<
From version < 45.1 >
edited by Bei Jinggeng
on 2023/02/20 17:13
To version < 42.24 >
edited by Xiaoling
on 2023/01/31 16:37
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Bei
1 +XWiki.Xiaoling
Content
... ... @@ -16,33 +16,22 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 -(((
20 20  The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 -)))
22 22  
23 -(((
24 24  The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 -)))
26 26  
27 -(((
28 28  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 32  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 -)))
34 34  
35 -(((
36 36  PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 -)))
38 38  
39 -(((
40 40  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 -)))
42 42  
43 43  [[image:1675071321348-194.png]]
44 44  
45 45  
34 +
46 46  == 1.2 ​Features ==
47 47  
48 48  
... ... @@ -59,7 +59,6 @@
59 59  * Downlink to change configure
60 60  * 8500mAh Battery for long term use
61 61  
62 -
63 63  == 1.3 Specification ==
64 64  
65 65  
... ... @@ -106,7 +106,6 @@
106 106  * Sleep Mode: 5uA @ 3.3v
107 107  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
108 108  
109 -
110 110  == 1.4 Probe Types ==
111 111  
112 112  === 1.4.1 Thread Installation Type ===
... ... @@ -125,7 +125,6 @@
125 125  * Operating temperature: -20℃~~60℃
126 126  * Connector Type: Various Types, see order info
127 127  
128 -
129 129  === 1.4.2 Immersion Type ===
130 130  
131 131  
... ... @@ -142,11 +142,11 @@
142 142  * Operating temperature: -40℃~~85℃
143 143  * Material: 316 stainless steels
144 144  
145 -
146 146  == 1.5 Probe Dimension ==
147 147  
148 148  
149 149  
135 +
150 150  == 1.6 Application and Installation ==
151 151  
152 152  === 1.6.1 Thread Installation Type ===
... ... @@ -201,19 +201,18 @@
201 201  
202 202  
203 203  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
204 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
205 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
190 +|=(% style="width: 150px;" %)**Behavior on ACT**|=(% style="width: 90px;" %)**Function**|=**Action**
191 +|(% style="width:260px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
206 206  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
207 207  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
208 208  )))
209 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
195 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
210 210  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
211 211  (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
212 212  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
213 213  )))
214 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
200 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
215 215  
216 -
217 217  == 1.9 Pin Mapping ==
218 218  
219 219  
... ... @@ -238,6 +238,8 @@
238 238  == 1.11 Mechanical ==
239 239  
240 240  
226 +
227 +
241 241  [[image:1675143884058-338.png]]
242 242  
243 243  
... ... @@ -255,6 +255,7 @@
255 255  The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
256 256  
257 257  
245 +
258 258  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
259 259  
260 260  
... ... @@ -330,8 +330,8 @@
330 330  
331 331  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
332 332  |(% colspan="6" %)**Device Status (FPORT=5)**
333 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
334 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
321 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
322 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
335 335  
336 336  Example parse in TTNv3
337 337  
... ... @@ -401,26 +401,12 @@
401 401  |(% style="width:97px" %)(((
402 402  **Size(bytes)**
403 403  )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
404 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
392 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
405 405  
406 406  [[image:1675144608950-310.png]]
407 407  
408 408  
409 -(% class="wikigeneratedid" %)
410 -=== 2.3.3 Sensor value, FPORT~=7 ===
411 411  
412 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:543px" %)
413 -|(% style="width:99px" %)(((
414 -**Size(bytes)**
415 -)))|(% style="width:63px" %)2|(% style="width:378px" %)n
416 -|(% style="width:99px" %)Value|(% style="width:63px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:378px" %)(((
417 -Voltage value, each 2 bytes is a set of voltage values
418 -)))
419 -
420 -
421 -[[image:image-20230220171300-1.png||height="207" width="863"]]
422 -
423 -
424 424  === 2.3.3 Battery Info ===
425 425  
426 426  
... ... @@ -431,7 +431,6 @@
431 431  Ex2: 0x0B49 = 2889mV
432 432  
433 433  
434 -
435 435  === 2.3.4 Probe Model ===
436 436  
437 437  
... ... @@ -549,6 +549,7 @@
549 549  [[image:1675145060812-420.png]]
550 550  
551 551  
525 +
552 552  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
553 553  
554 554  
... ... @@ -582,7 +582,7 @@
582 582  
583 583  There are two kinds of commands to configure PS-LB, they are:
584 584  
585 -* (% style="color:#037691" %)**General Commands**
559 +* (% style="color:#037691" %)**General Commands**.
