Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/04/19 17:58
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 2 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Bei1 +XWiki.Xiaoling - Content
-
... ... @@ -16,33 +16,22 @@ 16 16 == 1.1 What is LoRaWAN Pressure Sensor == 17 17 18 18 19 -((( 20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 21 -))) 19 +The Dragino PS-LB series sensors are **(% style="color:blue" %)LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 22 22 23 -((( 24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 25 -))) 21 +The PS-LB series sensors include **(% style="color:blue" %)Thread Installation Type**(%%) and **(% style="color:blue" %)Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 26 26 27 -((( 28 28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 32 PS-LB supports BLE configure and wireless OTA update which make user easy to use. 33 -))) 34 34 35 -((( 36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 -))) 27 +PS-LB is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 38 38 39 -((( 40 40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 41 -))) 42 42 43 43 [[image:1675071321348-194.png]] 44 44 45 45 34 + 46 46 == 1.2 Features == 47 47 48 48 ... ... @@ -63,18 +63,18 @@ 63 63 == 1.3 Specification == 64 64 65 65 66 -(% style="color:#037691" %) **Micro Controller:**55 +**(% style="color:#037691" %)Micro Controller:** 67 67 68 68 * MCU: 48Mhz ARM 69 69 * Flash: 256KB 70 70 * RAM: 64KB 71 71 72 -(% style="color:#037691" %) **Common DC Characteristics:**61 +**(% style="color:#037691" %)Common DC Characteristics:** 73 73 74 74 * Supply Voltage: 2.5v ~~ 3.6v 75 75 * Operating Temperature: -40 ~~ 85°C 76 76 77 -(% style="color:#037691" %) **LoRa Spec:**66 +**(% style="color:#037691" %)LoRa Spec:** 78 78 79 79 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 80 80 * Max +22 dBm constant RF output vs. ... ... @@ -81,19 +81,19 @@ 81 81 * RX sensitivity: down to -139 dBm. 82 82 * Excellent blocking immunity 83 83 84 -(% style="color:#037691" %) **Current Input Measuring :**73 +**(% style="color:#037691" %)Current Input Measuring :** 85 85 86 86 * Range: 0 ~~ 20mA 87 87 * Accuracy: 0.02mA 88 88 * Resolution: 0.001mA 89 89 90 -(% style="color:#037691" %) **Voltage Input Measuring:**79 +**(% style="color:#037691" %)Voltage Input Measuring:** 91 91 92 92 * Range: 0 ~~ 30v 93 93 * Accuracy: 0.02v 94 94 * Resolution: 0.001v 95 95 96 -(% style="color:#037691" %) **Battery:**85 +**(% style="color:#037691" %)Battery:** 97 97 98 98 * Li/SOCI2 un-chargeable battery 99 99 * Capacity: 8500mAh ... ... @@ -101,7 +101,7 @@ 101 101 * Max continuously current: 130mA 102 102 * Max boost current: 2A, 1 second 103 103 104 -(% style="color:#037691" %) **Power Consumption**93 +**(% style="color:#037691" %)Power Consumption** 105 105 106 106 * Sleep Mode: 5uA @ 3.3v 107 107 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm ... ... @@ -147,12 +147,13 @@ 147 147 148 148 149 149 139 + 150 150 == 1.6 Application and Installation == 151 151 152 152 === 1.6.1 Thread Installation Type === 153 153 154 154 155 -(% style="color:blue" %) **Application:**145 +**(% style="color:blue" %)Application:** 156 156 157 157 * Hydraulic Pressure 158 158 * Petrochemical Industry ... ... @@ -170,7 +170,7 @@ 170 170 === 1.6.2 Immersion Type === 171 171 172 172 173 -(% style="color:blue" %) **Application:**163 +**(% style="color:blue" %)Application:** 174 174 175 175 Liquid & Water Pressure / Level detect. 176 176 ... ... @@ -189,9 +189,9 @@ 189 189 == 1.7 Sleep mode and working mode == 190 190 191 191 192 -(% style="color:blue" %) **Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.182 +**(% style="color:blue" %)Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 193 193 194 -(% style="color:blue" %) **Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.184 +**(% style="color:blue" %)Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 195 195 196 196 197 197 == 1.8 Button & LEDs == ... ... @@ -201,19 +201,23 @@ 201 201 202 202 203 203 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 204 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action** 205 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 206 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 194 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action** 