<
From version < 45.2 >
edited by Xiaoling
on 2023/02/21 15:21
To version < 42.12 >
edited by Xiaoling
on 2023/01/31 15:55
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -16,33 +16,22 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 -(((
20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 -)))
19 +The Dragino PS-LB series sensors are **(% style="color:blue" %)LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
22 22  
23 -(((
24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 -)))
21 +The PS-LB series sensors include **(% style="color:blue" %)Thread Installation Type**(%%) and **(% style="color:blue" %)Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
26 26  
27 -(((
28 28  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 32  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 -)))
34 34  
35 -(((
36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 -)))
27 +PS-LB is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
38 38  
39 -(((
40 40  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 -)))
42 42  
43 43  [[image:1675071321348-194.png]]
44 44  
45 45  
34 +
46 46  == 1.2 ​Features ==
47 47  
48 48  
... ... @@ -59,21 +59,22 @@
59 59  * Downlink to change configure
60 60  * 8500mAh Battery for long term use
61 61  
51 +
62 62  == 1.3 Specification ==
63 63  
64 64  
65 -(% style="color:#037691" %)**Micro Controller:**
55 +**(% style="color:#037691" %)Micro Controller:**
66 66  
67 67  * MCU: 48Mhz ARM
68 68  * Flash: 256KB
69 69  * RAM: 64KB
70 70  
71 -(% style="color:#037691" %)**Common DC Characteristics:**
61 +**(% style="color:#037691" %)Common DC Characteristics:**
72 72  
73 73  * Supply Voltage: 2.5v ~~ 3.6v
74 74  * Operating Temperature: -40 ~~ 85°C
75 75  
76 -(% style="color:#037691" %)**LoRa Spec:**
66 +**(% style="color:#037691" %)LoRa Spec:**
77 77  
78 78  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
79 79  * Max +22 dBm constant RF output vs.
... ... @@ -80,19 +80,19 @@
80 80  * RX sensitivity: down to -139 dBm.
81 81  * Excellent blocking immunity
82 82  
83 -(% style="color:#037691" %)**Current Input Measuring :**
73 +**(% style="color:#037691" %)Current Input Measuring :**
84 84  
85 85  * Range: 0 ~~ 20mA
86 86  * Accuracy: 0.02mA
87 87  * Resolution: 0.001mA
88 88  
89 -(% style="color:#037691" %)**Voltage Input Measuring:**
79 +**(% style="color:#037691" %)Voltage Input Measuring:**
90 90  
91 91  * Range: 0 ~~ 30v
92 92  * Accuracy: 0.02v
93 93  * Resolution: 0.001v
94 94  
95 -(% style="color:#037691" %)**Battery:**
85 +**(% style="color:#037691" %)Battery:**
96 96  
97 97  * Li/SOCI2 un-chargeable battery
98 98  * Capacity: 8500mAh
... ... @@ -100,11 +100,12 @@
100 100  * Max continuously current: 130mA
101 101  * Max boost current: 2A, 1 second
102 102  
103 -(% style="color:#037691" %)**Power Consumption**
93 +**(% style="color:#037691" %)Power Consumption**
104 104  
105 105  * Sleep Mode: 5uA @ 3.3v
106 106  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
107 107  
98 +
108 108  == 1.4 Probe Types ==
109 109  
110 110  === 1.4.1 Thread Installation Type ===
... ... @@ -123,6 +123,7 @@
123 123  * Operating temperature: -20℃~~60℃
124 124  * Connector Type: Various Types, see order info
125 125  
117 +
126 126  === 1.4.2 Immersion Type ===
127 127  
128 128  
... ... @@ -139,16 +139,18 @@
139 139  * Operating temperature: -40℃~~85℃
140 140  * Material: 316 stainless steels
141 141  
134 +
142 142  == 1.5 Probe Dimension ==
143 143  
144 144  
145 145  
139 +
146 146  == 1.6 Application and Installation ==
147 147  
148 148  === 1.6.1 Thread Installation Type ===
149 149  
150 150  
151 -(% style="color:blue" %)**Application:**
145 +**(% style="color:blue" %)Application:**
152 152  
153 153  * Hydraulic Pressure
154 154  * Petrochemical Industry
... ... @@ -166,7 +166,7 @@
166 166  === 1.6.2 Immersion Type ===
167 167  
168 168  
169 -(% style="color:blue" %)**Application:**
163 +**(% style="color:blue" %)Application:**
170 170  
171 171  Liquid & Water Pressure / Level detect.
