Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/04/27 10:31
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 4 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Edwin - Content
-
... ... @@ -4,6 +4,7 @@ 4 4 5 5 **Table of Contents:** 6 6 7 +{{toc/}} 7 7 8 8 9 9 ... ... @@ -10,35 +10,38 @@ 10 10 11 11 12 12 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 21 = 1. Introduction = 22 22 23 23 == 1.1 What is LoRaWAN Pressure Sensor == 24 24 25 25 26 -The Dragino PS-LB series sensors are **LoRaWAN Pressure Sensor** for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 19 +((( 20 +The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 21 +))) 27 27 28 -The PS-LB series sensors include **Thread Installation Type** and **Immersion Type**, it supports different pressure range which can be used for different measurement requirement. 23 +((( 24 +The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 25 +))) 29 29 27 +((( 30 30 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 31 31 31 +((( 32 32 PS-LB supports BLE configure and wireless OTA update which make user easy to use. 33 +))) 33 33 34 -PS-LB is powered by **8500mAh Li-SOCI2 battery**, it is designed for long term use up to 5 years. 35 +((( 36 +PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 +))) 35 35 39 +((( 36 36 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 41 +))) 37 37 38 38 [[image:1675071321348-194.png]] 39 39 40 40 41 - 42 42 == 1.2 Features == 43 43 44 44 ... ... @@ -54,23 +54,24 @@ 54 54 * Uplink on periodically 55 55 * Downlink to change configure 56 56 * 8500mAh Battery for long term use 61 +* Controllable 3.3v,5v and 12v output to power external sensor 57 57 58 58 59 59 == 1.3 Specification == 60 60 61 61 62 -**Micro Controller:** 67 +(% style="color:#037691" %)**Micro Controller:** 63 63 64 64 * MCU: 48Mhz ARM 65 65 * Flash: 256KB 66 66 * RAM: 64KB 67 67 68 -**Common DC Characteristics:** 73 +(% style="color:#037691" %)**Common DC Characteristics:** 69 69 70 70 * Supply Voltage: 2.5v ~~ 3.6v 71 71 * Operating Temperature: -40 ~~ 85°C 72 72 73 -**LoRa Spec:** 78 +(% style="color:#037691" %)**LoRa Spec:** 74 74 75 75 * Frequency Range, Band 1 (HF): 862 ~~ 1020 Mhz 76 76 * Max +22 dBm constant RF output vs. ... ... @@ -77,19 +77,19 @@ 77 77 * RX sensitivity: down to -139 dBm. 78 78 * Excellent blocking immunity 79 79 80 -**Current Input Measuring :** 85 +(% style="color:#037691" %)**Current Input Measuring :** 81 81 82 82 * Range: 0 ~~ 20mA 83 83 * Accuracy: 0.02mA 84 84 * Resolution: 0.001mA 85 85 86 -**Voltage Input Measuring:** 91 +(% style="color:#037691" %)**Voltage Input Measuring:** 87 87 88 88 * Range: 0 ~~ 30v 89 89 * Accuracy: 0.02v 90 90 * Resolution: 0.001v 91 91 92 -**Battery:** 97 +(% style="color:#037691" %)**Battery:** 93 93 94 94 * Li/SOCI2 un-chargeable battery 95 95 * Capacity: 8500mAh ... ... @@ -97,7 +97,7 @@ 97 97 * Max continuously current: 130mA 98 98 * Max boost current: 2A, 1 second 99 99 100 -**Power Consumption** 105 +(% style="color:#037691" %)**Power Consumption** 101 101 102 102 * Sleep Mode: 5uA @ 3.3v 103 103 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm ... ... @@ -131,11 +131,8 @@ 131 131 * Measuring Range: Measure range can be customized, up to 100m. 132 132 * Accuracy: 0.2% F.S 133 133 * Long-Term Stability: ±0.2% F.S / Year 134 -* Overload 200% F.S 135 -* Zero Temperature Drift: ±2% F.S) 136 -* FS Temperature Drift: ±2% F.S 137 137 * Storage temperature: -30℃~~80℃ 138 -* Operating temperature: -40℃~~85℃140 +* Operating temperature: 0℃~~50℃ 139 139 * Material: 316 stainless steels 140 140 141 141 ... ... @@ -143,13 +143,12 @@ 143 143 144 144 145 145 146 - 147 147 == 1.6 Application and Installation == 148 148 149 149 === 1.6.1 Thread Installation Type === 150 150 151 151 152 -**Application:** 153 +(% style="color:blue" %)**Application:** 153 153 154 154 * Hydraulic Pressure 155 155 * Petrochemical Industry ... ... @@ -167,7 +167,7 @@ 167 167 === 1.6.2 Immersion Type === 168 168 169 169 170 -**Application:** 171 +(% style="color:blue" %)**Application:** 171 171 172 172 Liquid & Water Pressure / Level detect. 