195 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|((( 196 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **(% style="color:blue" %)blue led** (%%)will blink once. 197 + 207 207 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 208 208 ))) 209 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 210 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 211 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 200 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|((( 201 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:#037691" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 202 + 203 +**(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network. 204 + 212 212 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 213 213 ))) 214 -|(% style="width:1 67px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red"%)**Redled**(%%)will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.207 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 215 215 216 216 210 + 217 217 == 1.9 Pin Mapping == 218 218 219 219 ... ... @@ -238,6 +238,8 @@ 238 238 == 1.11 Mechanical == 239 239 240 240 235 + 236 + 241 241 [[image:1675143884058-338.png]] 242 242 243 243 ... ... @@ -252,9 +252,10 @@ 252 252 == 2.1 How it works == 253 253 254 254 255 -The PS-LB is configured as (% style="color:#037691" %) **LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.251 +The PS-LB is configured as **(% style="color:#037691" %)LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 256 256 257 257 254 + 258 258 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 259 259 260 260 ... ... @@ -267,7 +267,7 @@ 267 267 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 268 268 269 269 270 -(% style="color:blue" %) **Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.267 +**(% style="color:blue" %)Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB. 271 271 272 272 Each PS-LB is shipped with a sticker with the default device EUI as below: 273 273 ... ... @@ -278,32 +278,32 @@ 278 278 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 279 279 280 280 281 -(% style="color:blue" %) **Register the device**278 +**(% style="color:blue" %)Register the device** 282 282 283 283 [[image:1675144099263-405.png]] 284 284 285 285 286 -(% style="color:blue" %) **Add APP EUI and DEV EUI**283 +**(% style="color:blue" %)Add APP EUI and DEV EUI** 287 287 288 288 [[image:1675144117571-832.png]] 289 289 290 290 291 -(% style="color:blue" %) **Add APP EUI in the application**288 +**(% style="color:blue" %)Add APP EUI in the application** 292 292 293 293 294 294 [[image:1675144143021-195.png]] 295 295 296 296 297 -(% style="color:blue" %) **Add APP KEY**294 +**(% style="color:blue" %)Add APP KEY** 298 298 299 299 [[image:1675144157838-392.png]] 300 300 301 -(% style="color:blue" %) **Step 2:**(%%) Activate on PS-LB298 +**(% style="color:blue" %)Step 2:**(%%) Activate on PS-LB 302 302 303 303 304 304 Press the button for 5 seconds to activate the PS-LB. 305 305 306 -(% style="color:green" %) **Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.303 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:blue" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. **(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network. 307 307 308 308 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 309 309 ... ... @@ -330,8 +330,8 @@ 330 330 331 331 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 332 332 |(% colspan="6" %)**Device Status (FPORT=5)** 333 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**| (% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**334 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version| (% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT330 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2** 331 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT 335 335 336 336 Example parse in TTNv3 337 337 ... ... @@ -338,11 +338,11 @@ 338 338 [[image:1675144504430-490.png]] 339 339 340 340 341 -(% style="color:#037691" %) **Sensor Model**(%%): For PS-LB, this value is 0x16338 +**(% style="color:#037691" %)Sensor Model**(%%): For PS-LB, this value is 0x16 342 342 343 -(% style="color:#037691" %) **Firmware Version**(%%): 0x0100, Means: v1.0.0 version340 +**(% style="color:#037691" %)Firmware Version**(%%): 0x0100, Means: v1.0.0 version 344 344 345 -(% style="color:#037691" %) **Frequency Band**:342 +**(% style="color:#037691" %)Frequency Band**: 346 346 347 347 *0x01: EU868 348 348 ... ... @@ -373,7 +373,7 @@ 373 373 *0x0e: MA869 374 374 375 375 376 -(% style="color:#037691" %) **Sub-Band**:373 +**(% style="color:#037691" %)Sub-Band**: 377 377 378 378 AU915 and US915:value 0x00 ~~ 0x08 379 379 ... ... @@ -382,7 +382,7 @@ 382 382 Other Bands: Always 0x00 383 383 384 384 385 -(% style="color:#037691" %) **Battery Info**:382 +**(% style="color:#037691" %)Battery Info**: 386 386 387 387 Check the battery voltage. 