Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/04/19 17:58
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 2 removed)
Details
- Page properties
-
- Content
-
... ... @@ -16,33 +16,22 @@ 16 16 == 1.1 What is LoRaWAN Pressure Sensor == 17 17 18 18 19 -((( 20 20 The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 21 -))) 22 22 23 -((( 24 24 The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 25 -))) 26 26 27 -((( 28 28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 32 PS-LB supports BLE configure and wireless OTA update which make user easy to use. 33 -))) 34 34 35 -((( 36 36 PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 -))) 38 38 39 -((( 40 40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 41 -))) 42 42 43 43 [[image:1675071321348-194.png]] 44 44 45 45 34 + 46 46 == 1.2 Features == 47 47 48 48 ... ... @@ -59,8 +59,6 @@ 59 59 * Downlink to change configure 60 60 * 8500mAh Battery for long term use 61 61 62 - 63 - 64 64 == 1.3 Specification == 65 65 66 66 ... ... @@ -107,8 +107,6 @@ 107 107 * Sleep Mode: 5uA @ 3.3v 108 108 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 109 109 110 - 111 - 112 112 == 1.4 Probe Types == 113 113 114 114 === 1.4.1 Thread Installation Type === ... ... @@ -127,8 +127,6 @@ 127 127 * Operating temperature: -20℃~~60℃ 128 128 * Connector Type: Various Types, see order info 129 129 130 - 131 - 132 132 === 1.4.2 Immersion Type === 133 133 134 134 ... ... @@ -145,12 +145,11 @@ 145 145 * Operating temperature: -40℃~~85℃ 146 146 * Material: 316 stainless steels 147 147 148 - 149 - 150 150 == 1.5 Probe Dimension == 151 151 152 152 153 153 135 + 154 154 == 1.6 Application and Installation == 155 155 156 156 === 1.6.1 Thread Installation Type === ... ... @@ -205,20 +205,18 @@ 205 205 206 206 207 207 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 208 -|=(% style="width: 1 67px;" %)**Behavior on ACT**|=(% style="width:117px;" %)**Function**|=(% style="width: 225px;" %)**Action**209 -|(% style="width: 167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((190 +|=(% style="width: 150px;" %)**Behavior on ACT**|=(% style="width: 90px;" %)**Function**|=**Action** 191 +|(% style="width:260px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|((( 210 210 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 211 211 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 212 212 ))) 213 -|(% style="width:1 67px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((195 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|((( 214 214 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 215 215 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 216 216 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 217 217 ))) 218 -|(% style="width:1 67px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red"%)**Redled**(%%)will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.200 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 219 219 220 - 221 - 222 222 == 1.9 Pin Mapping == 223 223 224 224 ... ... @@ -243,6 +243,8 @@ 243 243 == 1.11 Mechanical == 244 244 245 245 226 + 227 + 246 246 [[image:1675143884058-338.png]] 247 247 248 248 ... ... @@ -260,6 +260,7 @@ 260 260 The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 261 261 262 262 245 + 263 263 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 264 264 265 265 ... ... @@ -313,6 +313,7 @@ 313 313 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 314 314 315 315 299 + 316 316 == 2.3 Uplink Payload == 317 317 318 318 ... ... @@ -334,8 +334,8 @@ 334 334 335 335 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 336 336 |(% colspan="6" %)**Device Status (FPORT=5)** 337 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**| (% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**338 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version| (% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT321 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2** 322 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT 339 339 340 340 Example parse in TTNv3 341 341 ... ... @@ -404,29 +404,16 @@ 404 404 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 405 405 |(% style="width:97px" %)((( 406 406 **Size(bytes)** 407 -)))|(% style="width:48px" %)**2**|(% style="width: 71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**408 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width: 71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]]391 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1** 392 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] 409 409 410 410 [[image:1675144608950-310.png]] 411 411 412 412 413 -=== 2.3.3 Sensor value, FPORT~=7 === 414 414 398 +=== 2.3.3 Battery Info === 415 415 416 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %) 417 -|(% style="width:94px" %)((( 418 -**Size(bytes)** 419 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n 420 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)((( 421 -Voltage value, each 2 bytes is a set of voltage values. 