172 172  
... ... @@ -185,9 +185,9 @@
185 185  == 1.7 Sleep mode and working mode ==
186 186  
187 187  
188 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
182 +**(% style="color:blue" %)Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
189 189  
190 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
184 +**(% style="color:blue" %)Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
191 191  
192 192  
193 193  == 1.8 Button & LEDs ==
... ... @@ -197,18 +197,23 @@
197 197  
198 198  
199 199  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
200 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
201 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
202 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
194 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action**
195 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
196 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **(% style="color:blue" %)blue led** (%%)will blink once.
197 +
203 203  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
204 204  )))
205 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
206 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
207 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
200 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
201 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:#037691" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
202 +
203 +**(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
204 +
208 208  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
209 209  )))
210 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
207 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
211 211  
209 +
210 +
212 212  == 1.9 Pin Mapping ==
213 213  
214 214  
... ... @@ -233,6 +233,8 @@
233 233  == 1.11 Mechanical ==
234 234  
235 235  
235 +
236 +
236 236  [[image:1675143884058-338.png]]
237 237  
238 238  
... ... @@ -247,9 +247,10 @@
247 247  == 2.1 How it works ==
248 248  
249 249  
250 -The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
251 +The PS-LB is configured as **(% style="color:#037691" %)LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
251 251  
252 252  
254 +
253 253  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
254 254  
255 255  
... ... @@ -262,7 +262,7 @@
262 262  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
263 263  
264 264  
265 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
267 +**(% style="color:blue" %)Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
266 266  
267 267  Each PS-LB is shipped with a sticker with the default device EUI as below:
268 268  
... ... @@ -273,32 +273,32 @@
273 273  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
274 274  
275 275  
276 -(% style="color:blue" %)**Register the device**
278 +**(% style="color:blue" %)Register the device**
277 277  
278 278  [[image:1675144099263-405.png]]
279 279  
280 280  
281 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
283 +**(% style="color:blue" %)Add APP EUI and DEV EUI**
282 282  
283 283  [[image:1675144117571-832.png]]
284 284  
285 285  
286 -(% style="color:blue" %)**Add APP EUI in the application**
288 +**(% style="color:blue" %)Add APP EUI in the application**
287 287  
288 288  
289 289  [[image:1675144143021-195.png]]
290 290  
291 291  
292 -(% style="color:blue" %)**Add APP KEY**
294 +**(% style="color:blue" %)Add APP KEY**
293 293  
294 294  [[image:1675144157838-392.png]]
295 295  
296 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
298 +**(% style="color:blue" %)Step 2:**(%%) Activate on PS-LB
297 297  
298 298  
299 299  Press the button for 5 seconds to activate the PS-LB.
300 300  
301 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
303 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:blue" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. **(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
302 302  
303 303  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
304 304  
... ... @@ -325,8 +325,8 @@
325 325  
326 326  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
327 327  |(% colspan="6" %)**Device Status (FPORT=5)**
328 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
329 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
330 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
331 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
330 330  
331 331  Example parse in TTNv3
332 332  
... ... @@ -333,11 +333,11 @@
333 333  [[image:1675144504430-490.png]]
334 334  
335 335  
336 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
338 +**(% style="color:#037691" %)Sensor Model**(%%): For PS-LB, this value is 0x16
337 337  
338 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
340 +**(% style="color:#037691" %)Firmware Version**(%%): 0x0100, Means: v1.0.0 version
339 339  
340 -(% style="color:#037691" %)**Frequency Band**:
342 +**(% style="color:#037691" %)Frequency Band**:
341 341  
342 342  *0x01: EU868
343 343  
... ... @@ -368,7 +368,7 @@
368 368  *0x0e: MA869
369 369  
370 370  
371 -(% style="color:#037691" %)**Sub-Band**:
373 +**(% style="color:#037691" %)Sub-Band**:
372 372  
373 373  AU915 and US915:value 0x00 ~~ 0x08
374 374  
... ... @@ -377,7 +377,7 @@
377 377  Other Bands: Always 0x00
378 378  
379 379  
380 -(% style="color:#037691" %)**Battery Info**:
382 +**(% style="color:#037691" %)Battery Info**:
381 381  
382 382  Check the battery voltage.
383 383  
... ... @@ -395,29 +395,16 @@
395 395  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
396 396  |(% style="width:97px" %)(((
397 397  **Size(bytes)**
398 -)))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
399 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
400 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1**
401 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>path:#Probe_Model]]|0 ~~ 20mA value|[[0 ~~~~ 30v value>>path:#Voltage_30v]]|[[IN1 &IN2 Interrupt  flag>>path:#Int_pin]]
400 400  
401 401  [[image:1675144608950-310.png]]
402 402  
403 403  
404 -=== 2.3.3 Sensor value, FPORT~=7 ===
405 405  
407 +=== 2.3.3 Battery Info ===
406 406  
407 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
408 -|(% style="width:94px" %)(((
409 -**Size(bytes)**
410 -)))|(% style="width:43px" %)2|(% style="width:367px" %)n
411 -|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
412 -Voltage value, each 2 bytes is a set of voltage values.