173 173 ... ... @@ -186,9 +186,9 @@ 186 186 == 1.7 Sleep mode and working mode == 187 187 188 188 189 -**Deep Sleep Mode: **Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 190 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 190 190 191 -**Working Mode:** In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 192 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 192 192 193 193 194 194 == 1.8 Button & LEDs == ... ... @@ -198,23 +198,19 @@ 198 198 199 199 200 200 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 201 -|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action** 202 -|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|((( 203 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, **blue led** will blink once. 204 - 202 +|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action** 203 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 204 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 205 205 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 206 206 ))) 207 -|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|((( 208 -**Green led** will fast blink 5 times, device will enter **OTA mode** for 3 seconds. And then start to JOIN LoRaWAN network. 209 - 210 -**Green led** will solidly turn on for 5 seconds after joined in network. 211 - 207 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 208 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 209 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 212 212 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 213 213 ))) 214 -|(% style="width:1 38px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.212 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 215 215 216 216 217 - 218 218 == 1.9 Pin Mapping == 219 219 220 220 ... ... @@ -239,8 +239,6 @@ 239 239 == 1.11 Mechanical == 240 240 241 241 242 - 243 - 244 244 [[image:1675143884058-338.png]] 245 245 246 246 ... ... @@ -255,10 +255,9 @@ 255 255 == 2.1 How it works == 256 256 257 257 258 -The PS-LB is configured as **LoRaWAN OTAA Class A** mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 253 +The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 259 259 260 260 261 - 262 262 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 263 263 264 264 ... ... @@ -271,7 +271,7 @@ 271 271 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 272 272 273 273 274 -**Step 1** :Create a device in TTN with the OTAA keys from PS-LB.268 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB. 275 275 276 276 Each PS-LB is shipped with a sticker with the default device EUI as below: 277 277 ... ... @@ -282,48 +282,38 @@ 282 282 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 283 283 284 284 285 -**Register the device** 279 +(% style="color:blue" %)**Register the device** 286 286 287 287 [[image:1675144099263-405.png]] 288 288 289 289 290 -**Add APP EUI and DEV EUI** 284 +(% style="color:blue" %)**Add APP EUI and DEV EUI** 291 291 292 292 [[image:1675144117571-832.png]] 293 293 294 294 295 -**Add APP EUI in the application** 289 +(% style="color:blue" %)**Add APP EUI in the application** 296 296 297 297 298 298 [[image:1675144143021-195.png]] 299 299 300 300 301 -**Add APP KEY** 295 +(% style="color:blue" %)**Add APP KEY** 302 302 303 303 [[image:1675144157838-392.png]] 304 304 305 -**Step 2** :Activate on PS-LB299 +(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB 306 306 307 307 308 308 Press the button for 5 seconds to activate the PS-LB. 309 309 310 -**Green led** will fast blink 5 times, device will enter **OTA mode** for 3 seconds. And then start to JOIN LoRaWAN network. **Green led** will solidly turn on for 5 seconds after joined in network. 304 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 311 311 312 312 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 313 313 314 314 315 - 316 316 == 2.3 Uplink Payload == 317 317 318 - 319 -Uplink payloads have two types: 320 - 321 -* Distance Value: Use FPORT=2 322 -* Other control commands: Use other FPORT fields. 323 - 324 -The application server should parse the correct value based on FPORT settings. 325 - 326 - 327 327 === 2.3.1 Device Status, FPORT~=5 === 328 328 329 329 ... ... @@ -334,8 +334,8 @@ 334 334 335 335 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 336 336 |(% colspan="6" %)**Device Status (FPORT=5)** 337 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2** 338 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT 321 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 322 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 339 339 340 340 Example parse in TTNv3 341 341 ... ... @@ -342,11 +342,11 @@ 342 342 [[image:1675144504430-490.png]] 343 343 344 344 345 -**Sensor Model**: For PS-LB, this value is 0x16 329 +(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16 346 346 347 -**Firmware Version**: 0x0100, Means: v1.0.0 version 331 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 348 348 349 -**Frequency Band**: 333 +(% style="color:#037691" %)**Frequency Band**: 350 350 351 351 *0x01: EU868 352 352 ... ... @@ -377,7 +377,7 @@ 377 377 *0x0e: MA869 378 378 379 379 380 -**Sub-Band**: 364 +(% style="color:#037691" %)**Sub-Band**: 381 381 382 382 AU915 and US915:value 0x00 ~~ 0x08 383 383 ... ... @@ -386,7 +386,7 @@ 386 386 Other Bands: Always 0x00 387 387 388 388 389 -**Battery Info**: 373 +(% style="color:#037691" %)**Battery Info**: 390 390 391 391 Check the battery voltage. 