422 -))) 423 423 424 -[[image:image-20230220171300-1.png||height="207" width="863"]] 425 - 426 - 427 -=== 2.3.4 Battery Info === 428 - 429 - 430 430 Check the battery voltage for PS-LB. 431 431 432 432 Ex1: 0x0B45 = 2885mV ... ... @@ -434,7 +434,7 @@ 434 434 Ex2: 0x0B49 = 2889mV 435 435 436 436 437 -=== 2.3. 5Probe Model ===408 +=== 2.3.4 Probe Model === 438 438 439 439 440 440 PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. ... ... @@ -450,7 +450,7 @@ 450 450 The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value. 451 451 452 452 453 -=== 2.3. 60~~20mA value (IDC_IN) ===424 +=== 2.3.5 0~~20mA value (IDC_IN) === 454 454 455 455 456 456 The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level. ... ... @@ -460,7 +460,7 @@ 460 460 27AE(H) = 10158 (D)/1000 = 10.158mA. 461 461 462 462 463 -=== 2.3. 70~~30V value ( pin VDC_IN) ===434 +=== 2.3.6 0~~30V value ( pin VDC_IN) === 464 464 465 465 466 466 Measure the voltage value. The range is 0 to 30V. ... ... @@ -470,7 +470,7 @@ 470 470 138E(H) = 5006(D)/1000= 5.006V 471 471 472 472 473 -=== 2.3. 8IN1&IN2&INT pin ===444 +=== 2.3.7 IN1&IN2&INT pin === 474 474 475 475 476 476 IN1 and IN2 are used as digital input pins. ... ... @@ -493,7 +493,7 @@ 493 493 0x01: Interrupt Uplink Packet. 494 494 495 495 496 -=== 2.3. 9Decode payload in The Things Network ===467 +=== 2.3.8 Decode payload in The Things Network === 497 497 498 498 499 499 While using TTN network, you can add the payload format to decode the payload. ... ... @@ -551,6 +551,7 @@ 551 551 [[image:1675145060812-420.png]] 552 552 553 553 525 + 554 554 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 555 555 556 556 ... ... @@ -584,7 +584,7 @@ 584 584 585 585 There are two kinds of commands to configure PS-LB, they are: 586 586 587 -* (% style="color:#037691" %)**General Commands** 559 +* (% style="color:#037691" %)**General Commands**. 588 588 589 589 These commands are to configure: 590 590 ... ... @@ -609,14 +609,17 @@ 609 609 (% style="color:blue" %)**AT Command: AT+TDC** 610 610 611 611 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 612 -| =(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**613 -| (% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((584 +|**Command Example**|**Function**|**Response** 585 +|AT+TDC=?|Show current transmit Interval|((( 614 614 30000 587 + 615 615 OK 589 + 616 616 the interval is 30000ms = 30s 617 617 ))) 618 -| (% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((592 +|AT+TDC=60000|Set Transmit Interval|((( 619 619 OK 594 + 620 620 Set transmit interval to 60000ms = 60 seconds 621 621 ))) 622 622 ... ... @@ -624,13 +624,12 @@ 624 624 625 625 Format: Command Code (0x01) followed by 3 bytes time value. 626 626 627 -If the downlink payload=0100003C, it means set the END Node 's Transmit Interval to 0x00003C=60(S), while type code is 01.602 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 628 628 629 -* Example 1: Downlink Payload: 0100001E 630 -* Example 2: Downlink Payload: 0100003C 604 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 605 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 631 631 632 632 633 - 634 634 == 3.2 Set Interrupt Mode == 635 635 636 636 ... ... @@ -639,19 +639,25 @@ 639 639 (% style="color:blue" %)**AT Command: AT+INTMOD** 640 640 641 641 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 642 -| =(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**643 -| (% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((616 +|**Command Example**|**Function**|**Response** 617 +|AT+INTMOD=?