Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/04/19 17:58
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Content
-
... ... @@ -16,33 +16,22 @@ 16 16 == 1.1 What is LoRaWAN Pressure Sensor == 17 17 18 18 19 -((( 20 -The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 21 -))) 19 +The Dragino PS-LB series sensors are **(% style="color:blue" %)LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 22 22 23 -((( 24 -The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 25 -))) 21 +The PS-LB series sensors include **(% style="color:blue" %)Thread Installation Type**(%%) and **(% style="color:blue" %)Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 26 26 27 -((( 28 28 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 32 PS-LB supports BLE configure and wireless OTA update which make user easy to use. 33 -))) 34 34 35 -((( 36 -PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 -))) 27 +PS-LB is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 38 38 39 -((( 40 40 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 41 -))) 42 42 43 43 [[image:1675071321348-194.png]] 44 44 45 45 34 + 46 46 == 1.2 Features == 47 47 48 48 ... ... @@ -60,22 +60,21 @@ 60 60 * 8500mAh Battery for long term use 61 61 62 62 63 - 64 64 == 1.3 Specification == 65 65 66 66 67 -(% style="color:#037691" %) **Micro Controller:**55 +**(% style="color:#037691" %)Micro Controller:** 68 68 69 69 * MCU: 48Mhz ARM 70 70 * Flash: 256KB 71 71 * RAM: 64KB 72 72 73 -(% style="color:#037691" %) **Common DC Characteristics:**61 +**(% style="color:#037691" %)Common DC Characteristics:** 74 74 75 75 * Supply Voltage: 2.5v ~~ 3.6v 76 76 * Operating Temperature: -40 ~~ 85°C 77 77 78 -(% style="color:#037691" %) **LoRa Spec:**66 +**(% style="color:#037691" %)LoRa Spec:** 79 79 80 80 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 81 81 * Max +22 dBm constant RF output vs. ... ... @@ -82,19 +82,19 @@ 82 82 * RX sensitivity: down to -139 dBm. 83 83 * Excellent blocking immunity 84 84 85 -(% style="color:#037691" %) **Current Input Measuring :**73 +**(% style="color:#037691" %)Current Input Measuring :** 86 86 87 87 * Range: 0 ~~ 20mA 88 88 * Accuracy: 0.02mA 89 89 * Resolution: 0.001mA 90 90 91 -(% style="color:#037691" %) **Voltage Input Measuring:**79 +**(% style="color:#037691" %)Voltage Input Measuring:** 92 92 93 93 * Range: 0 ~~ 30v 94 94 * Accuracy: 0.02v 95 95 * Resolution: 0.001v 96 96 97 -(% style="color:#037691" %) **Battery:**85 +**(% style="color:#037691" %)Battery:** 98 98 99 99 * Li/SOCI2 un-chargeable battery 100 100 * Capacity: 8500mAh ... ... @@ -102,13 +102,12 @@ 102 102 * Max continuously current: 130mA 103 103 * Max boost current: 2A, 1 second 104 104 105 -(% style="color:#037691" %) **Power Consumption**93 +**(% style="color:#037691" %)Power Consumption** 106 106 107 107 * Sleep Mode: 5uA @ 3.3v 108 108 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 109 109 110 110 111 - 112 112 == 1.4 Probe Types == 113 113 114 114 === 1.4.1 Thread Installation Type === ... ... @@ -128,7 +128,6 @@ 128 128 * Connector Type: Various Types, see order info 129 129 130 130 131 - 132 132 === 1.4.2 Immersion Type === 133 133 134 134 ... ... @@ -146,17 +146,17 @@ 146 146 * Material: 316 stainless steels 147 147 148 148 149 - 150 150 == 1.5 Probe Dimension == 151 151 152 152 153 153 139 + 154 154 == 1.6 Application and Installation == 155 155 156 156 === 1.6.1 Thread Installation Type === 157 157 158 158 159 -(% style="color:blue" %) **Application:**145 +**(% style="color:blue" %)Application:** 160 160 161 161 * Hydraulic Pressure 162 162 * Petrochemical Industry ... ... @@ -174,7 +174,7 @@ 174 174 === 1.6.2 Immersion Type === 175 175 176 176 177 -(% style="color:blue" %) **Application:**163 +**(% style="color:blue" %)Application:** 178 178 179 179 Liquid & Water Pressure / Level detect. 