<
From version < 43.3 >
edited by Xiaoling
on 2023/02/01 11:45
To version < 42.13 >
edited by Xiaoling
on 2023/01/31 16:06
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -16,33 +16,22 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 -(((
20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 -)))
19 +The Dragino PS-LB series sensors are **(% style="color:blue" %)LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
22 22  
23 -(((
24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 -)))
21 +The PS-LB series sensors include **(% style="color:blue" %)Thread Installation Type**(%%) and **(% style="color:blue" %)Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
26 26  
27 -(((
28 28  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 32  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 -)))
34 34  
35 -(((
36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 -)))
27 +PS-LB is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
38 38  
39 -(((
40 40  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 -)))
42 42  
43 43  [[image:1675071321348-194.png]]
44 44  
45 45  
34 +
46 46  == 1.2 ​Features ==
47 47  
48 48  
... ... @@ -60,22 +60,21 @@
60 60  * 8500mAh Battery for long term use
61 61  
62 62  
63 -
64 64  == 1.3 Specification ==
65 65  
66 66  
67 -(% style="color:#037691" %)**Micro Controller:**
55 +**(% style="color:#037691" %)Micro Controller:**
68 68  
69 69  * MCU: 48Mhz ARM
70 70  * Flash: 256KB
71 71  * RAM: 64KB
72 72  
73 -(% style="color:#037691" %)**Common DC Characteristics:**
61 +**(% style="color:#037691" %)Common DC Characteristics:**
74 74  
75 75  * Supply Voltage: 2.5v ~~ 3.6v
76 76  * Operating Temperature: -40 ~~ 85°C
77 77  
78 -(% style="color:#037691" %)**LoRa Spec:**
66 +**(% style="color:#037691" %)LoRa Spec:**
79 79  
80 80  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
81 81  * Max +22 dBm constant RF output vs.
... ... @@ -82,19 +82,19 @@
82 82  * RX sensitivity: down to -139 dBm.
83 83  * Excellent blocking immunity
84 84  
85 -(% style="color:#037691" %)**Current Input Measuring :**
73 +**(% style="color:#037691" %)Current Input Measuring :**
86 86  
87 87  * Range: 0 ~~ 20mA
88 88  * Accuracy: 0.02mA
89 89  * Resolution: 0.001mA
90 90  
91 -(% style="color:#037691" %)**Voltage Input Measuring:**
79 +**(% style="color:#037691" %)Voltage Input Measuring:**
92 92  
93 93  * Range: 0 ~~ 30v
94 94  * Accuracy: 0.02v
95 95  * Resolution: 0.001v
96 96  
97 -(% style="color:#037691" %)**Battery:**
85 +**(% style="color:#037691" %)Battery:**
98 98  
99 99  * Li/SOCI2 un-chargeable battery
100 100  * Capacity: 8500mAh
... ... @@ -102,13 +102,12 @@
102 102  * Max continuously current: 130mA
103 103  * Max boost current: 2A, 1 second
104 104  
105 -(% style="color:#037691" %)**Power Consumption**
93 +**(% style="color:#037691" %)Power Consumption**
106 106  
107 107  * Sleep Mode: 5uA @ 3.3v
108 108  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
109 109  
110 110  
111 -
112 112  == 1.4 Probe Types ==
113 113  
114 114  === 1.4.1 Thread Installation Type ===
... ... @@ -128,7 +128,6 @@
128 128  * Connector Type: Various Types, see order info
129 129  
130 130  
131 -
132 132  === 1.4.2 Immersion Type ===
133 133  
134 134  
... ... @@ -146,17 +146,17 @@
146 146  * Material: 316 stainless steels
147 147  
148 148  
149 -
150 150  == 1.5 Probe Dimension ==
151 151  
152 152  
153 153  
139 +
154 154  == 1.6 Application and Installation ==
155 155  
156 156  === 1.6.1 Thread Installation Type ===
157 157  
158 158  
159 -(% style="color:blue" %)**Application:**
145 +**(% style="color:blue" %)Application:**
160 160  
161 161  * Hydraulic Pressure
162 162  * Petrochemical Industry
... ... @@ -174,7 +174,7 @@
174 174  === 1.6.2 Immersion Type ===
175 175  
176 176  
177 -(% style="color:blue" %)**Application:**
163 +**(% style="color:blue" %)Application:**
178 178  
179 179  Liquid & Water Pressure / Level detect.
