<
From version < 45.1 >
edited by Bei Jinggeng
on 2023/02/20 17:13
To version < 42.15 >
edited by Xiaoling
on 2023/01/31 16:10
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Bei
1 +XWiki.Xiaoling
Content
... ... @@ -16,33 +16,22 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 -(((
20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 -)))
19 +The Dragino PS-LB series sensors are **(% style="color:blue" %)LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
22 22  
23 -(((
24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 -)))
21 +The PS-LB series sensors include **(% style="color:blue" %)Thread Installation Type**(%%) and **(% style="color:blue" %)Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
26 26  
27 -(((
28 28  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 32  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 -)))
34 34  
35 -(((
36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 -)))
27 +PS-LB is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
38 38  
39 -(((
40 40  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 -)))
42 42  
43 43  [[image:1675071321348-194.png]]
44 44  
45 45  
34 +
46 46  == 1.2 ​Features ==
47 47  
48 48  
... ... @@ -63,18 +63,18 @@
63 63  == 1.3 Specification ==
64 64  
65 65  
66 -(% style="color:#037691" %)**Micro Controller:**
55 +**(% style="color:#037691" %)Micro Controller:**
67 67  
68 68  * MCU: 48Mhz ARM
69 69  * Flash: 256KB
70 70  * RAM: 64KB
71 71  
72 -(% style="color:#037691" %)**Common DC Characteristics:**
61 +**(% style="color:#037691" %)Common DC Characteristics:**
73 73  
74 74  * Supply Voltage: 2.5v ~~ 3.6v
75 75  * Operating Temperature: -40 ~~ 85°C
76 76  
77 -(% style="color:#037691" %)**LoRa Spec:**
66 +**(% style="color:#037691" %)LoRa Spec:**
78 78  
79 79  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
80 80  * Max +22 dBm constant RF output vs.
... ... @@ -81,19 +81,19 @@
81 81  * RX sensitivity: down to -139 dBm.
82 82  * Excellent blocking immunity
83 83  
84 -(% style="color:#037691" %)**Current Input Measuring :**
73 +**(% style="color:#037691" %)Current Input Measuring :**
85 85  
86 86  * Range: 0 ~~ 20mA
87 87  * Accuracy: 0.02mA
88 88  * Resolution: 0.001mA
89 89  
90 -(% style="color:#037691" %)**Voltage Input Measuring:**
79 +**(% style="color:#037691" %)Voltage Input Measuring:**
91 91  
92 92  * Range: 0 ~~ 30v
93 93  * Accuracy: 0.02v
94 94  * Resolution: 0.001v
95 95  
96 -(% style="color:#037691" %)**Battery:**
85 +**(% style="color:#037691" %)Battery:**
97 97  
98 98  * Li/SOCI2 un-chargeable battery
99 99  * Capacity: 8500mAh
... ... @@ -101,7 +101,7 @@
101 101  * Max continuously current: 130mA
102 102  * Max boost current: 2A, 1 second
103 103  
104 -(% style="color:#037691" %)**Power Consumption**
93 +**(% style="color:#037691" %)Power Consumption**
105 105  
106 106  * Sleep Mode: 5uA @ 3.3v
107 107  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
... ... @@ -147,12 +147,13 @@
147 147  
148 148  
149 149  
139 +
150 150  == 1.6 Application and Installation ==
151 151  
152 152  === 1.6.1 Thread Installation Type ===
153 153  
154 154  
155 -(% style="color:blue" %)**Application:**
145 +**(% style="color:blue" %)Application:**
156 156  
157 157  * Hydraulic Pressure
158 158  * Petrochemical Industry
... ... @@ -170,7 +170,7 @@
170 170  === 1.6.2 Immersion Type ===
171 171  
172 172  
173 -(% style="color:blue" %)**Application:**
163 +**(% style="color:blue" %)Application:**
174 174  
175 175  Liquid & Water Pressure / Level detect.
176 176  
... ... @@ -189,9 +189,9 @@
189 189  == 1.7 Sleep mode and working mode ==
190 190  
191 191  
192 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
182 +**(% style="color:blue" %)Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
193 193  
194 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
184 +**(% style="color:blue" %)Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
195 195  
196 196  
197 197  == 1.8 Button & LEDs ==
... ... @@ -201,19 +201,23 @@
201 201  
202 202  
203 203  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
204 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
205 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
206 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
194 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action**
195 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
196 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **(% style="color:blue" %)blue led** (%%)will blink once.