388 388 ... ... @@ -400,27 +400,13 @@ 400 400 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 401 401 |(% style="width:97px" %)((( 402 402 **Size(bytes)** 403 -)))|(% style="width:48px" %)**2**|(% style="width: 71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**404 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width: 71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]]400 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1** 401 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] 405 405 406 406 [[image:1675144608950-310.png]] 407 407 408 408 409 -(% class="wikigeneratedid" %) 410 -=== 2.3.3 Sensor value, FPORT~=7 === 411 411 412 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:543px" %) 413 -|(% style="width:99px" %)((( 414 -**Size(bytes)** 415 -)))|(% style="width:63px" %)2|(% style="width:378px" %)n 416 -|(% style="width:99px" %)Value|(% style="width:63px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:378px" %)((( 417 -Voltage value, each 2 bytes is a set of voltage values 418 -))) 419 - 420 - 421 -[[image:image-20230220171300-1.png||height="207" width="863"]] 422 - 423 - 424 424 === 2.3.3 Battery Info === 425 425 426 426 ... ... @@ -431,7 +431,6 @@ 431 431 Ex2: 0x0B49 = 2889mV 432 432 433 433 434 - 435 435 === 2.3.4 Probe Model === 436 436 437 437 ... ... @@ -453,7 +453,7 @@ 453 453 454 454 The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level. 455 455 456 -(% style="color:#037691" %) **Example**:438 +**(% style="color:#037691" %)Example**: 457 457 458 458 27AE(H) = 10158 (D)/1000 = 10.158mA. 459 459 ... ... @@ -463,7 +463,7 @@ 463 463 464 464 Measure the voltage value. The range is 0 to 30V. 465 465 466 -(% style="color:#037691" %) **Example**:448 +**(% style="color:#037691" %)Example**: 467 467 468 468 138E(H) = 5006(D)/1000= 5.006V 469 469 ... ... @@ -473,20 +473,20 @@ 473 473 474 474 IN1 and IN2 are used as digital input pins. 475 475 476 -(% style="color:#037691" %) **Example**:458 +**(% style="color:#037691" %)Example**: 477 477 478 -09 (H): 460 +09 (H):(0x09&0x08)>>3=1 IN1 pin is high level. 479 479 480 -09 (H): 462 +09 (H):(0x09&0x04)>>2=0 IN2 pin is low level. 481 481 482 482 483 -This data field shows if this packet is generated by (% style="color:blue" %) **Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.465 +This data field shows if this packet is generated by **(% style="color:blue" %)Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal. 484 484 485 -(% style="color:#037691" %) **Example:**467 +**(% style="color:#037691" %)Example:** 486 486 487 -09 (H): 469 +09 (H):(0x09&0x02)>>1=1 The level of the interrupt pin. 488 488 489 -09 (H): 471 +09 (H):0x09&0x01=1 0x00: Normal uplink packet. 490 490 491 491 0x01: Interrupt Uplink Packet. 492 492 ... ... @@ -515,9 +515,9 @@ 515 515 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 516 516 517 517 518 -(% style="color:blue" %) **Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.500 +**(% style="color:blue" %)Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time. 519 519 520 -(% style="color:blue" %) **Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:502 +**(% style="color:blue" %)Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 521 521 522 522 523 523 [[image:1675144951092-237.png]] ... ... @@ -526,9 +526,9 @@ 526 526 [[image:1675144960452-126.png]] 527 527 528 528 529 -(% style="color:blue" %) **Step 3:**(%%) Create an account or log in Datacake.511 +**(% style="color:blue" %)Step 3:**(%%) Create an account or log in Datacake. 530 530 531 -(% style="color:blue" %) **Step 4:** (%%)Create PS-LB product.513 +**(% style="color:#blue" %)Step 4:** (%%)Create PS-LB product. 