180 180  
... ... @@ -193,9 +193,9 @@
193 193  == 1.7 Sleep mode and working mode ==
194 194  
195 195  
196 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
182 +**(% style="color:blue" %)Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
197 197  
198 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
184 +**(% style="color:blue" %)Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
199 199  
200 200  
201 201  == 1.8 Button & LEDs ==
... ... @@ -205,17 +205,20 @@
205 205  
206 206  
207 207  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
208 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
209 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
210 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
194 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action**
195 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
196 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **(% style="color:blue" %)blue led** (%%)will blink once.
197 +
211 211  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
212 212  )))
213 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
214 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
215 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
200 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
201 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:#037691" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
202 +
203 +**(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
204 +
216 216  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
217 217  )))
218 -|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
207 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
219 219  
220 220  
221 221  
... ... @@ -243,6 +243,8 @@
243 243  == 1.11 Mechanical ==
244 244  
245 245  
235 +
236 +
246 246  [[image:1675143884058-338.png]]
247 247  
248 248  
... ... @@ -257,9 +257,10 @@
257 257  == 2.1 How it works ==
258 258  
259 259  
260 -The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
251 +The PS-LB is configured as **(% style="color:#037691" %)LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
261 261  
262 262  
254 +
263 263  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
264 264  
265 265  
... ... @@ -272,7 +272,7 @@
272 272  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
273 273  
274 274  
275 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
267 +**(% style="color:blue" %)Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
276 276  
277 277  Each PS-LB is shipped with a sticker with the default device EUI as below:
278 278  
... ... @@ -283,32 +283,32 @@
283 283  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
284 284  
285 285  
286 -(% style="color:blue" %)**Register the device**
278 +**(% style="color:blue" %)Register the device**
287 287  
288 288  [[image:1675144099263-405.png]]
289 289  
290 290  
291 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
283 +**(% style="color:blue" %)Add APP EUI and DEV EUI**
292 292  
293 293  [[image:1675144117571-832.png]]
294 294  
295 295  
296 -(% style="color:blue" %)**Add APP EUI in the application**
288 +**(% style="color:blue" %)Add APP EUI in the application**
297 297  
298 298  
299 299  [[image:1675144143021-195.png]]
300 300  
301 301  
302 -(% style="color:blue" %)**Add APP KEY**
294 +**(% style="color:blue" %)Add APP KEY**
303 303  
304 304  [[image:1675144157838-392.png]]
305 305  
306 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
298 +**(% style="color:blue" %)Step 2:**(%%) Activate on PS-LB
307 307  
308 308  
309 309  Press the button for 5 seconds to activate the PS-LB.
310 310  
311 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
303 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:blue" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. **(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network.
312 312  
313 313  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
314 314  
... ... @@ -335,8 +335,8 @@
335 335  
336 336  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
337 337  |(% colspan="6" %)**Device Status (FPORT=5)**
338 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
339 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
330 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
331 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
340 340  
341 341  Example parse in TTNv3
342 342  
... ... @@ -343,11 +343,11 @@
343 343  [[image:1675144504430-490.png]]
344 344  
345 345  
346 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
338 +**(% style="color:#037691" %)Sensor Model**(%%): For PS-LB, this value is 0x16
347 347  
348 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
340 +**(% style="color:#037691" %)Firmware Version**(%%): 0x0100, Means: v1.0.0 version
349 349  
350 -(% style="color:#037691" %)**Frequency Band**:
342 +**(% style="color:#037691" %)Frequency Band**:
351 351  
352 352  *0x01: EU868
353 353  
... ... @@ -378,7 +378,7 @@
378 378  *0x0e: MA869
379 379  
380 380  
381 -(% style="color:#037691" %)**Sub-Band**:
373 +**(% style="color:#037691" %)Sub-Band**:
382 382  
383 383  AU915 and US915:value 0x00 ~~ 0x08
384 384  
... ... @@ -387,7 +387,7 @@
387 387  Other Bands: Always 0x00
388 388  
389 389  
390 -(% style="color:#037691" %)**Battery Info**:
382 +**(% style="color:#037691" %)Battery Info**:
391 391  
392 392  Check the battery voltage.