180 180 ... ... @@ -193,9 +193,9 @@ 193 193 == 1.7 Sleep mode and working mode == 194 194 195 195 196 -(% style="color:blue" %) **Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.182 +**(% style="color:blue" %)Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 197 197 198 -(% style="color:blue" %) **Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.184 +**(% style="color:blue" %)Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 199 199 200 200 201 201 == 1.8 Button & LEDs == ... ... @@ -205,17 +205,20 @@ 205 205 206 206 207 207 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 208 -|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action** 209 -|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 210 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 194 +|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action** 195 +|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|((( 196 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **(% style="color:blue" %)blue led** (%%)will blink once. 197 + 211 211 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 212 212 ))) 213 -|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 214 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 215 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 200 +|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|((( 201 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:#037691" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 202 + 203 +**(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network. 204 + 216 216 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 217 217 ))) 218 -|(% style="width:1 67px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red"%)**Redled**(%%)will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.207 +|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 219 219 220 220 221 221 ... ... @@ -243,6 +243,8 @@ 243 243 == 1.11 Mechanical == 244 244 245 245 235 + 236 + 246 246 [[image:1675143884058-338.png]] 247 247 248 248 ... ... @@ -257,9 +257,10 @@ 257 257 == 2.1 How it works == 258 258 259 259 260 -The PS-LB is configured as (% style="color:#037691" %) **LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.251 +The PS-LB is configured as **(% style="color:#037691" %)LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 261 261 262 262 254 + 263 263 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 264 264 265 265 ... ... @@ -272,7 +272,7 @@ 272 272 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 273 273 274 274 275 -(% style="color:blue" %) **Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.267 +**(% style="color:blue" %)Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB. 276 276 277 277 Each PS-LB is shipped with a sticker with the default device EUI as below: 278 278 ... ... @@ -283,32 +283,32 @@ 283 283 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 284 284 285 285 286 -(% style="color:blue" %) **Register the device**278 +**(% style="color:blue" %)Register the device** 287 287 288 288 [[image:1675144099263-405.png]] 289 289 290 290 291 -(% style="color:blue" %) **Add APP EUI and DEV EUI**283 +**(% style="color:blue" %)Add APP EUI and DEV EUI** 292 292 293 293 [[image:1675144117571-832.png]] 294 294 295 295 296 -(% style="color:blue" %) **Add APP EUI in the application**288 +**(% style="color:blue" %)Add APP EUI in the application** 297 297 298 298 299 299 [[image:1675144143021-195.png]] 300 300 301 301 302 -(% style="color:blue" %) **Add APP KEY**294 +**(% style="color:blue" %)Add APP KEY** 303 303 304 304 [[image:1675144157838-392.png]] 305 305 306 -(% style="color:blue" %) **Step 2:**(%%) Activate on PS-LB298 +**(% style="color:blue" %)Step 2:**(%%) Activate on PS-LB 307 307 308 308 309 309 Press the button for 5 seconds to activate the PS-LB. 310 310 311 -(% style="color:green" %) **Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.303 +**(% style="color:green" %)Green led**(%%) will fast blink 5 times, device will enter **(% style="color:blue" %)OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. **(% style="color:green" %)Green led**(%%) will solidly turn on for 5 seconds after joined in network. 