586 586  
587 587  These commands are to configure:
588 588  
... ... @@ -607,14 +607,17 @@
607 607  (% style="color:blue" %)**AT Command: AT+TDC**
608 608  
609 609  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
610 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
611 -|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
584 +|**Command Example**|**Function**|**Response**
585 +|AT+TDC=?|Show current transmit Interval|(((
612 612  30000
587 +
613 613  OK
589 +
614 614  the interval is 30000ms = 30s
615 615  )))
616 -|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
592 +|AT+TDC=60000|Set Transmit Interval|(((
617 617  OK
594 +
618 618  Set transmit interval to 60000ms = 60 seconds
619 619  )))
620 620  
... ... @@ -622,12 +622,11 @@
622 622  
623 623  Format: Command Code (0x01) followed by 3 bytes time value.
624 624  
625 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
602 +If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
626 626  
627 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
628 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
604 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
605 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
629 629  
630 -
631 631  == 3.2 Set Interrupt Mode ==
632 632  
633 633  
... ... @@ -636,19 +636,25 @@
636 636  (% style="color:blue" %)**AT Command: AT+INTMOD**
637 637  
638 638  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
639 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
640 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
615 +|**Command Example**|**Function**|**Response**
616 +|AT+INTMOD=?|Show current interrupt mode|(((
641 641  0
618 +
642 642  OK
620 +
643 643  the mode is 0 = No interruption
644 644  )))
645 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
623 +|AT+INTMOD=2|(((
646 646  Set Transmit Interval
625 +
647 647  ~1. (Disable Interrupt),
648 -2. (Trigger by rising and falling edge)
627 +
628 +2. (Trigger by rising and falling edge),
629 +
649 649  3. (Trigger by falling edge)
631 +
650 650  4. (Trigger by rising edge)
651 -)))|(% style="width:157px" %)OK
633 +)))|OK
652 652  
653 653  (% style="color:blue" %)**Downlink Command: 0x06**
654 654  
... ... @@ -656,10 +656,9 @@
656 656  
657 657  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
658 658  
659 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
660 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
641 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
642 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
661 661  
662 -
663 663  == 3.3 Set the output time ==
664 664  
665 665  
... ... @@ -667,53 +667,68 @@
667 667  
668 668  (% style="color:blue" %)**AT Command: AT+3V3T**
669 669  
670 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
671 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
672 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
651 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
652 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**
653 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
673 673  0
655 +
674 674  OK
675 675  )))
676 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
658 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
677 677  OK
660 +
678 678  default setting
679 679  )))
680 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
663 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
681 681  OK
665 +
666 +
682 682  )))
683 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
668 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
684 684  OK
670 +
671 +
685 685  )))
686 686  
687 687  (% style="color:blue" %)**AT Command: AT+5VT**
688 688  
689 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
690 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
691 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
676 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
677 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**
678 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
692 692  0
680 +
693 693  OK
694 694  )))
695 -|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
683 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
696 696  OK
685 +
697 697  default setting
698 698  )))
699 -|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
688 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
700 700  OK
690 +
691 +
701 701  )))
702 -|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
693 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
703 703  OK
695 +
696 +
704 704  )))
705 705  
706 706  (% style="color:blue" %)**AT Command: AT+12VT**
707 707  
708 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
709 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
710 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
701 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
702 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response**
703 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
711 711  0
705 +
712 712  OK
713 713  )))
714 -|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
715 -|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
708 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
709 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
716 716  OK
711 +
712 +
717 717  )))
718 718  
719 719  (% style="color:blue" %)**Downlink Command: 0x07**
... ... @@ -722,31 +722,35 @@
722 722  
723 723  The first byte is which power, the second and third bytes are the time to turn on.
