<
From version < 45.3 >
edited by Xiaoling
on 2023/02/21 15:24
To version < 42.25 >
edited by Xiaoling
on 2023/01/31 16:42
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -16,33 +16,22 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 -(((
20 20  The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 -)))
22 22  
23 -(((
24 24  The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 -)))
26 26  
27 -(((
28 28  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 32  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 -)))
34 34  
35 -(((
36 36  PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 -)))
38 38  
39 -(((
40 40  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 -)))
42 42  
43 43  [[image:1675071321348-194.png]]
44 44  
45 45  
34 +
46 46  == 1.2 ​Features ==
47 47  
48 48  
... ... @@ -143,6 +143,7 @@
143 143  
144 144  
145 145  
135 +
146 146  == 1.6 Application and Installation ==
147 147  
148 148  === 1.6.1 Thread Installation Type ===
... ... @@ -197,17 +197,17 @@
197 197  
198 198  
199 199  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
200 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
201 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
190 +|=(% style="width: 150px;" %)**Behavior on ACT**|=(% style="width: 90px;" %)**Function**|=**Action**
191 +|(% style="width:260px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
202 202  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
203 203  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
204 204  )))
205 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
195 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
206 206  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
207 207  (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
208 208  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
209 209  )))
210 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
200 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
211 211  
212 212  == 1.9 Pin Mapping ==
213 213  
... ... @@ -233,6 +233,8 @@
233 233  == 1.11 Mechanical ==
234 234  
235 235  
226 +
227 +
236 236  [[image:1675143884058-338.png]]
237 237  
238 238  
... ... @@ -250,6 +250,7 @@
250 250  The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
251 251  
252 252  
245 +
253 253  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
254 254  
255 255  
... ... @@ -325,8 +325,8 @@
325 325  
326 326  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
327 327  |(% colspan="6" %)**Device Status (FPORT=5)**
328 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
329 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
321 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
322 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
330 330  
331 331  Example parse in TTNv3
332 332  
... ... @@ -396,28 +396,15 @@
396 396  |(% style="width:97px" %)(((
397 397  **Size(bytes)**
398 398  )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
399 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
392 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
400 400  
401 401  [[image:1675144608950-310.png]]
402 402  
403 403  
404 -=== 2.3.3 Sensor value, FPORT~=7 ===
405 405  
398 +=== 2.3.3 Battery Info ===
406 406  
407 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
408 -|(% style="width:94px" %)(((
409 -**Size(bytes)**
410 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n
411 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
412 -Voltage value, each 2 bytes is a set of voltage values.
413 -)))
414 414  
415 -[[image:image-20230220171300-1.png||height="207" width="863"]]
416 -
417 -
418 -=== 2.3.4 Battery Info ===
419 -
420 -
421 421  Check the battery voltage for PS-LB.
422 422  
423 423  Ex1: 0x0B45 = 2885mV
... ... @@ -425,7 +425,7 @@
425 425  Ex2: 0x0B49 = 2889mV
426 426  
427 427  
428 -=== 2.3.5 Probe Model ===
408 +=== 2.3.4 Probe Model ===
429 429  
430 430  
431 431  PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
... ... @@ -441,7 +441,7 @@
441 441  The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
442 442  
443 443  
444 -=== 2.3.6 0~~20mA value (IDC_IN) ===
424 +=== 2.3.5 0~~20mA value (IDC_IN) ===
445 445  
446 446  
447 447  The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
... ... @@ -451,7 +451,7 @@
451 451  27AE(H) = 10158 (D)/1000 = 10.158mA.
452 452  
453 453  
454 -=== 2.3.7 0~~30V value ( pin VDC_IN) ===
434 +=== 2.3.6 0~~30V value ( pin VDC_IN) ===
455 455  
456 456  
457 457  Measure the voltage value. The range is 0 to 30V.
... ... @@ -461,7 +461,7 @@
461 461  138E(H) = 5006(D)/1000= 5.006V
462 462  
463 463  
464 -=== 2.3.8 IN1&IN2&INT pin ===
444 +=== 2.3.7 IN1&IN2&INT pin ===
465 465  
466 466  
467 467  IN1 and IN2 are used as digital input pins.