413 -)))
414 414  
415 -[[image:image-20230220171300-1.png||height="207" width="863"]]
416 -
417 -
418 -=== 2.3.4 Battery Info ===
419 -
420 -
421 421  Check the battery voltage for PS-LB.
422 422  
423 423  Ex1: 0x0B45 = 2885mV
... ... @@ -425,7 +425,7 @@
425 425  Ex2: 0x0B49 = 2889mV
426 426  
427 427  
428 -=== 2.3.5 Probe Model ===
417 +=== 2.3.4 Probe Model ===
429 429  
430 430  
431 431  PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
... ... @@ -441,50 +441,50 @@
441 441  The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
442 442  
443 443  
444 -=== 2.3.6 0~~20mA value (IDC_IN) ===
433 +=== 2.3.5 0~~20mA value (IDC_IN) ===
445 445  
446 446  
447 447  The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
448 448  
449 -(% style="color:#037691" %)**Example**:
438 +**(% style="color:#037691" %)Example**:
450 450  
451 451  27AE(H) = 10158 (D)/1000 = 10.158mA.
452 452  
453 453  
454 -=== 2.3.7 0~~30V value ( pin VDC_IN) ===
443 +=== 2.3.6 0~~30V value ( pin VDC_IN) ===
455 455  
456 456  
457 457  Measure the voltage value. The range is 0 to 30V.
458 458  
459 -(% style="color:#037691" %)**Example**:
448 +**(% style="color:#037691" %)Example**:
460 460  
461 461  138E(H) = 5006(D)/1000= 5.006V
462 462  
463 463  
464 -=== 2.3.8 IN1&IN2&INT pin ===
453 +=== 2.3.7 IN1&IN2&INT pin ===
465 465  
466 466  
467 467  IN1 and IN2 are used as digital input pins.
468 468  
469 -(% style="color:#037691" %)**Example**:
458 +**(% style="color:#037691" %)Example**:
470 470  
471 -09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
460 +09 (H) :(0x09&0x08)>>3=1    IN1 pin is high level.
472 472  
473 -09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
462 +09 (H) :(0x09&0x04)>>2=0    IN2 pin is low level.
474 474  
475 475  
476 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
465 +This data field shows if this packet is generated by **Interrupt Pin** or not. [[Click here>>path:#Int_mod]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
477 477  
478 -(% style="color:#037691" %)**Example:**
467 +**(% style="color:#037691" %)Example:**
479 479  
480 -09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
469 +09 (H) : (0x09&0x02)>>1=1    The level of the interrupt pin.
481 481  
482 -09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
471 +09 (H) : 0x09&0x01=1              0x00: Normal uplink packet.
483 483  
484 484  0x01: Interrupt Uplink Packet.
485 485  
486 486  
487 -=== 2.3.9 ​Decode payload in The Things Network ===
476 +=== 2.3.8 ​Decode payload in The Things Network ===
488 488  
489 489  
490 490  While using TTN network, you can add the payload format to decode the payload.
... ... @@ -508,9 +508,9 @@
508 508  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
509 509  
510 510  
511 -(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
500 +**(% style="color:blue" %)Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
512 512  
513 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
502 +**(% style="color:blue" %)Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
514 514  
515 515  
516 516  [[image:1675144951092-237.png]]
... ... @@ -519,9 +519,9 @@
519 519  [[image:1675144960452-126.png]]
520 520  
521 521  
522 -(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
511 +**(% style="color:blue" %)Step 3:**(%%) Create an account or log in Datacake.
523 523  
524 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
513 +**(% style="color:#blue" %)Step 4:** (%%)Create PS-LB product.
525 525  
526 526  [[image:1675145004465-869.png]]
527 527  
... ... @@ -534,7 +534,7 @@
534 534  [[image:1675145029119-717.png]]
535 535  
536 536  
537 -(% style="color:blue" %)**Step 5: **(%%)add payload decode
526 +**(% style="color:blue" %)Step 5: **(%%)add payload decode
538 538  
539 539  [[image:1675145051360-659.png]]
540 540  
... ... @@ -542,6 +542,7 @@
542 542  [[image:1675145060812-420.png]]
543 543  
544 544  
534 +
545 545  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
546 546  
547 547  
... ... @@ -570,12 +570,13 @@
570 570  
571 571  Use can configure PS-LB via AT Command or LoRaWAN Downlink.