392 392 ... ... @@ -395,7 +395,7 @@ 395 395 Ex2: 0x0B49 = 2889mV 396 396 397 397 398 -=== 1.3.2 Sensor value, FPORT~=2 ===382 +=== 2.3.2 Sensor value, FPORT~=2 === 399 399 400 400 401 401 Uplink payload includes in total 9 bytes. ... ... @@ -404,13 +404,12 @@ 404 404 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 405 405 |(% style="width:97px" %)((( 406 406 **Size(bytes)** 407 -)))|(% style="width:48px" %)**2**|(% style="width: 58px" %)**2**|**2**|**2**|**1**408 -|(% style="width:97px" %) **Value**|(% style="width:48px" %)[[BAT>>path:#bat]]|(% style="width:58px" %)[[Probe Model>>path:#Probe_Model]]|0 ~~ 20mA value|[[0 ~~~~ 30v value>>path:#Voltage_30v]]|[[IN1 &IN2 Interrupt flag>>path:#Int_pin]]391 +)))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1** 392 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.8IN126IN226INTpin"]] 409 409 410 410 [[image:1675144608950-310.png]] 411 411 412 412 413 - 414 414 === 2.3.3 Battery Info === 415 415 416 416 ... ... @@ -424,35 +424,41 @@ 424 424 === 2.3.4 Probe Model === 425 425 426 426 427 -PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe.410 +PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 428 428 429 429 430 430 For example. 431 431 432 432 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 433 -|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning** 434 -|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 435 -|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 416 +|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning** 417 +|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 418 +|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 419 +|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure 436 436 437 -The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.421 +The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value. 438 438 439 439 440 440 === 2.3.5 0~~20mA value (IDC_IN) === 441 441 442 442 443 -The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level. 427 +The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level. 444 444 445 -**Example**: 429 +(% style="color:#037691" %)**Example**: 446 446 447 447 27AE(H) = 10158 (D)/1000 = 10.158mA. 448 448 449 449 434 +Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example: 435 + 436 +[[image:image-20230225154759-1.png||height="408" width="741"]] 437 + 438 + 450 450 === 2.3.6 0~~30V value ( pin VDC_IN) === 451 451 452 452 453 453 Measure the voltage value. The range is 0 to 30V. 454 454 455 -**Example**: 444 +(% style="color:#037691" %)**Example**: 456 456 457 457 138E(H) = 5006(D)/1000= 5.006V 458 458 ... ... @@ -462,27 +462,45 @@ 462 462 463 463 IN1 and IN2 are used as digital input pins. 464 464 465 -**Example**: 454 +(% style="color:#037691" %)**Example**: 466 466 467 -09 (H) 456 +09 (H): (0x09&0x08)>>3=1 IN1 pin is high level. 468 468 469 -09 (H) 458 +09 (H): (0x09&0x04)>>2=0 IN2 pin is low level. 470 470 471 471 472 -This data field shows if this packet is generated by **Interrupt Pin** or not. [[Click here>> path:#Int_mod]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.461 +This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal. 473 473 474 -**Example:** 463 +(% style="color:#037691" %)**Example:** 475 475 476 -09 (H) 465 +09 (H): (0x09&0x02)>>1=1 The level of the interrupt pin. 477 477 478 -09 (H) 467 +09 (H): 0x09&0x01=1 0x00: Normal uplink packet. 479 479 480 480 0x01: Interrupt Uplink Packet. 481 481 482 482 483 -=== 2.3.8DecodepayloadTheThingsNetwork===472 +=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 === 484 484 485 485 475 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %) 476 +|(% style="width:94px" %)((( 477 +**Size(bytes)** 478 +)))|(% style="width:43px" %)2|(% style="width:367px" %)n 479 +|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)((( 480 +Voltage value, each 2 bytes is a set of voltage values. 481 +))) 482 + 483 +[[image:image-20230220171300-1.png||height="207" width="863"]] 484 + 485 +Multiple sets of data collected are displayed in this form: 486 + 487 +[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2] 488 + 489 + 490 +=== 2.3.9 Decode payload in The Things Network === 491 + 492 + 486 486 While using TTN network, you can add the payload format to decode the payload. 487 487 488 488 ... ... @@ -504,9 +504,9 @@ 504 504 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 505 505 506 506 507 -**Step 1: **Be sure that your device is programmed and properly connected to the network at this time. 514 +(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time. 508 508 509 -**Step 2:** To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 516 +(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 510 510 511 511 512 512 [[image:1675144951092-237.png]] ... ... @@ -515,9 +515,9 @@ 515 515 [[image:1675144960452-126.png]] 516 516 517 517 518 -**Step 3:** Create an account or log in Datacake. 