197 +
207 207  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
208 208  )))
209 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
210 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
211 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
200 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
201 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:#037691" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
202 +
203 +**(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
204 +
212 212  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
213 213  )))
214 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
207 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
215 215  
216 216  
210 +
217 217  == 1.9 Pin Mapping ==
218 218  
219 219  
... ... @@ -238,6 +238,8 @@
238 238  == 1.11 Mechanical ==
239 239  
240 240  
235 +
236 +
241 241  [[image:1675143884058-338.png]]
242 242  
243 243  
... ... @@ -252,9 +252,10 @@
252 252  == 2.1 How it works ==
253 253  
254 254  
255 -The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
251 +The PS-LB is configured as **(% style="color:#037691" %)LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
256 256  
257 257  
254 +
258 258  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
259 259  
260 260  
... ... @@ -267,7 +267,7 @@
267 267  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
268 268  
269 269  
270 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
267 +**(% style="color:blue" %)Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
271 271  
272 272  Each PS-LB is shipped with a sticker with the default device EUI as below:
273 273  
... ... @@ -278,32 +278,32 @@
278 278  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
279 279  
280 280  
281 -(% style="color:blue" %)**Register the device**
278 +**(% style="color:blue" %)Register the device**
282 282  
283 283  [[image:1675144099263-405.png]]
284 284  
285 285  
286 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
283 +**(% style="color:blue" %)Add APP EUI and DEV EUI**
287 287  
288 288  [[image:1675144117571-832.png]]
289 289  
290 290  
291 -(% style="color:blue" %)**Add APP EUI in the application**
288 +**(% style="color:blue" %)Add APP EUI in the application**
292 292  
293 293  
294 294  [[image:1675144143021-195.png]]
295 295  
296 296  
297 -(% style="color:blue" %)**Add APP KEY**
294 +**(% style="color:blue" %)Add APP KEY**
298 298  
299 299  [[image:1675144157838-392.png]]
300 300  
301 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
298 +**(% style="color:blue" %)Step 2:**(%%) Activate on PS-LB
302 302  
303 303  
304 304  Press the button for 5 seconds to activate the PS-LB.
305 305  
306 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
303 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:blue" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. **(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
307 307  
308 308  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
309 309  
... ... @@ -330,8 +330,8 @@
330 330  
331 331  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
332 332  |(% colspan="6" %)**Device Status (FPORT=5)**
333 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
334 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
330 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
331 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
335 335  
336 336  Example parse in TTNv3
337 337  
... ... @@ -338,11 +338,11 @@
338 338  [[image:1675144504430-490.png]]
339 339  
340 340  
341 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
338 +**(% style="color:#037691" %)Sensor Model**(%%): For PS-LB, this value is 0x16
342 342  
343 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
340 +**(% style="color:#037691" %)Firmware Version**(%%): 0x0100, Means: v1.0.0 version
344 344  
345 -(% style="color:#037691" %)**Frequency Band**:
342 +**(% style="color:#037691" %)Frequency Band**:
346 346  
347 347  *0x01: EU868
348 348  
... ... @@ -373,7 +373,7 @@
373 373  *0x0e: MA869
374 374  
375 375  
376 -(% style="color:#037691" %)**Sub-Band**:
373 +**(% style="color:#037691" %)Sub-Band**:
377 377  
378 378  AU915 and US915:value 0x00 ~~ 0x08
379 379  
... ... @@ -382,7 +382,7 @@
382 382  Other Bands: Always 0x00
383 383  
384 384  
385 -(% style="color:#037691" %)**Battery Info**:
382 +**(% style="color:#037691" %)Battery Info**:
386 386  
387 387  Check the battery voltage.
