Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/04/19 17:58
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 2 removed)
Details
- Page properties
-
- Content
-
... ... @@ -16,33 +16,22 @@ 16 16 == 1.1 What is LoRaWAN Pressure Sensor == 17 17 18 18 19 -((( 20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 21 -))) 19 +The Dragino PS-LB series sensors are **(% style="color:blue" %)LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 22 22 23 -((( 24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 25 -))) 21 +The PS-LB series sensors include **(% style="color:blue" %)Thread Installation Type**(%%) and **(% style="color:blue" %)Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 26 26 27 -((( 28 28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 32 PS-LB supports BLE configure and wireless OTA update which make user easy to use. 33 -))) 34 34 35 -((( 36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 -))) 27 +PS-LB is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 38 38 39 -((( 40 40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 41 -))) 42 42 43 43 [[image:1675071321348-194.png]] 44 44 45 45 34 + 46 46 == 1.2 Features == 47 47 48 48 ... ... @@ -60,22 +60,21 @@ 60 60 * 8500mAh Battery for long term use 61 61 62 62 63 - 64 64 == 1.3 Specification == 65 65 66 66 67 -(% style="color:#037691" %) **Micro Controller:**55 +**(% style="color:#037691" %)Micro Controller:** 68 68 69 69 * MCU: 48Mhz ARM 70 70 * Flash: 256KB 71 71 * RAM: 64KB 72 72 73 -(% style="color:#037691" %) **Common DC Characteristics:**61 +**(% style="color:#037691" %)Common DC Characteristics:** 74 74 75 75 * Supply Voltage: 2.5v ~~ 3.6v 76 76 * Operating Temperature: -40 ~~ 85°C 77 77 78 -(% style="color:#037691" %) **LoRa Spec:**66 +**(% style="color:#037691" %)LoRa Spec:** 79 79 80 80 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 81 81 * Max +22 dBm constant RF output vs. ... ... @@ -82,19 +82,19 @@ 82 82 * RX sensitivity: down to -139 dBm. 83 83 * Excellent blocking immunity 84 84 85 -(% style="color:#037691" %) **Current Input Measuring :**73 +**(% style="color:#037691" %)Current Input Measuring :** 86 86 87 87 * Range: 0 ~~ 20mA 88 88 * Accuracy: 0.02mA 89 89 * Resolution: 0.001mA 90 90 91 -(% style="color:#037691" %) **Voltage Input Measuring:**79 +**(% style="color:#037691" %)Voltage Input Measuring:** 92 92 93 93 * Range: 0 ~~ 30v 94 94 * Accuracy: 0.02v 95 95 * Resolution: 0.001v 96 96 97 -(% style="color:#037691" %) **Battery:**85 +**(% style="color:#037691" %)Battery:** 98 98 99 99 * Li/SOCI2 un-chargeable battery 100 100 * Capacity: 8500mAh ... ... @@ -102,13 +102,12 @@ 102 102 * Max continuously current: 130mA 103 103 * Max boost current: 2A, 1 second 104 104 105 -(% style="color:#037691" %) **Power Consumption**93 +**(% style="color:#037691" %)Power Consumption** 106 106 107 107 * Sleep Mode: 5uA @ 3.3v 108 108 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 109 109 110 110 111 - 112 112 == 1.4 Probe Types == 113 113 114 114 === 1.4.1 Thread Installation Type === ... ... @@ -128,7 +128,6 @@ 128 128 * Connector Type: Various Types, see order info 129 129 130 130 131 - 132 132 === 1.4.2 Immersion Type === 133 133 134 134 ... ... @@ -146,17 +146,17 @@ 146 146 * Material: 316 stainless steels 147 147 148 148 149 - 150 150 == 1.5 Probe Dimension == 151 151 152 152 153 153 139 + 154 154 == 1.6 Application and Installation == 155 155 156 156 === 1.6.1 Thread Installation Type === 157 157 158 158 159 -(% style="color:blue" %) **Application:**145 +**(% style="color:blue" %)Application:** 160 160 161 161 * Hydraulic Pressure 162 162 * Petrochemical Industry ... ... @@ -174,7 +174,7 @@ 174 174 === 1.6.2 Immersion Type === 175 175 176 176 177 -(% style="color:blue" %) **Application:**163 +**(% style="color:blue" %)Application:** 178 178 179 179 Liquid & Water Pressure / Level detect. 