Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/04/19 17:58
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 2 removed)
Details
- Page properties
-
- Content
-
... ... @@ -16,33 +16,22 @@ 16 16 == 1.1 What is LoRaWAN Pressure Sensor == 17 17 18 18 19 -((( 20 20 The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 21 -))) 22 22 23 -((( 24 24 The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 25 -))) 26 26 27 -((( 28 28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 32 PS-LB supports BLE configure and wireless OTA update which make user easy to use. 33 -))) 34 34 35 -((( 36 36 PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 -))) 38 38 39 -((( 40 40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 41 -))) 42 42 43 43 [[image:1675071321348-194.png]] 44 44 45 45 34 + 46 46 == 1.2 Features == 47 47 48 48 ... ... @@ -143,6 +143,7 @@ 143 143 144 144 145 145 135 + 146 146 == 1.6 Application and Installation == 147 147 148 148 === 1.6.1 Thread Installation Type === ... ... @@ -197,17 +197,17 @@ 197 197 198 198 199 199 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 200 -|=(% style="width: 1 67px;" %)**Behavior on ACT**|=(% style="width:117px;" %)**Function**|=(% style="width: 225px;" %)**Action**201 -|(% style="width: 167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((190 +|=(% style="width: 150px;" %)**Behavior on ACT**|=(% style="width: 90px;" %)**Function**|=**Action** 191 +|(% style="width:260px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|((( 202 202 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 203 203 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 204 204 ))) 205 -|(% style="width:1 67px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((195 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|((( 206 206 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 207 207 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 208 208 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 209 209 ))) 210 -|(% style="width:1 67px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red"%)**Redled**(%%)will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.200 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 211 211 212 212 == 1.9 Pin Mapping == 213 213 ... ... @@ -233,6 +233,8 @@ 233 233 == 1.11 Mechanical == 234 234 235 235 226 + 227 + 236 236 [[image:1675143884058-338.png]] 237 237 238 238 ... ... @@ -250,6 +250,7 @@ 250 250 The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 251 251 252 252 245 + 253 253 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 254 254 255 255 ... ... @@ -325,8 +325,8 @@ 325 325 326 326 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 327 327 |(% colspan="6" %)**Device Status (FPORT=5)** 328 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**| (% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**329 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version| (% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT321 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2** 322 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT 330 330 331 331 Example parse in TTNv3 332 332 ... ... @@ -396,28 +396,15 @@ 396 396 |(% style="width:97px" %)((( 397 397 **Size(bytes)** 398 398 )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1** 399 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] 392 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] 400 400 401 401 [[image:1675144608950-310.png]] 402 402 403 403 404 -=== 2.3.3 Sensor value, FPORT~=7 === 405 405 398 +=== 2.3.3 Battery Info === 406 406 407 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %) 408 -|(% style="width:94px" %)((( 409 -**Size(bytes)** 410 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n 411 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)((( 412 -Voltage value, each 2 bytes is a set of voltage values. 413 -))) 414 414 415 -[[image:image-20230220171300-1.png||height="207" width="863"]] 416 - 417 - 418 -=== 2.3.4 Battery Info === 419 - 420 - 421 421 Check the battery voltage for PS-LB. 422 422 423 423 Ex1: 0x0B45 = 2885mV ... ... @@ -425,7 +425,7 @@ 425 425 Ex2: 0x0B49 = 2889mV 426 426 427 427 428 -=== 2.3. 5Probe Model ===408 +=== 2.3.4 Probe Model === 429 429 430 430 431 431 PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. ... ... @@ -441,7 +441,7 @@ 441 441 The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value. 442 442 443 443 444 -=== 2.3. 60~~20mA value (IDC_IN) ===424 +=== 2.3.5 0~~20mA value (IDC_IN) === 445 445 446 446 447 447 The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level. ... ... @@ -451,7 +451,7 @@ 451 451 27AE(H) = 10158 (D)/1000 = 10.158mA. 452 452 453 453 454 -=== 2.3. 70~~30V value ( pin VDC_IN) ===434 +=== 2.3.6 0~~30V value ( pin VDC_IN) === 455 455 456 456 457 457 Measure the voltage value. The range is 0 to 30V. ... ... @@ -461,7 +461,7 @@ 461 461 138E(H) = 5006(D)/1000= 5.006V 462 462 463 463 464 -=== 2.3. 8IN1&IN2&INT pin ===444 +=== 2.3.7 IN1&IN2&INT pin === 465 465 466 466 467 467 IN1 and IN2 are used as digital input pins. ... ... @@ -484,7 +484,7 @@ 484 484 0x01: Interrupt Uplink Packet. 485 485 486 486 487 -=== 2.3. 9Decode payload in The Things Network ===467 +=== 2.3.8 Decode payload in The Things Network === 488 488 489 489 490 490 While using TTN network, you can add the payload format to decode the payload. ... ... @@ -542,6 +542,7 @@ 542 542 [[image:1675145060812-420.png]] 543 543 544 544 525 + 545 545 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 546 546 547 547 ... ... @@ -575,7 +575,7 @@ 575 575 576 576 There are two kinds of commands to configure PS-LB, they are: 577 577 578 -* (% style="color:#037691" %)**General Commands** 559 +* (% style="color:#037691" %)**General Commands**. 