... ... @@ -484,7 +484,7 @@
484 484  0x01: Interrupt Uplink Packet.
485 485  
486 486  
487 -=== 2.3.9 ​Decode payload in The Things Network ===
467 +=== 2.3.8 ​Decode payload in The Things Network ===
488 488  
489 489  
490 490  While using TTN network, you can add the payload format to decode the payload.
... ... @@ -542,6 +542,7 @@
542 542  [[image:1675145060812-420.png]]
543 543  
544 544  
525 +
545 545  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
546 546  
547 547  
... ... @@ -575,7 +575,7 @@
575 575  
576 576  There are two kinds of commands to configure PS-LB, they are:
577 577  
578 -* (% style="color:#037691" %)**General Commands**
559 +* (% style="color:#037691" %)**General Commands**.
579 579  
580 580  These commands are to configure:
581 581  
... ... @@ -603,11 +603,14 @@
603 603  |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
604 604  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
605 605  30000
587 +
606 606  OK
589 +
607 607  the interval is 30000ms = 30s
608 608  )))
609 609  |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
610 610  OK
594 +
611 611  Set transmit interval to 60000ms = 60 seconds
612 612  )))
613 613  
... ... @@ -615,10 +615,10 @@
615 615  
616 616  Format: Command Code (0x01) followed by 3 bytes time value.
617 617  
618 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
602 +If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
619 619  
620 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
621 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
604 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
605 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
622 622  
623 623  == 3.2 Set Interrupt Mode ==
624 624  
... ... @@ -628,19 +628,25 @@
628 628  (% style="color:blue" %)**AT Command: AT+INTMOD**
629 629  
630 630  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
631 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
632 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
615 +|=**Command Example**|=**Function**|=**Response**
616 +|AT+INTMOD=?|Show current interrupt mode|(((
633 633  0
618 +
634 634  OK
620 +
635 635  the mode is 0 = No interruption
636 636  )))
637 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
623 +|AT+INTMOD=2|(((
638 638  Set Transmit Interval
625 +
639 639  ~1. (Disable Interrupt),
640 -2. (Trigger by rising and falling edge)
627 +
628 +2. (Trigger by rising and falling edge),
629 +
641 641  3. (Trigger by falling edge)
631 +
642 642  4. (Trigger by rising edge)
643 -)))|(% style="width:157px" %)OK
633 +)))|OK
644 644  
645 645  (% style="color:blue" %)**Downlink Command: 0x06**
646 646  
... ... @@ -648,8 +648,8 @@
648 648  
649 649  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
650 650  
651 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
652 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
641 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
642 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
653 653  
654 654  == 3.3 Set the output time ==
655 655  
... ... @@ -658,53 +658,68 @@
658 658  
659 659  (% style="color:blue" %)**AT Command: AT+3V3T**
660 660  
661 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
662 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
663 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
651 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
652 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 236px;" %)**Function**|=(% style="width: 117px;" %)**Response**
653 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
664 664  0
655 +
665 665  OK
666 666  )))
667 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
658 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
668 668  OK
660 +
669 669  default setting
670 670  )))
671 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
663 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
672 672  OK
665 +
666 +
673 673  )))
674 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
668 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
675 675  OK
670 +
671 +
676 676  )))
677 677  
678 678  (% style="color:blue" %)**AT Command: AT+5VT**
679 679  
680 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
681 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
682 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
676 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
677 +|=(% style="width: 158px;" %)**Command Example**|=(% style="width: 232px;" %)**Function**|=(% style="width: 119px;" %)**Response**
678 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
683 683  0
680 +
684 684  OK
685 685  )))
686 -|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
683 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
687 687  OK
685 +
688 688  default setting
689 689  )))
690 -|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
688 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
691 691  OK
690 +
691 +
692 692  )))
693 -|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
693 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
694 694  OK
695 +
696 +
695 695  )))
696 696  
697 697  (% style="color:blue" %)**AT Command: AT+12VT**
698 698  
699 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
700 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
701 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
701 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
702 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 268px;" %)**Function**|=**Response**
703 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
702 702  0
705 +
703 703  OK
704 704  )))
705 -|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
706 -|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
708 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
709 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
707 707  OK
711 +
712 +
708 708  )))
709 709  
710 710  (% style="color:blue" %)**Downlink Command: 0x07**
... ... @@ -713,12 +713,12 @@
713 713  
714 714  The first byte is which power, the second and third bytes are the time to turn on.