393 393  
... ... @@ -405,12 +405,13 @@
405 405  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
406 406  |(% style="width:97px" %)(((
407 407  **Size(bytes)**
408 -)))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
409 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
400 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1**
401 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
410 410  
411 411  [[image:1675144608950-310.png]]
412 412  
413 413  
406 +
414 414  === 2.3.3 Battery Info ===
415 415  
416 416  
... ... @@ -442,7 +442,7 @@
442 442  
443 443  The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
444 444  
445 -(% style="color:#037691" %)**Example**:
438 +**(% style="color:#037691" %)Example**:
446 446  
447 447  27AE(H) = 10158 (D)/1000 = 10.158mA.
448 448  
... ... @@ -452,7 +452,7 @@
452 452  
453 453  Measure the voltage value. The range is 0 to 30V.
454 454  
455 -(% style="color:#037691" %)**Example**:
448 +**(% style="color:#037691" %)Example**:
456 456  
457 457  138E(H) = 5006(D)/1000= 5.006V
458 458  
... ... @@ -462,20 +462,20 @@
462 462  
463 463  IN1 and IN2 are used as digital input pins.
464 464  
465 -(% style="color:#037691" %)**Example**:
458 +**(% style="color:#037691" %)Example**:
466 466  
467 -09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
460 +09 (H) :(0x09&0x08)>>3=1    IN1 pin is high level.
468 468  
469 -09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
462 +09 (H) :(0x09&0x04)>>2=0    IN2 pin is low level.
470 470  
471 471  
472 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
465 +This data field shows if this packet is generated by **Interrupt Pin** or not. [[Click here>>path:#Int_mod]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
473 473  
474 -(% style="color:#037691" %)**Example:**
467 +**(% style="color:#037691" %)Example:**
475 475  
476 -09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
469 +09 (H) : (0x09&0x02)>>1=1    The level of the interrupt pin.
477 477  
478 -09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
471 +09 (H) : 0x09&0x01=1              0x00: Normal uplink packet.
479 479  
480 480  0x01: Interrupt Uplink Packet.
481 481  
... ... @@ -504,9 +504,9 @@
504 504  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
505 505  
506 506  
507 -(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
500 +**(% style="color:blue" %)Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
508 508  
509 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
502 +**(% style="color:blue" %)Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
510 510  
511 511  
512 512  [[image:1675144951092-237.png]]
... ... @@ -515,9 +515,9 @@
515 515  [[image:1675144960452-126.png]]
516 516  
517 517  
518 -(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
511 +**(% style="color:blue" %)Step 3:**(%%) Create an account or log in Datacake.
519 519  
520 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
513 +**(% style="color:#blue" %)Step 4:** (%%)Create PS-LB product.
521 521  
522 522  [[image:1675145004465-869.png]]
523 523  
... ... @@ -530,7 +530,7 @@
530 530  [[image:1675145029119-717.png]]
531 531  
532 532  
533 -(% style="color:blue" %)**Step 5: **(%%)add payload decode
526 +**(% style="color:blue" %)Step 5: **(%%)add payload decode
534 534  
535 535  [[image:1675145051360-659.png]]
536 536  
... ... @@ -538,6 +538,7 @@
538 538  [[image:1675145060812-420.png]]
539 539  
540 540  
534 +
541 541  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
542 542  
543 543  
... ... @@ -566,12 +566,13 @@
566 566  
567 567  Use can configure PS-LB via AT Command or LoRaWAN Downlink.