525 +(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake. 519 519 520 -**Step 4:** Create PS-LB product. 527 +(% style="color:blue" %)**Step 4:** (%%)Create PS-LB product. 521 521 522 522 [[image:1675145004465-869.png]] 523 523 ... ... @@ -530,7 +530,7 @@ 530 530 [[image:1675145029119-717.png]] 531 531 532 532 533 -**Step 5: **add payload decode 540 +(% style="color:blue" %)**Step 5: **(%%)add payload decode 534 534 535 535 [[image:1675145051360-659.png]] 536 536 ... ... @@ -538,7 +538,6 @@ 538 538 [[image:1675145060812-420.png]] 539 539 540 540 541 - 542 542 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 543 543 544 544 ... ... @@ -561,19 +561,17 @@ 561 561 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]] 562 562 563 563 564 - 565 565 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink = 566 566 567 567 568 568 Use can configure PS-LB via AT Command or LoRaWAN Downlink. 569 569 570 -* AT Command Connection: See [[FAQ>> path:#AT_COMMAND]].575 +* AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]]. 571 571 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 572 572 573 - 574 574 There are two kinds of commands to configure PS-LB, they are: 575 575 576 -* **General Commands** .580 +* (% style="color:#037691" %)**General Commands** 577 577 578 578 These commands are to configure: 579 579 ... ... @@ -585,7 +585,7 @@ 585 585 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 586 586 587 587 588 -* **Commands special design for PS-LB** 592 +* (% style="color:#037691" %)**Commands special design for PS-LB** 589 589 590 590 These commands only valid for PS-LB, as below: 591 591 ... ... @@ -595,31 +595,28 @@ 595 595 596 596 Feature: Change LoRaWAN End Node Transmit Interval. 597 597 598 -**AT Command: AT+TDC** 602 +(% style="color:blue" %)**AT Command: AT+TDC** 599 599 600 600 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 601 -|**Command Example**|**Function**|**Response** 602 -|AT+TDC=?|Show current transmit Interval|((( 605 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response** 606 +|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 603 603 30000 604 - 605 605 OK 606 - 607 607 the interval is 30000ms = 30s 608 608 ))) 609 -|AT+TDC=60000|Set Transmit Interval|((( 611 +|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|((( 610 610 OK 611 - 612 612 Set transmit interval to 60000ms = 60 seconds 613 613 ))) 614 614 615 -**Downlink Command: 0x01** 616 +(% style="color:blue" %)**Downlink Command: 0x01** 616 616 617 617 Format: Command Code (0x01) followed by 3 bytes time value. 618 618 619 -If the downlink payload=0100003C, it means set the END Node ’s Transmit Interval to 0x00003C=60(S), while type code is 01.620 +If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01. 620 620 621 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 622 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 622 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 623 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 623 623 624 624 625 625 == 3.2 Set Interrupt Mode == ... ... @@ -627,162 +627,182 @@ 627 627 628 628 Feature, Set Interrupt mode for GPIO_EXIT. 629 629 630 -**AT Command: AT+INTMOD** 631 +(% style="color:blue" %)**AT Command: AT+INTMOD** 631 631 632 632 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 633 -|**Command Example**|**Function**|**Response** 634 -|AT+INTMOD=?|Show current interrupt mode|((( 634 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response** 635 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 635 635 0 636 - 637 637 OK 638 - 639 -the mode is 0 = No interruption 638 +the mode is 0 =Disable Interrupt 640 640 ))) 641 -|AT+INTMOD=2|((( 640 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 642 642 Set Transmit Interval 642 +0. (Disable Interrupt), 643 +~1. (Trigger by rising and falling edge) 644 +2. (Trigger by falling edge) 645 +3. (Trigger by rising edge) 646 +)))|(% style="width:157px" %)OK 643 643 644 - ~1.(DisableInterrupt),648 +(% style="color:blue" %)**Downlink Command: 0x06** 645 645 646 -2. (Trigger by rising and falling edge), 647 - 648 -3. (Trigger by falling edge) 649 - 650 -4. (Trigger by rising edge) 651 -)))|OK 652 - 653 -**Downlink Command: 0x06** 654 - 655 655 Format: Command Code (0x06) followed by 3 bytes. 