579 579 580 580 These commands are to configure: 581 581 ... ... @@ -615,10 +615,10 @@ 615 615 616 616 Format: Command Code (0x01) followed by 3 bytes time value. 617 617 618 -If the downlink payload=0100003C, it means set the END Node 's Transmit Interval to 0x00003C=60(S), while type code is 01.599 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 619 619 620 -* Example 1: Downlink Payload: 0100001E 621 -* Example 2: Downlink Payload: 0100003C 601 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 602 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 622 622 623 623 == 3.2 Set Interrupt Mode == 624 624 ... ... @@ -628,19 +628,19 @@ 628 628 (% style="color:blue" %)**AT Command: AT+INTMOD** 629 629 630 630 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 631 -|= (% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**632 -| (% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((612 +|=**Command Example**|=**Function**|=**Response** 613 +|AT+INTMOD=?|Show current interrupt mode|((( 633 633 0 634 634 OK 635 635 the mode is 0 = No interruption 636 636 ))) 637 -| (% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((618 +|AT+INTMOD=2|((( 638 638 Set Transmit Interval 639 639 ~1. (Disable Interrupt), 640 640 2. (Trigger by rising and falling edge) 641 641 3. (Trigger by falling edge) 642 642 4. (Trigger by rising edge) 643 -)))| (% style="width:157px" %)OK624 +)))|OK 644 644 645 645 (% style="color:blue" %)**Downlink Command: 0x06** 646 646 ... ... @@ -648,8 +648,8 @@ 648 648 649 649 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 650 650 651 -* Example 1: Downlink Payload: 06000000 652 -* Example 2: Downlink Payload: 06000003 632 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 633 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 653 653 654 654 == 3.3 Set the output time == 655 655 ... ... @@ -713,12 +713,12 @@ 713 713 714 714 The first byte is which power, the second and third bytes are the time to turn on. 715 715 716 -* Example 1: Downlink Payload: 070101F4 **~-~-->**717 -* Example 2: Downlink Payload: 0701FFFF **~-~-->**AT+3V3T=65535718 -* Example 3: Downlink Payload: 070203E8 **~-~-->**AT+5VT=1000719 -* Example 4: Downlink Payload: 07020000 **~-~-->**AT+5VT=0720 -* Example 5: Downlink Payload: 070301F4 **~-~-->**AT+12VT=500721 -* Example 6: Downlink Payload: 07030000 **~-~-->**AT+12VT=0697 +* Example 1: Downlink Payload: 070101F4 -> AT+3V3T=500 698 +* Example 2: Downlink Payload: 0701FFFF -> AT+3V3T=65535 699 +* Example 3: Downlink Payload: 070203E8 -> AT+5VT=1000 700 +* Example 4: Downlink Payload: 07020000 -> AT+5VT=0 701 +* Example 5: Downlink Payload: 070301F4 -> AT+12VT=500 702 +* Example 6: Downlink Payload: 07030000 -> AT+12VT=0 722 722 723 723 == 3.4 Set the Probe Model == 724 724 ... ... @@ -743,39 +743,9 @@ 743 743 744 744 Format: Command Code (0x08) followed by 2 bytes. 745 745 746 -* Example 1: Downlink Payload: 080003 **~-~-->**747 -* Example 2: Downlink Payload: 080101 **~-~-->**727 +* Example 1: Downlink Payload: 080003 -> AT+PROBE=0003 728 +* Example 2: Downlink Payload: 080101 -> AT+PROBE=0101 748 748 749 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) == 750 - 751 - 752 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time. 753 - 754 -(% style="color:blue" %)**AT Command: AT** **+STDC** 755 - 756 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 757 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response** 758 -|(% style="width:156px" %)AT+STDC=?|(% style="width:137px" %)((( 759 -Get the mode of multiple acquisitions and one uplink 760 -)))|((( 761 -1,10,18 762 -OK 763 -))) 764 -|(% style="width:156px" %)AT+STDC=1,10,18|(% style="width:137px" %)Set the mode of multiple acquisitions and one uplink|((( 765 -OK 766 -**(% style="color:#037691" %)aa:**(%%) 767 -**0** means disable this function and use TDC to send packets. 768 -**1** means enable this function, use the method of multiple acquisitions to send packets. 769 -**(% style="color:#037691" %)bb:**(%%) Each collection interval (s), the value is 1~~65535 770 -**(% style="color:#037691" %)cc:**(%%)the number of collection times, the value is 1~~120 771 -))) 772 - 773 -(% style="color:blue" %)**Downlink Command: 0xAE** 774 - 775 -Format: Command Code (0x08) followed by 5 bytes. 776 - 777 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->** AT+STDC=1,600,18 778 - 779 779 = 4. Battery & how to replace = 780 780 781 781 == 4.1 Battery Type == ... ... @@ -783,6 +783,7 @@ 783 783 784 784 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 785 785 737 + 786 786 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 787 787 788 788 [[image:1675146710956-626.png]] ... ... @@ -806,10 +806,15 @@ 806 806 807 807 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 808 808 761 + 809 809 Instruction to use as below: 810 810 811 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 812 812 765 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 766 + 767 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 768 + 769 + 813 813 (% style="color:blue" %)**Step 2:**(%%) Open it and choose 814 814 815 815 * Product Model
- image-20230201090514-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -560.9 KB - Content
- image-20230220171300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.0 KB - Content