388 388  
... ... @@ -400,27 +400,13 @@
400 400  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
401 401  |(% style="width:97px" %)(((
402 402  **Size(bytes)**
403 -)))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
404 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
400 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1**
401 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
405 405  
406 406  [[image:1675144608950-310.png]]
407 407  
408 408  
409 -(% class="wikigeneratedid" %)
410 -=== 2.3.3 Sensor value, FPORT~=7 ===
411 411  
412 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:543px" %)
413 -|(% style="width:99px" %)(((
414 -**Size(bytes)**
415 -)))|(% style="width:63px" %)2|(% style="width:378px" %)n
416 -|(% style="width:99px" %)Value|(% style="width:63px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:378px" %)(((
417 -Voltage value, each 2 bytes is a set of voltage values
418 -)))
419 -
420 -
421 -[[image:image-20230220171300-1.png||height="207" width="863"]]
422 -
423 -
424 424  === 2.3.3 Battery Info ===
425 425  
426 426  
... ... @@ -431,7 +431,6 @@
431 431  Ex2: 0x0B49 = 2889mV
432 432  
433 433  
434 -
435 435  === 2.3.4 Probe Model ===
436 436  
437 437  
... ... @@ -453,7 +453,7 @@
453 453  
454 454  The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
455 455  
456 -(% style="color:#037691" %)**Example**:
438 +**(% style="color:#037691" %)Example**:
457 457  
458 458  27AE(H) = 10158 (D)/1000 = 10.158mA.
459 459  
... ... @@ -463,7 +463,7 @@
463 463  
464 464  Measure the voltage value. The range is 0 to 30V.
465 465  
466 -(% style="color:#037691" %)**Example**:
448 +**(% style="color:#037691" %)Example**:
467 467  
468 468  138E(H) = 5006(D)/1000= 5.006V
469 469  
... ... @@ -473,20 +473,20 @@
473 473  
474 474  IN1 and IN2 are used as digital input pins.
475 475  
476 -(% style="color:#037691" %)**Example**:
458 +**(% style="color:#037691" %)Example**:
477 477  
478 -09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
460 +09 (H) :(0x09&0x08)>>3=1    IN1 pin is high level.
479 479  
480 -09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
462 +09 (H) :(0x09&0x04)>>2=0    IN2 pin is low level.
481 481  
482 482  
483 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
465 +This data field shows if this packet is generated by **(% style="color:blue" %)Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
484 484  
485 -(% style="color:#037691" %)**Example:**
467 +**(% style="color:#037691" %)Example:**
486 486  
487 -09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
469 +09 (H) :(0x09&0x02)>>1=1    The level of the interrupt pin.
488 488  
489 -09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
471 +09 (H) :0x09&0x01=1              0x00: Normal uplink packet.
490 490  
491 491  0x01: Interrupt Uplink Packet.
492 492  
... ... @@ -515,9 +515,9 @@
515 515  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
516 516  
517 517  
518 -(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
500 +**(% style="color:blue" %)Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
519 519  
520 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
502 +**(% style="color:blue" %)Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
521 521  
522 522  
523 523  [[image:1675144951092-237.png]]
... ... @@ -526,9 +526,9 @@
526 526  [[image:1675144960452-126.png]]
527 527  
528 528  
529 -(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
511 +**(% style="color:blue" %)Step 3:**(%%) Create an account or log in Datacake.
530 530  
531 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
513 +**(% style="color:#blue" %)Step 4:** (%%)Create PS-LB product.
532 532  
533 533  [[image:1675145004465-869.png]]
534 534  
... ... @@ -541,7 +541,7 @@
541 541  [[image:1675145029119-717.png]]
542 542  
543 543  
544 -(% style="color:blue" %)**Step 5: **(%%)add payload decode
526 +**(% style="color:blue" %)Step 5: **(%%)add payload decode
545 545  
546 546  [[image:1675145051360-659.png]]
547 547  
... ... @@ -549,6 +549,7 @@
549 549  [[image:1675145060812-420.png]]
550 550  
551 551  
534 +
552 552  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
553 553  
554 554  
... ... @@ -577,12 +577,13 @@
577 577  
578 578  Use can configure PS-LB via AT Command or LoRaWAN Downlink.
579 579  
580 -* AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
563 +* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
581 581  * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
582 582  
566 +
583 583  There are two kinds of commands to configure PS-LB, they are:
584 584  
585 -* (% style="color:#037691" %)**General Commands**
569 +* **General Commands**.
586 586  
587 587  These commands are to configure:
588 588  
... ... @@ -594,7 +594,7 @@
594 594  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
595 595  
596 596  
597 -* (% style="color:#037691" %)**Commands special design for PS-LB**
581 +* **Commands special design for PS-LB**
598 598  
599 599  These commands only valid for PS-LB, as below:
600 600  
... ... @@ -604,28 +604,31 @@
604 604  
605 605  Feature: Change LoRaWAN End Node Transmit Interval.