532 532 533 533 [[image:1675145004465-869.png]] 534 534 ... ... @@ -541,7 +541,7 @@ 541 541 [[image:1675145029119-717.png]] 542 542 543 543 544 -(% style="color:blue" %) **Step 5: **(%%)add payload decode526 +**(% style="color:blue" %)Step 5: **(%%)add payload decode 545 545 546 546 [[image:1675145051360-659.png]] 547 547 ... ... @@ -549,6 +549,7 @@ 549 549 [[image:1675145060812-420.png]] 550 550 551 551 534 + 552 552 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 553 553 554 554 ... ... @@ -577,12 +577,13 @@ 577 577 578 578 Use can configure PS-LB via AT Command or LoRaWAN Downlink. 579 579 580 -* AT Command Connection: See [[FAQ>> ||anchor="H7.FAQ"]].563 +* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]]. 581 581 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 582 582 566 + 583 583 There are two kinds of commands to configure PS-LB, they are: 584 584 585 -* (% style="color:#037691" %)**General Commands**569 +* **General Commands**. 586 586 587 587 These commands are to configure: 588 588 ... ... @@ -594,7 +594,7 @@ 594 594 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 595 595 596 596 597 -* (% style="color:#037691" %)**Commands special design for PS-LB**581 +* **Commands special design for PS-LB** 598 598 599 599 These commands only valid for PS-LB, as below: 600 600 ... ... @@ -604,28 +604,31 @@ 604 604 605 605 Feature: Change LoRaWAN End Node Transmit Interval. 606 606 607 - (% style="color:blue" %)**AT Command: AT+TDC**591 +**AT Command: AT+TDC** 608 608 609 609 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 610 -| =(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**611 -| (% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((594 +|**Command Example**|**Function**|**Response** 595 +|AT+TDC=?|Show current transmit Interval|((( 612 612 30000 597 + 613 613 OK 599 + 614 614 the interval is 30000ms = 30s 615 615 ))) 616 -| (% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((602 +|AT+TDC=60000|Set Transmit Interval|((( 617 617 OK 604 + 618 618 Set transmit interval to 60000ms = 60 seconds 619 619 ))) 620 620 621 - (% style="color:blue" %)**Downlink Command: 0x01**608 +**Downlink Command: 0x01** 622 622 623 623 Format: Command Code (0x01) followed by 3 bytes time value. 624 624 625 -If the downlink payload=0100003C, it means set the END Node 's Transmit Interval to 0x00003C=60(S), while type code is 01.612 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 626 626 627 -* Example 1: Downlink Payload: 0100001E 628 -* Example 2: Downlink Payload: 0100003C 614 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 615 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 629 629 630 630 631 631 == 3.2 Set Interrupt Mode == ... ... @@ -633,164 +633,162 @@ 633 633 634 634 Feature, Set Interrupt mode for GPIO_EXIT. 635 635 636 - (% style="color:blue" %)**AT Command: AT+INTMOD**623 +**AT Command: AT+INTMOD** 637 637 638 638 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 639 -| =(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**640 -| (% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((626 +|**Command Example**|**Function**|**Response** 627 +|AT+INTMOD=?|Show current interrupt mode|((( 641 641 0 629 + 642 642 OK 631 + 643 643 the mode is 0 = No interruption 644 644 ))) 645 -| (% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((634 +|AT+INTMOD=2|((( 646 646 Set Transmit Interval 636 + 647 647 ~1. (Disable Interrupt), 648 -2. (Trigger by rising and falling edge) 638 + 639 +2. (Trigger by rising and falling edge), 640 + 649 649 3. (Trigger by falling edge) 642 + 650 650 4. (Trigger by rising edge) 651 -)))| (% style="width:157px" %)OK644 +)))|OK 652 652 653 - (% style="color:blue" %)**Downlink Command: 0x06**646 +**Downlink Command: 0x06** 654 654 655 655 Format: Command Code (0x06) followed by 3 bytes. 