180 180 ... ... @@ -193,9 +193,9 @@ 193 193 == 1.7 Sleep mode and working mode == 194 194 195 195 196 -(% style="color:blue" %) **Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.182 +**(% style="color:blue" %)Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 197 197 198 -(% style="color:blue" %) **Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.184 +**(% style="color:blue" %)Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 199 199 200 200 201 201 == 1.8 Button & LEDs == ... ... @@ -205,17 +205,20 @@ 205 205 206 206 207 207 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 208 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action** 209 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 210 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 194 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action** 195 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|((( 196 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **(% style="color:blue" %)blue led** (%%)will blink once. 197 + 211 211 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 212 212 ))) 213 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 214 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 215 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 200 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|((( 201 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:#037691" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 202 + 203 +**(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network. 204 + 216 216 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 217 217 ))) 218 -|(% style="width:1 67px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red"%)**Redled**(%%)will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.207 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 219 219 220 220 221 221 ... ... @@ -243,6 +243,8 @@ 243 243 == 1.11 Mechanical == 244 244 245 245 235 + 236 + 246 246 [[image:1675143884058-338.png]] 247 247 248 248 ... ... @@ -257,9 +257,10 @@ 257 257 == 2.1 How it works == 258 258 259 259 260 -The PS-LB is configured as (% style="color:#037691" %) **LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.251 +The PS-LB is configured as **(% style="color:#037691" %)LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 261 261 262 262 254 + 263 263 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 264 264 265 265 ... ... @@ -272,7 +272,7 @@ 272 272 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 273 273 274 274 275 -(% style="color:blue" %) **Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.267 +**(% style="color:blue" %)Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB. 276 276 277 277 Each PS-LB is shipped with a sticker with the default device EUI as below: 278 278 ... ... @@ -283,36 +283,37 @@ 283 283 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 284 284 285 285 286 -(% style="color:blue" %) **Register the device**278 +**(% style="color:blue" %)Register the device** 287 287 288 288 [[image:1675144099263-405.png]] 289 289 290 290 291 -(% style="color:blue" %) **Add APP EUI and DEV EUI**283 +**(% style="color:blue" %)Add APP EUI and DEV EUI** 292 292 293 293 [[image:1675144117571-832.png]] 294 294 295 295 296 -(% style="color:blue" %) **Add APP EUI in the application**288 +**(% style="color:blue" %)Add APP EUI in the application** 297 297 298 298 299 299 [[image:1675144143021-195.png]] 300 300 301 301 302 -(% style="color:blue" %) **Add APP KEY**294 +**(% style="color:blue" %)Add APP KEY** 303 303 304 304 [[image:1675144157838-392.png]] 305 305 306 -(% style="color:blue" %) **Step 2:**(%%) Activate on PS-LB298 +**(% style="color:blue" %)Step 2:**(%%) Activate on PS-LB 307 307 308 308 309 309 Press the button for 5 seconds to activate the PS-LB. 310 310 311 -(% style="color:green" %) **Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.303 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:blue" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. **(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network. 312 312 313 313 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 314 314 315 315 308 + 316 316 == 2.3 Uplink Payload == 317 317 318 318 ... ... @@ -334,8 +334,8 @@ 334 334 335 335 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 336 336 |(% colspan="6" %)**Device Status (FPORT=5)** 337 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**| (% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**338 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version| (% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT330 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2** 331 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT 339 339 340 340 Example parse in TTNv3 341 341 ... ... @@ -342,11 +342,11 @@ 342 342 [[image:1675144504430-490.png]] 343 343 344 344 345 -(% style="color:#037691" %) **Sensor Model**(%%): For PS-LB, this value is 0x16338 +**(% style="color:#037691" %)Sensor Model**(%%): For PS-LB, this value is 0x16 346 346 347 -(% style="color:#037691" %) **Firmware Version**(%%): 0x0100, Means: v1.0.0 version340 +**(% style="color:#037691" %)Firmware Version**(%%): 0x0100, Means: v1.0.0 version 348 348 349 -(% style="color:#037691" %) **Frequency Band**:342 +**(% style="color:#037691" %)Frequency Band**: 350 350 351 351 *0x01: EU868 352 352 ... ... @@ -377,7 +377,7 @@ 377 377 *0x0e: MA869 378 378 379 379 380 -(% style="color:#037691" %) **Sub-Band**:373 +**(% style="color:#037691" %)Sub-Band**: 381 381 382 382 AU915 and US915:value 0x00 ~~ 0x08 383 383 ... ... @@ -386,7 +386,7 @@ 386 386 Other Bands: Always 0x00 387 387 388 388 389 -(% style="color:#037691" %) **Battery Info**:382 +**(% style="color:#037691" %)Battery Info**: 390 390 391 391 Check the battery voltage. 