|Show current interrupt mode|((( 644 644 0 619 + 645 645 OK 621 + 646 646 the mode is 0 = No interruption 647 647 ))) 648 -| (% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((624 +|AT+INTMOD=2|((( 649 649 Set Transmit Interval 626 + 650 650 ~1. (Disable Interrupt), 651 -2. (Trigger by rising and falling edge) 628 + 629 +2. (Trigger by rising and falling edge), 630 + 652 652 3. (Trigger by falling edge) 632 + 653 653 4. (Trigger by rising edge) 654 -)))| (% style="width:157px" %)OK634 +)))|OK 655 655 656 656 (% style="color:blue" %)**Downlink Command: 0x06** 657 657 ... ... @@ -659,11 +659,9 @@ 659 659 660 660 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 661 661 662 -* Example 1: Downlink Payload: 06000000 663 -* Example 2: Downlink Payload: 06000003 642 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 643 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 664 664 665 - 666 - 667 667 == 3.3 Set the output time == 668 668 669 669 ... ... @@ -671,53 +671,68 @@ 671 671 672 672 (% style="color:blue" %)**AT Command: AT+3V3T** 673 673 674 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 474px" %)675 -| =(% style="width:4px;" %)**Command Example**|=(% style="width:01px;" %)**Function**|=(% style="width:6px;" %)**Response**676 -|(% style="width:15 4px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((652 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 653 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response** 654 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)((( 677 677 0 656 + 678 678 OK 679 679 ))) 680 -|(% style="width:15 4px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((659 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)((( 681 681 OK 661 + 682 682 default setting 683 683 ))) 684 -|(% style="width:15 4px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((664 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)((( 685 685 OK 666 + 667 + 686 686 ))) 687 -|(% style="width:15 4px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((669 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)((( 688 688 OK 671 + 672 + 689 689 ))) 690 690 691 691 (% style="color:blue" %)**AT Command: AT+5VT** 692 692 693 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 470px" %)694 -| =(% style="width:5px;" %)**Command Example**|=(% style="width:196px;" %)**Function**|=(% style="width:4px;" %)**Response**695 -|(% style="width:15 5px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((677 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 678 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response** 679 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)((( 696 696 0 681 + 697 697 OK 698 698 ))) 699 -|(% style="width:15 5px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((684 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)((( 700 700 OK 686 + 701 701 default setting 702 702 ))) 703 -|(% style="width:15 5px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((689 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)((( 704 704 OK 691 + 692 + 705 705 ))) 706 -|(% style="width:15 5px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((694 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)((( 707 707 OK 696 + 697 + 708 708 ))) 709 709 710 710 (% style="color:blue" %)**AT Command: AT+12VT** 711 711 712 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 443px" %)713 -| =(% style="width:;" %)**Command Example**|=(% style="width:199px;" %)**Function**|=(% style="width: 83px;" %)**Response**714 -|(% style="width:156px" %)AT+12VT=?|(% style="width: 199px" %)Show 12V open time.|(% style="width:83px" %)(((702 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 703 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response** 704 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|((( 715 715 0 706 + 716 716 OK 717 717 ))) 718 -|(% style="width:156px" %)AT+12VT=0|(% style="width: 199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK719 -|(% style="width:156px" %)AT+12VT=500|(% style="width: 199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((709 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK 710 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|((( 720 720 OK 712 + 713 + 721 721 ))) 722 722 723 723 (% style="color:blue" %)**Downlink Command: 0x07** ... ... @@ -726,32 +726,35 @@ 726 726 727 727 The first byte is which power, the second and third bytes are the time to turn on. 728 728 729 -* Example 1: Downlink Payload: 070101F4 **~-~-->**730 -* Example 2: Downlink Payload: 0701FFFF **~-~-->**AT+3V3T=65535731 -* Example 3: Downlink Payload: 070203E8 **~-~-->**AT+5VT=1000732 -* Example 4: Downlink Payload: 07020000 **~-~-->**AT+5VT=0733 -* Example 5: Downlink Payload: 070301F4 **~-~-->**AT+12VT=500734 -* Example 6: Downlink Payload: 07030000 **~-~-->**AT+12VT=0722 +* Example 1: Downlink Payload: 070101F4 -> AT+3V3T=500 723 +* Example 2: Downlink Payload: 0701FFFF -> AT+3V3T=65535 724 +* Example 3: Downlink Payload: 070203E8 -> AT+5VT=1000 725 +* Example 4: Downlink Payload: 07020000 -> AT+5VT=0 726 +* Example 5: Downlink Payload: 070301F4 -> AT+12VT=500 727 +* Example 6: Downlink Payload: 07030000 -> AT+12VT=0 735 735 736 - 737 - 738 738 == 3.4 Set the Probe Model == 739 739 740 740 741 741 (% style="color:blue" %)**AT Command: AT** **+PROBE** 742 742 743 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 448px" %)744 -| =(% style="width:4px;" %)**Command Example**|=(% style="width:04px;" %)**Function**|=(% style="width: 85px;" %)**Response**745 -|(% style="width:15 4px" %)AT +PROBE =?|(% style="width:204px" %)Get or Set the probe model.|(% style="width:85px" %)(((734 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 735 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response** 736 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|((( 746 746 0 738 + 747 747 OK 748 748 ))) 749 -|(% style="width:15 4px" %)AT +PROBE =0003|(% style="width:204px" %)Set water depth sensor mode, 3m type.|(% style="width:85px" %)OK750 -|(% style="width:15 4px" %)AT +PROBE =0101|(% style="width:204px" %)Set pressure transmitters mode, first type.|(% style="width:85px" %)(((741 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK 742 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|((( 751 751 OK 744 + 745 + 752 752 ))) 753 -|(% style="width:15 4px" %)AT +PROBE =0000|(% style="width:204px" %)Initial state, no settings.|(% style="width:85px" %)(((747 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|((( 754 754 OK 749 + 750 + 755 755 ))) 756 756 757 757 (% style="color:blue" %)**Downlink Command: 0x08** ... ... @@ -758,43 +758,9 @@ 758 758 759 759 Format: Command Code (0x08) followed by 2 bytes. 760 760 761 -* Example 1: Downlink Payload: 080003 **~-~-->**762 -* Example 2: Downlink Payload: 080101 **~-~-->**757 +* Example 1: Downlink Payload: 080003 -> AT+PROBE=0003 758 +* Example 2: Downlink Payload: 080101 -> AT+PROBE=0101 763 763 764 - 765 - 766 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) == 767 - 768 - 769 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time. 770 - 771 -(% style="color:blue" %)**AT Command: AT** **+STDC** 772 - 773 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 774 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response** 775 -|(% style="width:156px" %)AT+STDC=?|(% style="width:137px" %)((( 776 -Get the mode of multiple acquisitions and one uplink 777 -)))|((( 778 -1,10,18 779 -OK 780 -))) 781 -|(% style="width:156px" %)AT+STDC=1,10,18|(% style="width:137px" %)Set the mode of multiple acquisitions and one uplink|((( 782 -OK 783 -(% style="color:#037691" %)**aa:**(%%) 784 -**0:** means disable this function and use TDC to send packets. 785 -**1:** means enable this function, use the method of multiple acquisitions to send packets. 786 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535 787 -(% style="color:#037691" %)**cc: **(%%)the number of collection times, the value is 1~~120 788 -))) 789 - 790 -(% style="color:blue" %)**Downlink Command: 0xAE** 791 - 792 -Format: Command Code (0x08) followed by 5 bytes. 793 - 794 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->** AT+STDC=1,600,18 795 - 796 - 797 - 798 798 = 4. Battery & how to replace = 799 799 800 800 == 4.1 Battery Type == ... ... @@ -802,6 +802,7 @@ 802 802 803 803 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 804 804 767 + 805 805 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 806 806 807 807 [[image:1675146710956-626.png]] ... ... @@ -825,10 +825,15 @@ 825 825 826 826 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 827 827 791 + 828 828 Instruction to use as below: 829 829 830 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 831 831 795 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 796 + 797 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 798 + 799 + 832 832 (% style="color:blue" %)**Step 2:**(%%) Open it and choose 833 833 834 834 * Product Model ... ... @@ -922,8 +922,6 @@ 922 922 * Package Size / pcs : cm 923 923 * Weight / pcs : g 924 924 925 - 926 - 927 927 = 10. Support = 928 928 929 929
- image-20230201090514-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -560.9 KB - Content
- image-20230220171300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.0 KB - Content