656 656 657 657 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 658 658 659 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 660 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 654 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 655 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 661 661 662 662 663 - 664 664 == 3.3 Set the output time == 665 665 666 666 667 667 Feature, Control the output 3V3 , 5V or 12V. 668 668 669 -**AT Command: AT+3V3T** 663 +(% style="color:blue" %)**AT Command: AT+3V3T** 670 670 671 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 510px" %)672 -|(% style="width:15 6px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**673 -|(% style="width:15 6px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((665 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %) 666 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response** 667 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)((( 674 674 0 675 - 676 676 OK 677 677 ))) 678 -|(% style="width:15 6px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((671 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)((( 679 679 OK 680 - 681 681 default setting 682 682 ))) 683 -|(% style="width:15 6px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((675 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)((( 684 684 OK 685 - 686 - 687 687 ))) 688 -|(% style="width:15 6px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((678 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)((( 689 689 OK 690 - 691 - 692 692 ))) 693 693 682 +(% style="color:blue" %)**AT Command: AT+5VT** 694 694 695 -**AT Command: AT+5VT** 696 - 697 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 698 -|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response** 699 -|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)((( 684 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %) 685 +|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response** 686 +|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)((( 700 700 0 701 - 702 702 OK 703 703 ))) 704 -|(% style="width:15 8px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((690 +|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)((( 705 705 OK 706 - 707 707 default setting 708 708 ))) 709 -|(% style="width:15 8px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((694 +|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)((( 710 710 OK 711 - 712 - 713 713 ))) 714 -|(% style="width:15 8px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((697 +|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)((( 715 715 OK 716 - 717 - 718 718 ))) 719 719 701 +(% style="color:blue" %)**AT Command: AT+12VT** 720 720 721 -**AT Command: AT+12VT** 722 - 723 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 724 -|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response** 725 -|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|((( 703 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %) 704 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response** 705 +|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)((( 726 726 0 727 - 728 728 OK 729 729 ))) 730 -|(% style="width:156px" %)AT+12VT=0|(% style="width: 268px" %)Normally closed 12V power supply.|OK731 -|(% style="width:156px" %)AT+12VT=500|(% style="width: 268px" %)Close after a delay of 500 milliseconds.|(((709 +|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK 710 +|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)((( 732 732 OK 733 - 734 - 735 735 ))) 736 736 714 +(% style="color:blue" %)**Downlink Command: 0x07** 737 737 738 -**Downlink Command: 0x07** 739 - 740 740 Format: Command Code (0x07) followed by 3 bytes. 741 741 742 742 The first byte is which power, the second and third bytes are the time to turn on. 743 743 744 -* Example 1: Downlink Payload: 070101F4 -> AT+3V3T=500 745 -* Example 2: Downlink Payload: 0701FFFF -> AT+3V3T=65535 746 -* Example 3: Downlink Payload: 070203E8 -> AT+5VT=1000 747 -* Example 4: Downlink Payload: 07020000 -> AT+5VT=0 748 -* Example 5: Downlink Payload: 070301F4 -> AT+12VT=500 749 -* Example 6: Downlink Payload: 07030000 -> AT+12VT=0 720 +* Example 1: Downlink Payload: 070101F4 **~-~-->** AT+3V3T=500 721 +* Example 2: Downlink Payload: 0701FFFF **~-~-->** AT+3V3T=65535 722 +* Example 3: Downlink Payload: 070203E8 **~-~-->** AT+5VT=1000 723 +* Example 4: Downlink Payload: 07020000 **~-~-->** AT+5VT=0 724 +* Example 5: Downlink Payload: 070301F4 **~-~-->** AT+12VT=500 725 +* Example 6: Downlink Payload: 07030000 **~-~-->** AT+12VT=0 750 750 751 751 752 - 753 753 == 3.4 Set the Probe Model == 754 754 755 755 756 - **ATCommand:AT****+PROBE**731 +Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value. 