392 392 ... ... @@ -404,29 +404,16 @@ 404 404 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 405 405 |(% style="width:97px" %)((( 406 406 **Size(bytes)** 407 -)))|(% style="width:48px" %)**2**|(% style="width: 71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**408 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>> ||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]]400 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1** 401 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>path:#bat]]|(% style="width:58px" %)[[Probe Model>>path:#Probe_Model]]|0 ~~ 20mA value|[[0 ~~~~ 30v value>>path:#Voltage_30v]]|[[IN1 &IN2 Interrupt flag>>path:#Int_pin]] 409 409 410 410 [[image:1675144608950-310.png]] 411 411 412 412 413 -=== 2.3.3 Sensor value, FPORT~=7 === 414 414 407 +=== 2.3.3 Battery Info === 415 415 416 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %) 417 -|(% style="width:94px" %)((( 418 -**Size(bytes)** 419 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n 420 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)((( 421 -Voltage value, each 2 bytes is a set of voltage values. 422 -))) 423 423 424 -[[image:image-20230220171300-1.png||height="207" width="863"]] 425 - 426 - 427 -=== 2.3.4 Battery Info === 428 - 429 - 430 430 Check the battery voltage for PS-LB. 431 431 432 432 Ex1: 0x0B45 = 2885mV ... ... @@ -434,7 +434,7 @@ 434 434 Ex2: 0x0B49 = 2889mV 435 435 436 436 437 -=== 2.3. 5Probe Model ===417 +=== 2.3.4 Probe Model === 438 438 439 439 440 440 PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. ... ... @@ -450,50 +450,50 @@ 450 450 The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value. 451 451 452 452 453 -=== 2.3. 60~~20mA value (IDC_IN) ===433 +=== 2.3.5 0~~20mA value (IDC_IN) === 454 454 455 455 456 456 The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level. 457 457 458 -(% style="color:#037691" %) **Example**:438 +**(% style="color:#037691" %)Example**: 459 459 460 460 27AE(H) = 10158 (D)/1000 = 10.158mA. 461 461 462 462 463 -=== 2.3. 70~~30V value ( pin VDC_IN) ===443 +=== 2.3.6 0~~30V value ( pin VDC_IN) === 464 464 465 465 466 466 Measure the voltage value. The range is 0 to 30V. 467 467 468 -(% style="color:#037691" %) **Example**:448 +**(% style="color:#037691" %)Example**: 469 469 470 470 138E(H) = 5006(D)/1000= 5.006V 471 471 472 472 473 -=== 2.3. 8IN1&IN2&INT pin ===453 +=== 2.3.7 IN1&IN2&INT pin === 474 474 475 475 476 476 IN1 and IN2 are used as digital input pins. 477 477 478 -(% style="color:#037691" %) **Example**:458 +**(% style="color:#037691" %)Example**: 479 479 480 -09 (H) :(0x09&0x08)>>3=1 IN1 pin is high level.460 +09 (H) :(0x09&0x08)>>3=1 IN1 pin is high level. 481 481 482 -09 (H) :(0x09&0x04)>>2=0 IN2 pin is low level.462 +09 (H) :(0x09&0x04)>>2=0 IN2 pin is low level. 483 483 484 484 485 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin**(%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.465 +This data field shows if this packet is generated by **Interrupt Pin** or not. [[Click here>>path:#Int_mod]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal. 486 486 487 -(% style="color:#037691" %) **Example:**467 +**(% style="color:#037691" %)Example:** 488 488 489 -09 (H): (0x09&0x02)>>1=1 The level of the interrupt pin. 469 +09 (H) : (0x09&0x02)>>1=1 The level of the interrupt pin. 490 490 491 -09 (H): 0x09&0x01=1 0x00: Normal uplink packet. 471 +09 (H) : 0x09&0x01=1 0x00: Normal uplink packet. 492 492 493 493 0x01: Interrupt Uplink Packet. 494 494 495 495 496 -=== 2.3. 