312 312 313 313 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 314 314 ... ... @@ -335,8 +335,8 @@ 335 335 336 336 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 337 337 |(% colspan="6" %)**Device Status (FPORT=5)** 338 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**| (% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**339 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version| (% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT330 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2** 331 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT 340 340 341 341 Example parse in TTNv3 342 342 ... ... @@ -343,11 +343,11 @@ 343 343 [[image:1675144504430-490.png]] 344 344 345 345 346 -(% style="color:#037691" %) **Sensor Model**(%%): For PS-LB, this value is 0x16338 +**(% style="color:#037691" %)Sensor Model**(%%): For PS-LB, this value is 0x16 347 347 348 -(% style="color:#037691" %) **Firmware Version**(%%): 0x0100, Means: v1.0.0 version340 +**(% style="color:#037691" %)Firmware Version**(%%): 0x0100, Means: v1.0.0 version 349 349 350 -(% style="color:#037691" %) **Frequency Band**:342 +**(% style="color:#037691" %)Frequency Band**: 351 351 352 352 *0x01: EU868 353 353 ... ... @@ -378,7 +378,7 @@ 378 378 *0x0e: MA869 379 379 380 380 381 -(% style="color:#037691" %) **Sub-Band**:373 +**(% style="color:#037691" %)Sub-Band**: 382 382 383 383 AU915 and US915:value 0x00 ~~ 0x08 384 384 ... ... @@ -387,7 +387,7 @@ 387 387 Other Bands: Always 0x00 388 388 389 389 390 -(% style="color:#037691" %) **Battery Info**:382 +**(% style="color:#037691" %)Battery Info**: 391 391 392 392 Check the battery voltage. 393 393 ... ... @@ -396,7 +396,7 @@ 396 396 Ex2: 0x0B49 = 2889mV 397 397 398 398 399 -=== 2.3.2 Sensor value, FPORT~=2 ===391 +=== 1.3.2 Sensor value, FPORT~=2 === 400 400 401 401 402 402 Uplink payload includes in total 9 bytes. ... ... @@ -405,12 +405,13 @@ 405 405 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 406 406 |(% style="width:97px" %)((( 407 407 **Size(bytes)** 408 -)))|(% style="width:48px" %)**2**|(% style="width: 71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**409 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>> ||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]]400 +)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1** 401 +|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>path:#bat]]|(% style="width:58px" %)[[Probe Model>>path:#Probe_Model]]|0 ~~ 20mA value|[[0 ~~~~ 30v value>>path:#Voltage_30v]]|[[IN1 &IN2 Interrupt flag>>path:#Int_pin]] 410 410 411 411 [[image:1675144608950-310.png]] 412 412 413 413 406 + 414 414 === 2.3.3 Battery Info === 415 415 416 416 ... ... @@ -442,7 +442,7 @@ 442 442 443 443 The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level. 444 444 445 -(% style="color:#037691" %) **Example**:438 +**(% style="color:#037691" %)Example**: 446 446 447 447 27AE(H) = 10158 (D)/1000 = 10.158mA. 448 448 ... ... @@ -452,7 +452,7 @@ 452 452 453 453 Measure the voltage value. The range is 0 to 30V. 454 454 455 -(% style="color:#037691" %) **Example**:448 +**(% style="color:#037691" %)Example**: 456 456 457 457 138E(H) = 5006(D)/1000= 5.006V 458 458 ... ... @@ -462,20 +462,20 @@ 462 462 463 463 IN1 and IN2 are used as digital input pins. 464 464 465 -(% style="color:#037691" %) **Example**:458 +**(% style="color:#037691" %)Example**: 466 466 467 -09 (H) :(0x09&0x08)>>3=1 IN1 pin is high level.460 +09 (H) :(0x09&0x08)>>3=1 IN1 pin is high level. 468 468 469 -09 (H) :(0x09&0x04)>>2=0 IN2 pin is low level.462 +09 (H) :(0x09&0x04)>>2=0 IN2 pin is low level. 470 470 471 471 472 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin**(%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.465 +This data field shows if this packet is generated by **Interrupt Pin** or not. [[Click here>>path:#Int_mod]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal. 473 473 474 -(% style="color:#037691" %) **Example:**467 +**(% style="color:#037691" %)Example:** 475 475 476 -09 (H): (0x09&0x02)>>1=1 The level of the interrupt pin. 469 +09 (H) : (0x09&0x02)>>1=1 The level of the interrupt pin. 477 477 478 -09 (H): 0x09&0x01=1 0x00: Normal uplink packet. 471 +09 (H) : 0x09&0x01=1 0x00: Normal uplink packet. 479 479 480 480 0x01: Interrupt Uplink Packet. 