724 724  
725 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
726 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
727 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
728 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
729 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
730 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
721 +* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
722 +* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
723 +* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
724 +* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
725 +* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
726 +* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
731 731  
732 -
733 733  == 3.4 Set the Probe Model ==
734 734  
735 735  
736 736  (% style="color:blue" %)**AT Command: AT** **+PROBE**
737 737  
738 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:448px" %)
739 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 204px;" %)**Function**|=(% style="width: 85px;" %)**Response**
740 -|(% style="width:154px" %)AT +PROBE =?|(% style="width:204px" %)Get or Set the probe model.|(% style="width:85px" %)(((
733 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
734 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response**
735 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
741 741  0
737 +
742 742  OK
743 743  )))
744 -|(% style="width:154px" %)AT +PROBE =0003|(% style="width:204px" %)Set water depth sensor mode, 3m type.|(% style="width:85px" %)OK
745 -|(% style="width:154px" %)AT +PROBE =0101|(% style="width:204px" %)Set pressure transmitters mode, first type.|(% style="width:85px" %)(((
740 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
741 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
746 746  OK
743 +
744 +
747 747  )))
748 -|(% style="width:154px" %)AT +PROBE =0000|(% style="width:204px" %)Initial state, no settings.|(% style="width:85px" %)(((
746 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
749 749  OK
748 +
749 +
750 750  )))
751 751  
752 752  (% style="color:blue" %)**Downlink Command: 0x08**
... ... @@ -753,44 +753,9 @@
753 753  
754 754  Format: Command Code (0x08) followed by 2 bytes.
755 755  
756 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
757 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
756 +* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
757 +* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
758 758  
759 -
760 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
761 -
762 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
763 -
764 -(% style="color:blue" %)**AT Command: AT** **+STDC**
765 -
766 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
767 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
768 -|(% style="width:156px" %)AT+STDC=?|(% style="width:137px" %)(((
769 -Get the mode of multiple acquisitions and one uplink
770 -)))|(((
771 -1,10,18
772 -OK
773 -)))
774 -|(% style="width:156px" %)AT+STDC=1,10,18|(% style="width:137px" %)Set the mode of multiple acquisitions and one uplink|(((
775 -OK
776 -
777 -aa:
778 -
779 -0 means disable this function and use TDC to send packets.
780 -
781 -1 means enable this function, use the method of multiple acquisitions to send packets.
782 -
783 -bb: Each collection interval (s), the value is 1~~65535
784 -
785 -cc: the number of collection times, the value is 1~~120
786 -)))
787 -
788 -(% style="color:blue" %)**Downlink Command: 0xAE**
789 -
790 -Format: Command Code (0x08) followed by 5 bytes.
791 -
792 -* Example 1: Downlink Payload: AE 01 02 58 12 **~-~-->**  AT+STDC=1,600,18
793 -
794 794  = 4. Battery & how to replace =
795 795  
796 796  == 4.1 Battery Type ==
... ... @@ -798,6 +798,7 @@
798 798  
799 799  PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
800 800  
766 +
801 801  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
802 802  
803 803  [[image:1675146710956-626.png]]
... ... @@ -821,10 +821,15 @@
821 821  
822 822  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
823 823  
790 +
824 824  Instruction to use as below:
825 825  
826 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
827 827  
794 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
795 +
796 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
797 +
798 +
828 828  (% style="color:blue" %)**Step 2:**(%%) Open it and choose
829 829  
830 830  * Product Model
... ... @@ -918,7 +918,6 @@
918 918  * Package Size / pcs : cm
919 919  * Weight / pcs : g
920 920  
921 -
922 922  = 10. Support =
923 923  
924 924  
... ... @@ -926,5 +926,4 @@
926 926  
927 927  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
928 928  
929 -
930 930  
image-20230201090514-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0