Model ==
739 739  
740 740  
741 741  (% style="color:blue" %)**AT Command: AT** **+PROBE**
742 742  
743 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:448px" %)
744 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 204px;" %)**Function**|=(% style="width: 85px;" %)**Response**
745 -|(% style="width:154px" %)AT +PROBE =?|(% style="width:204px" %)Get or Set the probe model.|(% style="width:85px" %)(((
734 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
735 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response**
736 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
746 746  0
738 +
747 747  OK
748 748  )))
749 -|(% style="width:154px" %)AT +PROBE =0003|(% style="width:204px" %)Set water depth sensor mode, 3m type.|(% style="width:85px" %)OK
750 -|(% style="width:154px" %)AT +PROBE =0101|(% style="width:204px" %)Set pressure transmitters mode, first type.|(% style="width:85px" %)(((
741 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
742 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
751 751  OK
744 +
745 +
752 752  )))
753 -|(% style="width:154px" %)AT +PROBE =0000|(% style="width:204px" %)Initial state, no settings.|(% style="width:85px" %)(((
747 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
754 754  OK
749 +
750 +
755 755  )))
756 756  
757 757  (% style="color:blue" %)**Downlink Command: 0x08**
... ... @@ -758,43 +758,9 @@
758 758  
759 759  Format: Command Code (0x08) followed by 2 bytes.
760 760  
761 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
762 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
757 +* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
758 +* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
763 763  
764 -
765 -
766 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
767 -
768 -
769 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
770 -
771 -(% style="color:blue" %)**AT Command: AT** **+STDC**
772 -
773 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
774 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
775 -|(% style="width:156px" %)AT+STDC=?|(% style="width:137px" %)(((
776 -Get the mode of multiple acquisitions and one uplink
777 -)))|(((
778 -1,10,18
779 -OK
780 -)))
781 -|(% style="width:156px" %)AT+STDC=1,10,18|(% style="width:137px" %)Set the mode of multiple acquisitions and one uplink|(((
782 -OK
783 -(% style="color:#037691" %)**aa:**(%%)
784 -**0:** means disable this function and use TDC to send packets.
785 -**1:** means enable this function, use the method of multiple acquisitions to send packets.
786 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
787 -(% style="color:#037691" %)**cc: **(%%)the number of collection times, the value is 1~~120
788 -)))
789 -
790 -(% style="color:blue" %)**Downlink Command: 0xAE**
791 -
792 -Format: Command Code (0x08) followed by 5 bytes.
793 -
794 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
795 -
796 -
797 -
798 798  = 4. Battery & how to replace =
799 799  
800 800  == 4.1 Battery Type ==
... ... @@ -802,6 +802,7 @@
802 802  
803 803  PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
804 804  
767 +
805 805  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
806 806  
807 807  [[image:1675146710956-626.png]]
... ... @@ -825,10 +825,15 @@
825 825  
826 826  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
827 827  
791 +
828 828  Instruction to use as below:
829 829  
830 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
831 831  
795 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
796 +
797 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
798 +
799 +
832 832  (% style="color:blue" %)**Step 2:**(%%) Open it and choose
833 833  
834 834  * Product Model
... ... @@ -922,8 +922,6 @@
922 922  * Package Size / pcs : cm
923 923  * Weight / pcs : g
924 924  
925 -
926 -
927 927  = 10. Support =
928 928  
929 929  
image-20230201090514-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0