606 606  
607 -(% style="color:blue" %)**AT Command: AT+TDC**
591 +**AT Command: AT+TDC**
608 608  
609 609  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
610 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
611 -|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
594 +|**Command Example**|**Function**|**Response**
595 +|AT+TDC=?|Show current transmit Interval|(((
612 612  30000
597 +
613 613  OK
599 +
614 614  the interval is 30000ms = 30s
615 615  )))
616 -|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
602 +|AT+TDC=60000|Set Transmit Interval|(((
617 617  OK
604 +
618 618  Set transmit interval to 60000ms = 60 seconds
619 619  )))
620 620  
621 -(% style="color:blue" %)**Downlink Command: 0x01**
608 +**Downlink Command: 0x01**
622 622  
623 623  Format: Command Code (0x01) followed by 3 bytes time value.
624 624  
625 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
612 +If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
626 626  
627 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
628 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
614 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
615 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
629 629  
630 630  
631 631  == 3.2 Set Interrupt Mode ==
... ... @@ -633,164 +633,162 @@
633 633  
634 634  Feature, Set Interrupt mode for GPIO_EXIT.
635 635  
636 -(% style="color:blue" %)**AT Command: AT+INTMOD**
623 +**AT Command: AT+INTMOD**
637 637  
638 638  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
639 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
640 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
626 +|**Command Example**|**Function**|**Response**
627 +|AT+INTMOD=?|Show current interrupt mode|(((
641 641  0
629 +
642 642  OK
631 +
643 643  the mode is 0 = No interruption
644 644  )))
645 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
634 +|AT+INTMOD=2|(((
646 646  Set Transmit Interval
636 +
647 647  ~1. (Disable Interrupt),
648 -2. (Trigger by rising and falling edge)
638 +
639 +2. (Trigger by rising and falling edge),
640 +
649 649  3. (Trigger by falling edge)
642 +
650 650  4. (Trigger by rising edge)
651 -)))|(% style="width:157px" %)OK
644 +)))|OK
652 652  
653 -(% style="color:blue" %)**Downlink Command: 0x06**
646 +**Downlink Command: 0x06**
654 654  
655 655  Format: Command Code (0x06) followed by 3 bytes.
656 656  
657 657  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
658 658  
659 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
660 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
652 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
653 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
661 661  
662 662  
656 +
663 663  == 3.3 Set the output time ==
664 664  
665 665  
666 666  Feature, Control the output 3V3 , 5V or 12V.
667 667  
668 -(% style="color:blue" %)**AT Command: AT+3V3T**
662 +**AT Command: AT+3V3T**
669 669  
670 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
671 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
672 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
664 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
665 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**
666 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
673 673  0
668 +
674 674  OK
675 675  )))
676 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
671 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
677 677  OK
673 +
678 678  default setting
679 679  )))
680 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
676 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
681 681  OK
678 +
679 +
682 682  )))
683 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
681 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
684 684  OK
683 +
684 +
685 685  )))
686 686  
687 -(% style="color:blue" %)**AT Command: AT+5VT**
688 688  
689 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
690 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
691 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
688 +**AT Command: AT+5VT**
689 +
690 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
691 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**
692 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
692 692  0
694 +
693 693  OK
694 694  )))
695 -|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
697 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
696 696  OK
699 +
697 697  default setting
698 698  )))
699 -|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
702 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
700 700  OK
704 +
705 +
701 701  )))
702 -|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
707 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
703 703  OK
709 +
710 +
704 704  )))
705 705  
706 -(% style="color:blue" %)**AT Command: AT+12VT**
707 707  
708 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
709 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
710 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
714 +**AT Command: AT+12VT**
715 +
716 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
717 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response**
718 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
711 711  0
720 +
712 712  OK
713 713  )))
714 -|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
715 -|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
723 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
724 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
716 716  OK
726 +
727 +
717 717  )))
718 718  
719 -(% style="color:blue" %)**Downlink Command: 0x07**
720 720  
731 +**Downlink Command: 0x07**
732 +
721 721  Format: Command Code (0x07) followed by 3 bytes.
722 722  
723 723  The first byte is which power, the second and third bytes are the time to turn on.