9Decode payload in The Things Network ===476 +=== 2.3.8 Decode payload in The Things Network === 497 497 498 498 499 499 While using TTN network, you can add the payload format to decode the payload. ... ... @@ -517,9 +517,9 @@ 517 517 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 518 518 519 519 520 -(% style="color:blue" %) **Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.500 +**(% style="color:blue" %)Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time. 521 521 522 -(% style="color:blue" %) **Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:502 +**(% style="color:blue" %)Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 523 523 524 524 525 525 [[image:1675144951092-237.png]] ... ... @@ -528,9 +528,9 @@ 528 528 [[image:1675144960452-126.png]] 529 529 530 530 531 -(% style="color:blue" %) **Step 3:**(%%) Create an account or log in Datacake.511 +**(% style="color:blue" %)Step 3:**(%%) Create an account or log in Datacake. 532 532 533 -(% style="color:blue" %) **Step 4:** (%%)Create PS-LB product.513 +**(% style="color:#blue" %)Step 4:** (%%)Create PS-LB product. 534 534 535 535 [[image:1675145004465-869.png]] 536 536 ... ... @@ -543,7 +543,7 @@ 543 543 [[image:1675145029119-717.png]] 544 544 545 545 546 -(% style="color:blue" %) **Step 5: **(%%)add payload decode526 +**(% style="color:blue" %)Step 5: **(%%)add payload decode 547 547 548 548 [[image:1675145051360-659.png]] 549 549 ... ... @@ -551,6 +551,7 @@ 551 551 [[image:1675145060812-420.png]] 552 552 553 553 534 + 554 554 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 555 555 556 556 ... ... @@ -579,12 +579,13 @@ 579 579 580 580 Use can configure PS-LB via AT Command or LoRaWAN Downlink. 581 581 582 -* AT Command Connection: See [[FAQ>> ||anchor="H7.FAQ"]].563 +* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]]. 583 583 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 584 584 566 + 585 585 There are two kinds of commands to configure PS-LB, they are: 586 586 587 -* (% style="color:#037691" %)**General Commands**569 +* **General Commands**. 588 588 589 589 These commands are to configure: 590 590 ... ... @@ -596,7 +596,7 @@ 596 596 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 597 597 598 598 599 -* (% style="color:#037691" %)**Commands special design for PS-LB**581 +* **Commands special design for PS-LB** 600 600 601 601 These commands only valid for PS-LB, as below: 602 602 ... ... @@ -606,61 +606,69 @@ 606 606 607 607 Feature: Change LoRaWAN End Node Transmit Interval. 608 608 609 - (% style="color:blue" %)**AT Command: AT+TDC**591 +**AT Command: AT+TDC** 610 610 611 611 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 612 -| =(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**613 -| (% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((594 +|**Command Example**|**Function**|**Response** 595 +|AT+TDC=?|Show current transmit Interval|((( 614 614 30000 597 + 615 615 OK 599 + 616 616 the interval is 30000ms = 30s 617 617 ))) 618 -| (% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((602 +|AT+TDC=60000|Set Transmit Interval|((( 619 619 OK 604 + 620 620 Set transmit interval to 60000ms = 60 seconds 621 621 ))) 622 622 623 - (% style="color:blue" %)**Downlink Command: 0x01**608 +**Downlink Command: 0x01** 624 624 625 625 Format: Command Code (0x01) followed by 3 bytes time value. 626 626 627 -If the downlink payload=0100003C, it means set the END Node 's Transmit Interval to 0x00003C=60(S), while type code is 01.612 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 628 628 629 -* Example 1: Downlink Payload: 0100001E 630 -* Example 2: Downlink Payload: 0100003C 614 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 615 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 631 631 632 632 633 - 634 634 == 3.2 Set Interrupt Mode == 635 635 636 636 637 637 Feature, Set Interrupt mode for GPIO_EXIT. 638 638 639 - (% style="color:blue" %)**AT Command: AT+INTMOD**623 +**AT Command: AT+INTMOD** 640 640 641 641 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 642 -| =(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**643 -| (% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((626 +|**Command Example**|**Function**|**Response** 627 +|AT+INTMOD=?|Show current interrupt mode|((( 644 644 0 629 + 645 645 OK 631 + 646 646 the mode is 0 = No interruption 647 647 ))) 648 -| (% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((634 +|AT+INTMOD=2|((( 649 649 Set Transmit Interval 636 + 650 650 ~1. (Disable Interrupt), 651 -2. (Trigger by rising and falling edge) 638 + 639 +2. (Trigger by rising and falling edge), 640 + 652 652 3. (Trigger by falling edge) 642 + 653 653 4. (Trigger by rising edge) 654 -)))| (% style="width:157px" %)OK644 +)))|OK 655 655 656 - (% style="color:blue" %)**Downlink Command: 0x06**646 +**Downlink Command: 0x06** 657 657 658 658 Format: Command Code (0x06) followed by 3 bytes. 