656 656 657 657 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 658 658 659 -* Example 1: Downlink Payload: 06000000 660 -* Example 2: Downlink Payload: 06000003 652 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 653 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 661 661 662 662 656 + 663 663 == 3.3 Set the output time == 664 664 665 665 666 666 Feature, Control the output 3V3 , 5V or 12V. 667 667 668 - (% style="color:blue" %)**AT Command: AT+3V3T**662 +**AT Command: AT+3V3T** 669 669 670 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 474px" %)671 -| =(% style="width:4px;" %)**Command Example**|=(% style="width:01px;" %)**Function**|=(% style="width:6px;" %)**Response**672 -|(% style="width:15 4px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((664 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 665 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response** 666 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)((( 673 673 0 668 + 674 674 OK 675 675 ))) 676 -|(% style="width:15 4px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((671 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)((( 677 677 OK 673 + 678 678 default setting 679 679 ))) 680 -|(% style="width:15 4px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((676 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)((( 681 681 OK 678 + 679 + 682 682 ))) 683 -|(% style="width:15 4px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((681 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)((( 684 684 OK 683 + 684 + 685 685 ))) 686 686 687 -(% style="color:blue" %)**AT Command: AT+5VT** 688 688 689 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %) 690 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response** 691 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)((( 688 +**AT Command: AT+5VT** 689 + 690 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 691 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response** 692 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)((( 692 692 0 694 + 693 693 OK 694 694 ))) 695 -|(% style="width:15 5px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((697 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)((( 696 696 OK 699 + 697 697 default setting 698 698 ))) 699 -|(% style="width:15 5px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((702 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)((( 700 700 OK 704 + 705 + 701 701 ))) 702 -|(% style="width:15 5px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((707 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)((( 703 703 OK 709 + 710 + 704 704 ))) 705 705 706 -(% style="color:blue" %)**AT Command: AT+12VT** 707 707 708 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %) 709 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response** 710 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)((( 714 +**AT Command: AT+12VT** 715 + 716 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 717 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response** 718 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|((( 711 711 0 720 + 712 712 OK 713 713 ))) 714 -|(% style="width:156px" %)AT+12VT=0|(% style="width: 199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK715 -|(% style="width:156px" %)AT+12VT=500|(% style="width: 199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((723 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK 724 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|((( 716 716 OK 726 + 727 + 717 717 ))) 718 718 719 -(% style="color:blue" %)**Downlink Command: 0x07** 720 720 731 +**Downlink Command: 0x07** 732 + 721 721 Format: Command Code (0x07) followed by 3 bytes. 722 722 723 723 The first byte is which power, the second and third bytes are the time to turn on. 724 724 725 -* Example 1: Downlink Payload: 070101F4 **~-~-->**726 -* Example 2: Downlink Payload: 0701FFFF **~-~-->**AT+3V3T=65535727 -* Example 3: Downlink Payload: 070203E8 **~-~-->**AT+5VT=1000728 -* Example 4: Downlink Payload: 07020000 **~-~-->**AT+5VT=0729 -* Example 5: Downlink Payload: 070301F4 **~-~-->**AT+12VT=500730 -* Example 6: Downlink Payload: 07030000 **~-~-->**AT+12VT=0737 +* Example 1: Downlink Payload: 070101F4 -> AT+3V3T=500 738 +* Example 2: Downlink Payload: 0701FFFF -> AT+3V3T=65535 739 +* Example 3: Downlink Payload: 070203E8 -> AT+5VT=1000 740 +* Example 4: Downlink Payload: 07020000 -> AT+5VT=0 741 +* Example 5: Downlink Payload: 070301F4 -> AT+12VT=500 742 +* Example 6: Downlink Payload: 07030000 -> AT+12VT=0 731 731 732 732 745 + 733 733 == 3.4 Set the Probe Model == 734 734 735 735 736 - (% style="color:blue" %)**AT Command: AT** **+PROBE**749 +**AT Command: AT** **+PROBE** 737 737 738 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 448px" %)739 -| =(% style="width:4px;" %)**Command Example**|=(% style="width:04px;" %)**Function**|=(% style="width: 85px;" %)**Response**740 -|(% style="width:15 4px" %)AT +PROBE =?