724 724  
725 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
726 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
727 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
728 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
729 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
730 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
737 +* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
738 +* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
739 +* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
740 +* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
741 +* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
742 +* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
731 731  
732 732  
745 +
733 733  == 3.4 Set the Probe Model ==
734 734  
735 735  
736 -(% style="color:blue" %)**AT Command: AT** **+PROBE**
749 +**AT Command: AT** **+PROBE**
737 737  
738 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:448px" %)
739 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 204px;" %)**Function**|=(% style="width: 85px;" %)**Response**
740 -|(% style="width:154px" %)AT +PROBE =?|(% style="width:204px" %)Get or Set the probe model.|(% style="width:85px" %)(((
751 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
752 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response**
753 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
741 741  0
755 +
742 742  OK
743 743  )))
744 -|(% style="width:154px" %)AT +PROBE =0003|(% style="width:204px" %)Set water depth sensor mode, 3m type.|(% style="width:85px" %)OK
745 -|(% style="width:154px" %)AT +PROBE =0101|(% style="width:204px" %)Set pressure transmitters mode, first type.|(% style="width:85px" %)(((
758 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
759 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
746 746  OK
761 +
762 +
747 747  )))
748 -|(% style="width:154px" %)AT +PROBE =0000|(% style="width:204px" %)Initial state, no settings.|(% style="width:85px" %)(((
764 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
749 749  OK
766 +
767 +
750 750  )))
751 751  
752 -(% style="color:blue" %)**Downlink Command: 0x08**
770 +**Downlink Command: 0x08**
753 753  
754 754  Format: Command Code (0x08) followed by 2 bytes.
755 755  
756 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
757 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
774 +* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
775 +* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
758 758  
759 759  
760 -== 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
761 761  
762 -Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
763 -
764 -(% style="color:blue" %)**AT Command: AT** **+STDC**
765 -
766 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
767 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
768 -|(% style="width:156px" %)AT+STDC=?|(% style="width:137px" %)(((
769 -Get the mode of multiple acquisitions and one uplink
770 -)))|(((
771 -1,10,18
772 -OK
773 -)))
774 -|(% style="width:156px" %)AT+STDC=1,10,18|(% style="width:137px" %)Set the mode of multiple acquisitions and one uplink|(((
775 -OK
776 -
777 -aa:
778 -
779 -0 means disable this function and use TDC to send packets.
780 -
781 -1 means enable this function, use the method of multiple acquisitions to send packets.
782 -
783 -bb: Each collection interval (s), the value is 1~~65535
784 -
785 -cc: the number of collection times, the value is 1~~120
786 -)))
787 -
788 -(% style="color:blue" %)**Downlink Command: 0xAE**
789 -
790 -Format: Command Code (0x08) followed by 5 bytes.
791 -
792 -* Example 1: Downlink Payload: AE 01 02 58 12 **~-~-->**  AT+STDC=1,600,18
793 -
794 794  = 4. Battery & how to replace =
795 795  
796 796  == 4.1 Battery Type ==
... ... @@ -798,6 +798,7 @@
798 798  
799 799  PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
800 800  
786 +
801 801  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
802 802  
803 803  [[image:1675146710956-626.png]]
... ... @@ -821,12 +821,17 @@
821 821  
822 822  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
823 823  
810 +
824 824  Instruction to use as below:
825 825  
826 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
827 827  
828 -(% style="color:blue" %)**Step 2:**(%%) Open it and choose
814 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
829 829  
816 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
817 +
818 +
819 +**Step 2:** Open it and choose
820 +
830 830  * Product Model
831 831  * Uplink Interval
832 832  * Working Mode
... ... @@ -907,11 +907,11 @@
907 907  = 9. ​Packing Info =
908 908  
909 909  
910 -(% style="color:#037691" %)**Package Includes**:
901 +**Package Includes**:
911 911  
912 912  * PS-LB LoRaWAN Pressure Sensor
913 913  
914 -(% style="color:#037691" %)**Dimension and weight**:
905 +**Dimension and weight**:
915 915  
916 916  * Device Size: cm
917 917  * Device Weight: g
... ... @@ -919,12 +919,11 @@
919 919  * Weight / pcs : g
920 920  
921 921  
913 +
922 922  = 10. Support =
923 923  
924 924  
925 925  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
926 -
927 927  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
928 928  
929 -
930 930  
image-20230201090514-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0