572 572  
573 -* AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
563 +* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
574 574  * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
575 575  
566 +
576 576  There are two kinds of commands to configure PS-LB, they are:
577 577  
578 -* (% style="color:#037691" %)**General Commands**
569 +* **General Commands**.
579 579  
580 580  These commands are to configure:
581 581  
... ... @@ -587,7 +587,7 @@
587 587  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
588 588  
589 589  
590 -* (% style="color:#037691" %)**Commands special design for PS-LB**
581 +* **Commands special design for PS-LB**
591 591  
592 592  These commands only valid for PS-LB, as below:
593 593  
... ... @@ -597,185 +597,194 @@
597 597  
598 598  Feature: Change LoRaWAN End Node Transmit Interval.
599 599  
600 -(% style="color:blue" %)**AT Command: AT+TDC**
591 +**AT Command: AT+TDC**
601 601  
602 602  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
603 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
604 -|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
594 +|**Command Example**|**Function**|**Response**
595 +|AT+TDC=?|Show current transmit Interval|(((
605 605  30000
597 +
606 606  OK
599 +
607 607  the interval is 30000ms = 30s
608 608  )))
609 -|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
602 +|AT+TDC=60000|Set Transmit Interval|(((
610 610  OK
604 +
611 611  Set transmit interval to 60000ms = 60 seconds
612 612  )))
613 613  
614 -(% style="color:blue" %)**Downlink Command: 0x01**
608 +**Downlink Command: 0x01**
615 615  
616 616  Format: Command Code (0x01) followed by 3 bytes time value.
617 617  
618 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
612 +If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
619 619  
620 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
621 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
614 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
615 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
622 622  
617 +
623 623  == 3.2 Set Interrupt Mode ==
624 624  
625 625  
626 626  Feature, Set Interrupt mode for GPIO_EXIT.
627 627  
628 -(% style="color:blue" %)**AT Command: AT+INTMOD**
623 +**AT Command: AT+INTMOD**
629 629  
630 630  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
631 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
632 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
626 +|**Command Example**|**Function**|**Response**
627 +|AT+INTMOD=?|Show current interrupt mode|(((
633 633  0
629 +
634 634  OK
631 +
635 635  the mode is 0 = No interruption
636 636  )))
637 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
634 +|AT+INTMOD=2|(((
638 638  Set Transmit Interval
636 +
639 639  ~1. (Disable Interrupt),
640 -2. (Trigger by rising and falling edge)
638 +
639 +2. (Trigger by rising and falling edge),
640 +
641 641  3. (Trigger by falling edge)
642 +
642 642  4. (Trigger by rising edge)
643 -)))|(% style="width:157px" %)OK
644 +)))|OK
644 644  
645 -(% style="color:blue" %)**Downlink Command: 0x06**
646 +**Downlink Command: 0x06**
646 646  
647 647  Format: Command Code (0x06) followed by 3 bytes.
648 648  
649 649  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
650 650  
651 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
652 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
652 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
653 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
653 653  
655 +
656 +
654 654  == 3.3 Set the output time ==
655 655  
656 656  
657 657  Feature, Control the output 3V3 , 5V or 12V.
658 658  
659 -(% style="color:blue" %)**AT Command: AT+3V3T**
662 +**AT Command: AT+3V3T**
660 660  
661 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
662 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
663 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
664 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
665 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**
666 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
664 664  0
668 +
665 665  OK
666 666  )))
667 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
671 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
668 668  OK
673 +
669 669  default setting
670 670  )))
671 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
676 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
672 672  OK
678 +
679 +
673 673  )))
674 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
681 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
675 675  OK
683 +
684 +
676 676  )))
677 677  
678 -(% style="color:blue" %)**AT Command: AT+5VT**
679 679  
680 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
681 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
682 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
688 +**AT Command: AT+5VT**
689 +
690 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
691 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**
692 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
683 683  0
694 +
684 684  OK
685 685  )))
686 -|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
697 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
687 687  OK
699 +
688 688  default setting
689 689  )))
690 -|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
702 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
691 691  OK
704 +
705 +
692 692  )))
693 -|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
707 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
694 694  OK
709 +
710 +
695 695  )))
696 696  
697 -(% style="color:blue" %)**AT Command: AT+12VT**
698 698  
699 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
700 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
701 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
714 +**AT Command: AT+12VT**
715 +
716 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
717 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response**
718 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
702 702  0
720 +
703 703  OK
704 704  )))
705 -|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
706 -|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
723 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
724 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
707 707  OK
726 +
727 +
708 708  )))
709 709  
710 -(% style="color:blue" %)**Downlink Command: 0x07**
711 711  
731 +**Downlink Command: 0x07**
732 +
712 712  Format: Command Code (0x07) followed by 3 bytes.