715 715  
716 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
717 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
718 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
719 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
720 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
721 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
721 +* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
722 +* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
723 +* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
724 +* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
725 +* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
726 +* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
722 722  
723 723  == 3.4 Set the Probe Model ==
724 724  
... ... @@ -725,18 +725,23 @@
725 725  
726 726  (% style="color:blue" %)**AT Command: AT** **+PROBE**
727 727  
728 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:448px" %)
729 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 204px;" %)**Function**|=(% style="width: 85px;" %)**Response**
730 -|(% style="width:154px" %)AT +PROBE =?|(% style="width:204px" %)Get or Set the probe model.|(% style="width:85px" %)(((
733 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
734 +|=(% style="width: 157px;" %)**Command Example**|=(% style="width: 267px;" %)**Function**|=**Response**
735 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
731 731  0
737 +
732 732  OK
733 733  )))
734 -|(% style="width:154px" %)AT +PROBE =0003|(% style="width:204px" %)Set water depth sensor mode, 3m type.|(% style="width:85px" %)OK
735 -|(% style="width:154px" %)AT +PROBE =0101|(% style="width:204px" %)Set pressure transmitters mode, first type.|(% style="width:85px" %)(((
740 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
741 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
736 736  OK
743 +
744 +
737 737  )))
738 -|(% style="width:154px" %)AT +PROBE =0000|(% style="width:204px" %)Initial state, no settings.|(% style="width:85px" %)(((
746 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
739 739  OK
748 +
749 +
740 740  )))
741 741  
742 742  (% style="color:blue" %)**Downlink Command: 0x08**
... ... @@ -743,39 +743,9 @@
743 743  
744 744  Format: Command Code (0x08) followed by 2 bytes.
745 745  
746 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
747 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
756 +* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
757 +* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
748 748  
749 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
750 -
751 -
752 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
753 -
754 -(% style="color:blue" %)**AT Command: AT** **+STDC**
755 -
756 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
757 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
758 -|(% style="width:156px" %)AT+STDC=?|(% style="width:137px" %)(((
759 -Get the mode of multiple acquisitions and one uplink
760 -)))|(((
761 -1,10,18
762 -OK
763 -)))
764 -|(% style="width:156px" %)AT+STDC=1,10,18|(% style="width:137px" %)Set the mode of multiple acquisitions and one uplink|(((
765 -OK
766 -**(% style="color:#037691" %)aa:**(%%)
767 -**0** means disable this function and use TDC to send packets.
768 -**1** means enable this function, use the method of multiple acquisitions to send packets.
769 -**(% style="color:#037691" %)bb:**(%%) Each collection interval (s), the value is 1~~65535
770 -**(% style="color:#037691" %)cc:**(%%)the number of collection times, the value is 1~~120
771 -)))
772 -
773 -(% style="color:blue" %)**Downlink Command: 0xAE**
774 -
775 -Format: Command Code (0x08) followed by 5 bytes.
776 -
777 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
778 -
779 779  = 4. Battery & how to replace =
780 780  
781 781  == 4.1 Battery Type ==
... ... @@ -783,6 +783,7 @@
783 783  
784 784  PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
785 785  
766 +
786 786  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
787 787  
788 788  [[image:1675146710956-626.png]]
... ... @@ -806,10 +806,15 @@
806 806  
807 807  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
808 808  
790 +
809 809  Instruction to use as below:
810 810  
811 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
812 812  
794 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
795 +
796 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
797 +
798 +
813 813  (% style="color:blue" %)**Step 2:**(%%) Open it and choose
814 814  
815 815  * Product Model
image-20230201090514-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0