659 659 660 660 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 661 661 662 -* Example 1: Downlink Payload: 06000000 663 -* Example 2: Downlink Payload: 06000003 652 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 653 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 664 664 665 665 666 666 ... ... @@ -669,69 +669,87 @@ 669 669 670 670 Feature, Control the output 3V3 , 5V or 12V. 671 671 672 - (% style="color:blue" %)**AT Command: AT+3V3T**662 +**AT Command: AT+3V3T** 673 673 674 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 474px" %)675 -| =(% style="width:4px;" %)**Command Example**|=(% style="width:01px;" %)**Function**|=(% style="width:6px;" %)**Response**676 -|(% style="width:15 4px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((664 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 665 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response** 666 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)((( 677 677 0 668 + 678 678 OK 679 679 ))) 680 -|(% style="width:15 4px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((671 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)((( 681 681 OK 673 + 682 682 default setting 683 683 ))) 684 -|(% style="width:15 4px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((676 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)((( 685 685 OK 678 + 679 + 686 686 ))) 687 -|(% style="width:15 4px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((681 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)((( 688 688 OK 683 + 684 + 689 689 ))) 690 690 691 -(% style="color:blue" %)**AT Command: AT+5VT** 692 692 693 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %) 694 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response** 695 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)((( 688 +**AT Command: AT+5VT** 689 + 690 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 691 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response** 692 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)((( 696 696 0 694 + 697 697 OK 698 698 ))) 699 -|(% style="width:15 5px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((697 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)((( 700 700 OK 699 + 701 701 default setting 702 702 ))) 703 -|(% style="width:15 5px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((702 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)((( 704 704 OK 704 + 705 + 705 705 ))) 706 -|(% style="width:15 5px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((707 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)((( 707 707 OK 709 + 710 + 708 708 ))) 709 709 710 -(% style="color:blue" %)**AT Command: AT+12VT** 711 711 712 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %) 713 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response** 714 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)((( 714 +**AT Command: AT+12VT** 715 + 716 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 717 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response** 718 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|((( 715 715 0 720 + 716 716 OK 717 717 ))) 718 -|(% style="width:156px" %)AT+12VT=0|(% style="width: 199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK719 -|(% style="width:156px" %)AT+12VT=500|(% style="width: 199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((723 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK 724 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|((( 720 720 OK 726 + 727 + 721 721 ))) 722 722 723 -(% style="color:blue" %)**Downlink Command: 0x07** 724 724 731 +**Downlink Command: 0x07** 732 + 725 725 Format: Command Code (0x07) followed by 3 bytes. 726 726 727 727 The first byte is which power, the second and third bytes are the time to turn on. 728 728 729 -* Example 1: Downlink Payload: 070101F4 **~-~-->**730 -* Example 2: Downlink Payload: 0701FFFF **~-~-->**AT+3V3T=65535731 -* Example 3: Downlink Payload: 070203E8 **~-~-->**AT+5VT=1000732 -* Example 4: Downlink Payload: 07020000 **~-~-->**AT+5VT=0733 -* Example 5: Downlink Payload: 070301F4 **~-~-->**AT+12VT=500734 -* Example 6: Downlink Payload: 07030000 **~-~-->**AT+12VT=0737 +* Example 1: Downlink Payload: 070101F4 -> AT+3V3T=500 738 +* Example 2: Downlink Payload: 0701FFFF -> AT+3V3T=65535 739 +* Example 3: Downlink Payload: 070203E8 -> AT+5VT=1000 740 +* Example 4: Downlink Payload: 07020000 -> AT+5VT=0 741 +* Example 5: Downlink Payload: 070301F4 -> AT+12VT=500 742 +* Example 6: Downlink Payload: 07030000 -> AT+12VT=0 735 735 736 736 737 737 ... ... @@ -738,63 +738,36 @@ 738 738 == 3.4 Set the Probe Model == 739 739 740 740 741 - (% style="color:blue" %)**AT Command: AT** **+PROBE**749 +**AT Command: AT** **+PROBE** 742 742 743 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 448px" %)744 -| =(% style="width:4px;" %)**Command Example**|=(% style="width:04px;" %)**Function**|=(% style="width: 85px;" %)**Response**745 -|(% style="width:15 4px" %)AT +PROBE =?