713 713  
714 714  The first byte is which power, the second and third bytes are the time to turn on.
715 715  
716 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
717 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
718 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
719 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
720 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
721 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
737 +* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
738 +* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
739 +* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
740 +* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
741 +* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
742 +* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
722 722  
744 +
745 +
723 723  == 3.4 Set the Probe Model ==
724 724  
725 725  
726 -(% style="color:blue" %)**AT Command: AT** **+PROBE**
749 +**AT Command: AT** **+PROBE**
727 727  
728 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:448px" %)
729 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 204px;" %)**Function**|=(% style="width: 85px;" %)**Response**
730 -|(% style="width:154px" %)AT +PROBE =?|(% style="width:204px" %)Get or Set the probe model.|(% style="width:85px" %)(((
751 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
752 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response**
753 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
731 731  0
755 +
732 732  OK
733 733  )))
734 -|(% style="width:154px" %)AT +PROBE =0003|(% style="width:204px" %)Set water depth sensor mode, 3m type.|(% style="width:85px" %)OK
735 -|(% style="width:154px" %)AT +PROBE =0101|(% style="width:204px" %)Set pressure transmitters mode, first type.|(% style="width:85px" %)(((
758 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
759 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
736 736  OK
761 +
762 +
737 737  )))
738 -|(% style="width:154px" %)AT +PROBE =0000|(% style="width:204px" %)Initial state, no settings.|(% style="width:85px" %)(((
764 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
739 739  OK
766 +
767 +
740 740  )))
741 741  
742 -(% style="color:blue" %)**Downlink Command: 0x08**
770 +**Downlink Command: 0x08**
743 743  
744 744  Format: Command Code (0x08) followed by 2 bytes.
745 745  
746 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
747 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
774 +* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
775 +* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
748 748  
749 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
750 750  
751 751  
752 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
753 -
754 -(% style="color:blue" %)**AT Command: AT** **+STDC**
755 -
756 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
757 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
758 -|(% style="width:156px" %)AT+STDC=?|(% style="width:137px" %)(((
759 -Get the mode of multiple acquisitions and one uplink
760 -)))|(((
761 -1,10,18
762 -OK
763 -)))
764 -|(% style="width:156px" %)AT+STDC=1,10,18|(% style="width:137px" %)Set the mode of multiple acquisitions and one uplink|(((
765 -OK
766 -aa:
767 -0 means disable this function and use TDC to send packets.
768 -1 means enable this function, use the method of multiple acquisitions to send packets.
769 -bb: Each collection interval (s), the value is 1~~65535
770 -cc: the number of collection times, the value is 1~~120
771 -)))
772 -
773 -(% style="color:blue" %)**Downlink Command: 0xAE**
774 -
775 -Format: Command Code (0x08) followed by 5 bytes.
776 -
777 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
778 -
779 779  = 4. Battery & how to replace =
780 780  
781 781  == 4.1 Battery Type ==
... ... @@ -783,6 +783,7 @@
783 783  
784 784  PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
785 785  
786 +
786 786  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
787 787  
788 788  [[image:1675146710956-626.png]]
... ... @@ -806,12 +806,17 @@
806 806  
807 807  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
808 808  
810 +
809 809  Instruction to use as below:
810 810  
811 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
812 812  
813 -(% style="color:blue" %)**Step 2:**(%%) Open it and choose
814 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
814 814  
816 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
817 +
818 +
819 +**Step 2:** Open it and choose
820 +
815 815  * Product Model
816 816  * Uplink Interval
817 817  * Working Mode
... ... @@ -892,11 +892,11 @@
892 892  = 9. ​Packing Info =
893 893  
894 894  
895 -(% style="color:#037691" %)**Package Includes**:
901 +**Package Includes**:
896 896  
897 897  * PS-LB LoRaWAN Pressure Sensor
898 898  
899 -(% style="color:#037691" %)**Dimension and weight**:
905 +**Dimension and weight**:
900 900  
901 901  * Device Size: cm
902 902  * Device Weight: g
... ... @@ -903,11 +903,12 @@
903 903  * Package Size / pcs : cm
904 904  * Weight / pcs : g
905 905  
912 +
913 +
906 906  = 10. Support =
907 907  
908 908  
909 909  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
910 -
911 911  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
912 912  
913 913  
image-20230201090514-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0