481 481 ... ... @@ -504,9 +504,9 @@ 504 504 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 505 505 506 506 507 -(% style="color:blue" %) **Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.500 +**(% style="color:blue" %)Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time. 508 508 509 -(% style="color:blue" %) **Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:502 +**(% style="color:blue" %)Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 510 510 511 511 512 512 [[image:1675144951092-237.png]] ... ... @@ -515,9 +515,9 @@ 515 515 [[image:1675144960452-126.png]] 516 516 517 517 518 -(% style="color:blue" %) **Step 3:**(%%) Create an account or log in Datacake.511 +**(% style="color:blue" %)Step 3:**(%%) Create an account or log in Datacake. 519 519 520 -(% style="color:blue" %) **Step 4:** (%%)Create PS-LB product.513 +**(% style="color:#blue" %)Step 4:** (%%)Create PS-LB product. 521 521 522 522 [[image:1675145004465-869.png]] 523 523 ... ... @@ -530,7 +530,7 @@ 530 530 [[image:1675145029119-717.png]] 531 531 532 532 533 -(% style="color:blue" %) **Step 5: **(%%)add payload decode526 +**(% style="color:blue" %)Step 5: **(%%)add payload decode 534 534 535 535 [[image:1675145051360-659.png]] 536 536 ... ... @@ -538,6 +538,7 @@ 538 538 [[image:1675145060812-420.png]] 539 539 540 540 534 + 541 541 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 542 542 543 543 ... ... @@ -566,12 +566,13 @@ 566 566 567 567 Use can configure PS-LB via AT Command or LoRaWAN Downlink. 568 568 569 -* AT Command Connection: See [[FAQ>> ||anchor="H7.FAQ"]].563 +* AT Command Connection: See [[FAQ>>path:#AT_COMMAND]]. 570 570 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 571 571 566 + 572 572 There are two kinds of commands to configure PS-LB, they are: 573 573 574 -* (% style="color:#037691" %)**General Commands**569 +* **General Commands**. 575 575 576 576 These commands are to configure: 577 577 ... ... @@ -583,7 +583,7 @@ 583 583 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 584 584 585 585 586 -* (% style="color:#037691" %)**Commands special design for PS-LB**581 +* **Commands special design for PS-LB** 587 587 588 588 These commands only valid for PS-LB, as below: 589 589 ... ... @@ -593,61 +593,69 @@ 593 593 594 594 Feature: Change LoRaWAN End Node Transmit Interval. 595 595 596 - (% style="color:blue" %)**AT Command: AT+TDC**591 +**AT Command: AT+TDC** 597 597 598 598 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 599 -| =(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**600 -| (% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((594 +|**Command Example**|**Function**|**Response** 595 +|AT+TDC=?|Show current transmit Interval|((( 601 601 30000 597 + 602 602 OK 599 + 603 603 the interval is 30000ms = 30s 604 604 ))) 605 -| (% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((602 +|AT+TDC=60000|Set Transmit Interval|((( 606 606 OK 604 + 607 607 Set transmit interval to 60000ms = 60 seconds 608 608 ))) 609 609 610 - (% style="color:blue" %)**Downlink Command: 0x01**608 +**Downlink Command: 0x01** 611 611 612 612 Format: Command Code (0x01) followed by 3 bytes time value. 613 613 614 -If the downlink payload=0100003C, it means set the END Node 's Transmit Interval to 0x00003C=60(S), while type code is 01.612 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 615 615 616 -* Example 1: Downlink Payload: 0100001E 617 -* Example 2: Downlink Payload: 0100003C 614 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 615 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 618 618 619 619 620 - 621 621 == 3.2 Set Interrupt Mode == 622 622 623 623 624 624 Feature, Set Interrupt mode for GPIO_EXIT. 625 625 626 - (% style="color:blue" %)**AT Command: AT+INTMOD**623 +**AT Command: AT+INTMOD** 627 627 628 628 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 629 -| =(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**630 -| (% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((626 +|**Command Example**|**Function**|**Response** 627 +|AT+INTMOD=?|Show current interrupt mode|((( 631 631 0 629 + 632 632 OK 631 + 633 633 the mode is 0 = No interruption 634 634 ))) 635 -| (% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((634 +|AT+INTMOD=2|((( 636 636 Set Transmit Interval 636 + 637 637 ~1. (Disable Interrupt), 638 -2. (Trigger by rising and falling edge) 638 + 639 +2. (Trigger by rising and falling edge), 640 + 639 639 3. (Trigger by falling edge) 642 + 640 640 4. (Trigger by rising edge) 641 -)))| (% style="width:157px" %)OK644 +)))|OK 642 642 643 - (% style="color:blue" %)**Downlink Command: 0x06**646 +**Downlink Command: 0x06** 644 644 645 645 Format: Command Code (0x06) followed by 3 bytes. 