568 568  
569 -* AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
563 +* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
570 570  * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
571 571  
566 +
572 572  There are two kinds of commands to configure PS-LB, they are:
573 573  
574 -* (% style="color:#037691" %)**General Commands**
569 +* **General Commands**.
575 575  
576 576  These commands are to configure:
577 577  
... ... @@ -583,7 +583,7 @@
583 583  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
584 584  
585 585  
586 -* (% style="color:#037691" %)**Commands special design for PS-LB**
581 +* **Commands special design for PS-LB**
587 587  
588 588  These commands only valid for PS-LB, as below:
589 589  
... ... @@ -593,61 +593,69 @@
593 593  
594 594  Feature: Change LoRaWAN End Node Transmit Interval.
595 595  
596 -(% style="color:blue" %)**AT Command: AT+TDC**
591 +**AT Command: AT+TDC**
597 597  
598 598  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
599 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
600 -|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
594 +|**Command Example**|**Function**|**Response**
595 +|AT+TDC=?|Show current transmit Interval|(((
601 601  30000
597 +
602 602  OK
599 +
603 603  the interval is 30000ms = 30s
604 604  )))
605 -|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
602 +|AT+TDC=60000|Set Transmit Interval|(((
606 606  OK
604 +
607 607  Set transmit interval to 60000ms = 60 seconds
608 608  )))
609 609  
610 -(% style="color:blue" %)**Downlink Command: 0x01**
608 +**Downlink Command: 0x01**
611 611  
612 612  Format: Command Code (0x01) followed by 3 bytes time value.
613 613  
614 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
612 +If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
615 615  
616 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
617 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
614 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
615 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
618 618  
619 619  
620 -
621 621  == 3.2 Set Interrupt Mode ==
622 622  
623 623  
624 624  Feature, Set Interrupt mode for GPIO_EXIT.
625 625  
626 -(% style="color:blue" %)**AT Command: AT+INTMOD**
623 +**AT Command: AT+INTMOD**
627 627  
628 628  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
629 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
630 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
626 +|**Command Example**|**Function**|**Response**
627 +|AT+INTMOD=?|Show current interrupt mode|(((
631 631  0
629 +
632 632  OK
631 +
633 633  the mode is 0 = No interruption
634 634  )))
635 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
634 +|AT+INTMOD=2|(((
636 636  Set Transmit Interval
636 +
637 637  ~1. (Disable Interrupt),
638 -2. (Trigger by rising and falling edge)
638 +
639 +2. (Trigger by rising and falling edge),
640 +
639 639  3. (Trigger by falling edge)
642 +
640 640  4. (Trigger by rising edge)
641 -)))|(% style="width:157px" %)OK
644 +)))|OK
642 642  
643 -(% style="color:blue" %)**Downlink Command: 0x06**
646 +**Downlink Command: 0x06**
644 644  
645 645  Format: Command Code (0x06) followed by 3 bytes.
646 646  
647 647  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
648 648  
649 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
650 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
652 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
653 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
651 651  
652 652  
653 653  
... ... @@ -656,72 +656,87 @@
656 656  
657 657  Feature, Control the output 3V3 , 5V or 12V.