|(% style="width:204px" %)Get or Set the probe model.|(% style="width:85px" %)(((751 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 752 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response** 753 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|((( 741 741 0 755 + 742 742 OK 743 743 ))) 744 -|(% style="width:15 4px" %)AT +PROBE =0003|(% style="width:204px" %)Set water depth sensor mode, 3m type.|(% style="width:85px" %)OK745 -|(% style="width:15 4px" %)AT +PROBE =0101|(% style="width:204px" %)Set pressure transmitters mode, first type.|(% style="width:85px" %)(((758 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK 759 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|((( 746 746 OK 761 + 762 + 747 747 ))) 748 -|(% style="width:15 4px" %)AT +PROBE =0000|(% style="width:204px" %)Initial state, no settings.|(% style="width:85px" %)(((764 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|((( 749 749 OK 766 + 767 + 750 750 ))) 751 751 752 - (% style="color:blue" %)**Downlink Command: 0x08**770 +**Downlink Command: 0x08** 753 753 754 754 Format: Command Code (0x08) followed by 2 bytes. 755 755 756 -* Example 1: Downlink Payload: 080003 **~-~-->**757 -* Example 2: Downlink Payload: 080101 **~-~-->**774 +* Example 1: Downlink Payload: 080003 -> AT+PROBE=0003 775 +* Example 2: Downlink Payload: 080101 -> AT+PROBE=0101 758 758 759 759 760 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) == 761 761 762 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time. 763 - 764 -(% style="color:blue" %)**AT Command: AT** **+STDC** 765 - 766 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 767 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response** 768 -|(% style="width:156px" %)AT+STDC=?|(% style="width:137px" %)((( 769 -Get the mode of multiple acquisitions and one uplink 770 -)))|((( 771 -1,10,18 772 -OK 773 -))) 774 -|(% style="width:156px" %)AT+STDC=1,10,18|(% style="width:137px" %)Set the mode of multiple acquisitions and one uplink|((( 775 -OK 776 - 777 -aa: 778 - 779 -0 means disable this function and use TDC to send packets. 780 - 781 -1 means enable this function, use the method of multiple acquisitions to send packets. 782 - 783 -bb: Each collection interval (s), the value is 1~~65535 784 - 785 -cc: the number of collection times, the value is 1~~120 786 -))) 787 - 788 -(% style="color:blue" %)**Downlink Command: 0xAE** 789 - 790 -Format: Command Code (0x08) followed by 5 bytes. 791 - 792 -* Example 1: Downlink Payload: AE 01 02 58 12 **~-~-->** AT+STDC=1,600,18 793 - 794 794 = 4. Battery & how to replace = 795 795 796 796 == 4.1 Battery Type == ... ... @@ -798,6 +798,7 @@ 798 798 799 799 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 800 800 786 + 801 801 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 802 802 803 803 [[image:1675146710956-626.png]] ... ... @@ -821,12 +821,17 @@ 821 821 822 822 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 823 823 810 + 824 824 Instruction to use as below: 825 825 826 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 827 827 828 - (% style="color:blue" %)**Step2:**(%%)Openand choose814 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 829 829 816 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 817 + 818 + 819 +**Step 2:** Open it and choose 820 + 830 830 * Product Model 831 831 * Uplink Interval 832 832 * Working Mode ... ... @@ -907,11 +907,11 @@ 907 907 = 9. Packing Info = 908 908 909 909 910 - (% style="color:#037691" %)**Package Includes**:901 +**Package Includes**: 911 911 912 912 * PS-LB LoRaWAN Pressure Sensor 913 913 914 - (% style="color:#037691" %)**Dimension and weight**:905 +**Dimension and weight**: 915 915 916 916 * Device Size: cm 917 917 * Device Weight: g ... ... @@ -919,12 +919,11 @@ 919 919 * Weight / pcs : g 920 920 921 921 913 + 922 922 = 10. Support = 923 923 924 924 925 925 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 926 - 927 927 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 928 928 929 - 930 930
- image-20230201090514-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -560.9 KB - Content
- image-20230220171300-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.0 KB - Content