646 646 647 647 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 648 648 649 -* Example 1: Downlink Payload: 06000000 650 -* Example 2: Downlink Payload: 06000003 652 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 653 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 651 651 652 652 653 653 ... ... @@ -656,72 +656,87 @@ 656 656 657 657 Feature, Control the output 3V3 , 5V or 12V. 658 658 659 - (% style="color:blue" %)**AT Command: AT+3V3T**662 +**AT Command: AT+3V3T** 660 660 661 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 474px" %)662 -| =(% style="width:4px;" %)**Command Example**|=(% style="width:01px;" %)**Function**|=(% style="width:6px;" %)**Response**663 -|(% style="width:15 4px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((664 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 665 +|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response** 666 +|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)((( 664 664 0 668 + 665 665 OK 666 666 ))) 667 -|(% style="width:15 4px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((671 +|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)((( 668 668 OK 673 + 669 669 default setting 670 670 ))) 671 -|(% style="width:15 4px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((676 +|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)((( 672 672 OK 678 + 679 + 673 673 ))) 674 -|(% style="width:15 4px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((681 +|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)((( 675 675 OK 683 + 684 + 676 676 ))) 677 677 678 678 679 - (% style="color:blue" %)**AT Command: AT+5VT**688 +**AT Command: AT+5VT** 680 680 681 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 470px" %)682 -| =(% style="width:5px;" %)**Command Example**|=(% style="width:196px;" %)**Function**|=(% style="width:4px;" %)**Response**683 -|(% style="width:15 5px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((690 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 691 +|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response** 692 +|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)((( 684 684 0 694 + 685 685 OK 686 686 ))) 687 -|(% style="width:15 5px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((697 +|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)((( 688 688 OK 699 + 689 689 default setting 690 690 ))) 691 -|(% style="width:15 5px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((702 +|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)((( 692 692 OK 704 + 705 + 693 693 ))) 694 -|(% style="width:15 5px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((707 +|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)((( 695 695 OK 709 + 710 + 696 696 ))) 697 697 698 698 699 - (% style="color:blue" %)**AT Command: AT+12VT**714 +**AT Command: AT+12VT** 700 700 701 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 443px" %)702 -| =(% style="width:;" %)**Command Example**|=(% style="width:199px;" %)**Function**|=(% style="width: 83px;" %)**Response**703 -|(% style="width:156px" %)AT+12VT=?|(% style="width: 199px" %)Show 12V open time.|(% style="width:83px" %)(((716 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 717 +|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response** 718 +|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|((( 704 704 0 720 + 705 705 OK 706 706 ))) 707 -|(% style="width:156px" %)AT+12VT=0|(% style="width: 199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK708 -|(% style="width:156px" %)AT+12VT=500|(% style="width: 199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((723 +|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK 724 +|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|((( 709 709 OK 726 + 727 + 710 710 ))) 711 711 712 712 713 - (% style="color:blue" %)**Downlink Command: 0x07**731 +**Downlink Command: 0x07** 714 714 715 715 Format: Command Code (0x07) followed by 3 bytes. 