|(% style="width:204px" %)Get or Set the probe model.|(% style="width:85px" %)(((751 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 752 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response** 753 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|((( 746 746 0 755 + 747 747 OK 748 748 ))) 749 -|(% style="width:15 4px" %)AT +PROBE =0003|(% style="width:204px" %)Set water depth sensor mode, 3m type.|(% style="width:85px" %)OK750 -|(% style="width:15 4px" %)AT +PROBE =0101|(% style="width:204px" %)Set pressure transmitters mode, first type.|(% style="width:85px" %)(((758 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK 759 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|((( 751 751 OK 761 + 762 + 752 752 ))) 753 -|(% style="width:15 4px" %)AT +PROBE =0000|(% style="width:204px" %)Initial state, no settings.|(% style="width:85px" %)(((764 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|((( 754 754 OK 766 + 767 + 755 755 ))) 756 756 757 - (% style="color:blue" %)**Downlink Command: 0x08**770 +**Downlink Command: 0x08** 758 758 759 759 Format: Command Code (0x08) followed by 2 bytes. 760 760 761 -* Example 1: Downlink Payload: 080003 **~-~-->**762 -* Example 2: Downlink Payload: 080101 **~-~-->**774 +* Example 1: Downlink Payload: 080003 -> AT+PROBE=0003 775 +* Example 2: Downlink Payload: 080101 -> AT+PROBE=0101 763 763 764 764 765 765 766 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) == 767 - 768 - 769 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time. 770 - 771 -(% style="color:blue" %)**AT Command: AT** **+STDC** 772 - 773 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 774 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response** 775 -|(% style="width:156px" %)AT+STDC=?|(% style="width:137px" %)((( 776 -Get the mode of multiple acquisitions and one uplink 777 -)))|((( 778 -1,10,18 779 -OK 780 -))) 781 -|(% style="width:156px" %)AT+STDC=1,10,18|(% style="width:137px" %)Set the mode of multiple acquisitions and one uplink|((( 782 -OK 783 -(% style="color:#037691" %)**aa:**(%%) 784 -**0:** means disable this function and use TDC to send packets. 785 -**1:** means enable this function, use the method of multiple acquisitions to send packets. 786 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535 787 -(% style="color:#037691" %)**cc: **(%%)the number of collection times, the value is 1~~120 788 -))) 789 - 790 -(% style="color:blue" %)**Downlink Command: 0xAE** 791 - 792 -Format: Command Code (0x08) followed by 5 bytes. 793 - 794 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->** AT+STDC=1,600,18 795 - 796 - 797 - 798 798 = 4. Battery & how to replace = 799 799 800 800 == 4.1 Battery Type == ... ... @@ -802,6 +802,7 @@ 802 802 803 803 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 804 804 786 + 805 805 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 806 806 807 807 [[image:1675146710956-626.png]] ... ... @@ -825,12 +825,17 @@ 825 825 826 826 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 827 827 810 + 828 828 Instruction to use as below: 829 829 830 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 831 831 832 - (% style="color:blue" %)**Step2:**(%%)Openand choose814 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 833 833 816 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 817 + 818 + 819 +**Step 2:** Open it and choose 820 + 834 834 * Product Model 835 835 * Uplink Interval 836 836 * Working Mode ... ... @@ -911,11 +911,11 @@ 911 911 = 9. Packing Info = 912 912 913 913 914 - (% style="color:#037691" %)**Package Includes**:901 +**Package Includes**: 915 915 916 916 * PS-LB LoRaWAN Pressure Sensor 917 917 918 - (% style="color:#037691" %)**Dimension and weight**:905 +**Dimension and weight**: 919 919 920 920 * Device Size: cm 921 921 * Device Weight: g ... ... @@ -928,7 +928,6 @@ 928 928 929 929 930 930 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 931 - 932 932 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 933 933 934 934
- image-20230201090514-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -560.9 KB - Content
- image-20230220171300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.0 KB - Content