658 658  
659 -(% style="color:blue" %)**AT Command: AT+3V3T**
662 +**AT Command: AT+3V3T**
660 660  
661 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
662 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
663 -|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
664 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
665 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**
666 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
664 664  0
668 +
665 665  OK
666 666  )))
667 -|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
671 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
668 668  OK
673 +
669 669  default setting
670 670  )))
671 -|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
676 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
672 672  OK
678 +
679 +
673 673  )))
674 -|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
681 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
675 675  OK
683 +
684 +
676 676  )))
677 677  
678 678  
679 -(% style="color:blue" %)**AT Command: AT+5VT**
688 +**AT Command: AT+5VT**
680 680  
681 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
682 -|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
683 -|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
690 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
691 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**
692 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
684 684  0
694 +
685 685  OK
686 686  )))
687 -|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
697 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
688 688  OK
699 +
689 689  default setting
690 690  )))
691 -|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
702 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
692 692  OK
704 +
705 +
693 693  )))
694 -|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
707 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
695 695  OK
709 +
710 +
696 696  )))
697 697  
698 698  
699 -(% style="color:blue" %)**AT Command: AT+12VT**
714 +**AT Command: AT+12VT**
700 700  
701 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
702 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
703 -|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
716 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
717 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response**
718 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
704 704  0
720 +
705 705  OK
706 706  )))
707 -|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
708 -|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
723 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
724 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
709 709  OK
726 +
727 +
710 710  )))
711 711  
712 712  
713 -(% style="color:blue" %)**Downlink Command: 0x07**
731 +**Downlink Command: 0x07**
714 714  
715 715  Format: Command Code (0x07) followed by 3 bytes.
716 716  
717 717  The first byte is which power, the second and third bytes are the time to turn on.
718 718  
719 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
720 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
721 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
722 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
723 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
724 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
737 +* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
738 +* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
739 +* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
740 +* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
741 +* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
742 +* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
725 725  
726 726  
727 727  
... ... @@ -728,28 +728,33 @@
728 728  == 3.4 Set the Probe Model ==
729 729  
730 730  
731 -(% style="color:blue" %)**AT Command: AT** **+PROBE**
749 +**AT Command: AT** **+PROBE**
732 732  
733 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:448px" %)
734 -|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 204px;" %)**Function**|=(% style="width: 85px;" %)**Response**
735 -|(% style="width:154px" %)AT +PROBE =?|(% style="width:204px" %)Get or Set the probe model.|(% style="width:85px" %)(((
751 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
752 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response**
753 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
736 736  0
755 +
737 737  OK
738 738  )))
739 -|(% style="width:154px" %)AT +PROBE =0003|(% style="width:204px" %)Set water depth sensor mode, 3m type.|(% style="width:85px" %)OK
740 -|(% style="width:154px" %)AT +PROBE =0101|(% style="width:204px" %)Set pressure transmitters mode, first type.|(% style="width:85px" %)(((
758 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
759 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
741 741  OK
761 +
762 +
742 742  )))
743 -|(% style="width:154px" %)AT +PROBE =0000|(% style="width:204px" %)Initial state, no settings.|(% style="width:85px" %)(((
764 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
744 744  OK
766 +
767 +
745 745  )))
746 746  
747 -(% style="color:blue" %)**Downlink Command: 0x08**
770 +**Downlink Command: 0x08**
748 748  
749 749  Format: Command Code (0x08) followed by 2 bytes.
750 750  
751 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
752 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
774 +* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
775 +* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
753 753  
754 754  
755 755  
... ... @@ -760,6 +760,7 @@
760 760  
761 761  PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
762 762  
786 +
763 763  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
764 764  
765 765  [[image:1675146710956-626.png]]
... ... @@ -783,12 +783,17 @@
783 783  
784 784  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
785 785  
810 +
786 786  Instruction to use as below:
787 787  
788 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
789 789  
790 -(% style="color:blue" %)**Step 2:**(%%) Open it and choose
814 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
791 791  
816 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
817 +
818 +
819 +**Step 2:** Open it and choose
820 +
792 792  * Product Model
793 793  * Uplink Interval
794 794  * Working Mode
... ... @@ -869,11 +869,11 @@
869 869  = 9. ​Packing Info =
870 870  
871 871  
872 -(% style="color:#037691" %)**Package Includes**:
901 +**Package Includes**:
873 873  
874 874  * PS-LB LoRaWAN Pressure Sensor
875 875  
876 -(% style="color:#037691" %)**Dimension and weight**:
905 +**Dimension and weight**:
877 877  
878 878  * Device Size: cm
879 879  * Device Weight: g
... ... @@ -886,9 +886,6 @@
886 886  
887 887  
888 888  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
889 -
890 890  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
891 891  
892 -
893 -
894 894  
image-20230201090514-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -560.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0