716 716 717 717 The first byte is which power, the second and third bytes are the time to turn on. 718 718 719 -* Example 1: Downlink Payload: 070101F4 **~-~-->**720 -* Example 2: Downlink Payload: 0701FFFF **~-~-->**AT+3V3T=65535721 -* Example 3: Downlink Payload: 070203E8 **~-~-->**AT+5VT=1000722 -* Example 4: Downlink Payload: 07020000 **~-~-->**AT+5VT=0723 -* Example 5: Downlink Payload: 070301F4 **~-~-->**AT+12VT=500724 -* Example 6: Downlink Payload: 07030000 **~-~-->**AT+12VT=0737 +* Example 1: Downlink Payload: 070101F4 -> AT+3V3T=500 738 +* Example 2: Downlink Payload: 0701FFFF -> AT+3V3T=65535 739 +* Example 3: Downlink Payload: 070203E8 -> AT+5VT=1000 740 +* Example 4: Downlink Payload: 07020000 -> AT+5VT=0 741 +* Example 5: Downlink Payload: 070301F4 -> AT+12VT=500 742 +* Example 6: Downlink Payload: 07030000 -> AT+12VT=0 725 725 726 726 727 727 ... ... @@ -728,28 +728,33 @@ 728 728 == 3.4 Set the Probe Model == 729 729 730 730 731 - (% style="color:blue" %)**AT Command: AT** **+PROBE**749 +**AT Command: AT** **+PROBE** 732 732 733 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 448px" %)734 -| =(% style="width:4px;" %)**Command Example**|=(% style="width:04px;" %)**Function**|=(% style="width: 85px;" %)**Response**735 -|(% style="width:15 4px" %)AT +PROBE =?|(% style="width:204px" %)Get or Set the probe model.|(% style="width:85px" %)(((751 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 752 +|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response** 753 +|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|((( 736 736 0 755 + 737 737 OK 738 738 ))) 739 -|(% style="width:15 4px" %)AT +PROBE =0003|(% style="width:204px" %)Set water depth sensor mode, 3m type.|(% style="width:85px" %)OK740 -|(% style="width:15 4px" %)AT +PROBE =0101|(% style="width:204px" %)Set pressure transmitters mode, first type.|(% style="width:85px" %)(((758 +|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK 759 +|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|((( 741 741 OK 761 + 762 + 742 742 ))) 743 -|(% style="width:15 4px" %)AT +PROBE =0000|(% style="width:204px" %)Initial state, no settings.|(% style="width:85px" %)(((764 +|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|((( 744 744 OK 766 + 767 + 745 745 ))) 746 746 747 - (% style="color:blue" %)**Downlink Command: 0x08**770 +**Downlink Command: 0x08** 748 748 749 749 Format: Command Code (0x08) followed by 2 bytes. 750 750 751 -* Example 1: Downlink Payload: 080003 **~-~-->**752 -* Example 2: Downlink Payload: 080101 **~-~-->**774 +* Example 1: Downlink Payload: 080003 -> AT+PROBE=0003 775 +* Example 2: Downlink Payload: 080101 -> AT+PROBE=0101 753 753 754 754 755 755 ... ... @@ -760,6 +760,7 @@ 760 760 761 761 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 762 762 786 + 763 763 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 764 764 765 765 [[image:1675146710956-626.png]] ... ... @@ -783,12 +783,17 @@ 783 783 784 784 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 785 785 810 + 786 786 Instruction to use as below: 787 787 788 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 789 789 790 - (% style="color:blue" %)**Step2:**(%%)Openand choose814 +**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 791 791 816 +[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 817 + 818 + 819 +**Step 2:** Open it and choose 820 + 792 792 * Product Model 793 793 * Uplink Interval 794 794 * Working Mode ... ... @@ -869,11 +869,11 @@ 869 869 = 9. Packing Info = 870 870 871 871 872 - (% style="color:#037691" %)**Package Includes**:901 +**Package Includes**: 873 873 874 874 * PS-LB LoRaWAN Pressure Sensor 875 875 876 - (% style="color:#037691" %)**Dimension and weight**:905 +**Dimension and weight**: 877 877 878 878 * Device Size: cm 879 879 * Device Weight: g ... ... @@ -886,9 +886,6 @@ 886 886 887 887 888 888 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 889 - 890 890 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 891 891 892 - 893 - 894 894
- image-20230201090514-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -560.9 KB - Content