757 757 758 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 759 -|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response** 760 -|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|((( 761 -0 733 +**AT Command: AT** **+PROBE** 762 762 763 -OK 764 -))) 765 -|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK 766 -|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|((( 767 -OK 735 +AT+PROBE=aabb 768 768 769 - 770 -))) 771 -|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|((( 737 +When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters. 738 + 739 +When aa=01, it is the pressure mode, which converts the current into a pressure value; 740 + 741 +bb represents which type of pressure sensor it is. 742 + 743 +(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C) 744 + 745 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 746 +|**Command Example**|**Function**|**Response** 747 +|AT +PROBE =?|Get or Set the probe model.|0 772 772 OK 749 +|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK 750 +|((( 751 +AT +PROBE =000A 773 773 774 774 775 -))) 754 +)))|Set water depth sensor mode, 10m type.|OK 755 +|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK 756 +|AT +PROBE =0000|Initial state, no settings.|OK 776 776 777 777 **Downlink Command: 0x08** 778 778 779 779 Format: Command Code (0x08) followed by 2 bytes. 780 780 781 -* Example 1: Downlink Payload: 080003 782 -* Example 2: Downlink Payload: 080101 762 +* Example 1: Downlink Payload: 080003 **~-~-->** AT+PROBE=0003 763 +* Example 2: Downlink Payload: 080101 **~-~-->** AT+PROBE=0101 783 783 784 784 766 +== 3.5 Multiple collections are one uplink(Since firmware V1.1) == 785 785 768 + 769 +Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time. 770 + 771 +(% style="color:blue" %)**AT Command: AT** **+STDC** 772 + 773 +AT+STDC=aa,bb,bb 774 + 775 +(% style="color:#037691" %)**aa:**(%%) 776 +**0:** means disable this function and use TDC to send packets. 777 +**1:** means enable this function, use the method of multiple acquisitions to send packets. 778 +(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535 779 +(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120 780 + 781 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 782 +|**Command Example**|**Function**|**Response** 783 +|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18 784 +OK 785 +|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|((( 786 +Attention:Take effect after ATZ 787 + 788 +OK 789 +))) 790 +|AT+STDC=0, 0,0|((( 791 +Use the TDC interval to send packets.(default) 792 + 793 + 794 +)))|((( 795 +Attention:Take effect after ATZ 796 + 797 +OK 798 +))) 799 + 800 +(% style="color:blue" %)**Downlink Command: 0xAE** 801 + 802 +Format: Command Code (0x08) followed by 5 bytes. 803 + 804 +* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->** AT+STDC=1,600,18 805 + 806 + 786 786 = 4. Battery & how to replace = 787 787 788 788 == 4.1 Battery Type == ... ... @@ -790,7 +790,6 @@ 790 790 791 791 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 792 792 793 - 794 794 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 795 795 796 796 [[image:1675146710956-626.png]] ... ... @@ -814,18 +814,12 @@ 814 814 815 815 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 816 816 817 - 818 818 Instruction to use as below: 819 819 839 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 820 820 821 -**Step 1:**Downlinktheup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:841 +(% style="color:blue" %)**Step 2:**(%%) Open it and choose 822 822 823 -[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 824 - 825 - 826 - 827 -**Step 2:** Open it and choose 828 - 829 829 * Product Model 830 830 * Uplink Interval 831 831 * Working Mode ... ... @@ -906,11 +906,11 @@ 906 906 = 9. Packing Info = 907 907 908 908 909 -**Package Includes**: 923 +(% style="color:#037691" %)**Package Includes**: 910 910 911 911 * PS-LB LoRaWAN Pressure Sensor 912 912 913 -**Dimension and weight**: 927 +(% style="color:#037691" %)**Dimension and weight**: 914 914 915 915 * Device Size: cm 916 916 * Device Weight: g ... ... @@ -918,11 +918,11 @@ 918 918 * Weight / pcs : g 919 919 920 920 921 - 922 922 = 10. Support = 923 923 924 924 925 925 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 939 + 926 926 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 927 927 928 928
- image-20230201090514-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +560.9 KB - Content
- image-20230220171300-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Bei - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.0 KB - Content
- image-20230222174559-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Bei - Size
-
... ... @@ -1,0 +1,1 @@ 1 +19.4 KB - Content
- image-20230225154759-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +468.9 KB - Content