<
From version < 42.26 >
edited by Xiaoling
on 2023/01/31 16:42
To version < 49.1 >
edited by Edwin Chen
on 2023/02/25 15:49
>
Change comment: Uploaded new attachment "image-20230225154759-1.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -16,22 +16,33 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 +(((
19 19  The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 +)))
20 20  
23 +(((
21 21  The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 +)))
22 22  
27 +(((
23 23  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 +)))
24 24  
31 +(((
25 25  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 +)))
26 26  
35 +(((
27 27  PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 +)))
28 28  
39 +(((
29 29  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 +)))
30 30  
31 31  [[image:1675071321348-194.png]]
32 32  
33 33  
34 -
35 35  == 1.2 ​Features ==
36 36  
37 37  
... ... @@ -47,6 +47,7 @@
47 47  * Uplink on periodically
48 48  * Downlink to change configure
49 49  * 8500mAh Battery for long term use
61 +* Controllable 3.3v,5v and 12v output to power external sensor
50 50  
51 51  == 1.3 Specification ==
52 52  
... ... @@ -132,7 +132,6 @@
132 132  
133 133  
134 134  
135 -
136 136  == 1.6 Application and Installation ==
137 137  
138 138  === 1.6.1 Thread Installation Type ===
... ... @@ -187,17 +187,17 @@
187 187  
188 188  
189 189  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
190 -|=(% style="width: 150px;" %)**Behavior on ACT**|=(% style="width: 90px;" %)**Function**|=**Action**
191 -|(% style="width:260px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
201 +|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
202 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
192 192  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
193 193  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
194 194  )))
195 -|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
206 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
196 196  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
197 197  (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
198 198  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
199 199  )))
200 -|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
211 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
201 201  
202 202  == 1.9 Pin Mapping ==
203 203  
... ... @@ -223,8 +223,6 @@
223 223  == 1.11 Mechanical ==
224 224  
225 225  
226 -
227 -
228 228  [[image:1675143884058-338.png]]
229 229  
230 230  
... ... @@ -242,7 +242,6 @@
242 242  The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
243 243  
244 244  
245 -
246 246  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
247 247  
248 248  
... ... @@ -296,18 +296,8 @@
296 296  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
297 297  
298 298  
299 -
300 300  == 2.3 ​Uplink Payload ==
301 301  
302 -
303 -Uplink payloads have two types:
304 -
305 -* Distance Value: Use FPORT=2
306 -* Other control commands: Use other FPORT fields.
307 -
308 -The application server should parse the correct value based on FPORT settings.
309 -
310 -
311 311  === 2.3.1 Device Status, FPORT~=5 ===
312 312  
313 313  
... ... @@ -318,8 +318,8 @@
318 318  
319 319  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
320 320  |(% colspan="6" %)**Device Status (FPORT=5)**
321 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
322 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
319 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
320 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
323 323  
324 324  Example parse in TTNv3
325 325  
... ... @@ -389,12 +389,14 @@
389 389  |(% style="width:97px" %)(((
390 390  **Size(bytes)**
391 391  )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
392 -|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
390 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
393 393  
394 394  [[image:1675144608950-310.png]]
395 395  
396 396  
395 +=== ===
397 397  
397 +
398 398  === 2.3.3 Battery Info ===
399 399  
400 400  
... ... @@ -408,19 +408,21 @@
408 408  === 2.3.4 Probe Model ===
409 409  
410 410  
411 -PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
411 +PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
412 412  
413 413  
414 414  For example.
415 415  
416 416  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
417 -|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
418 -|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
419 -|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
417 +|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning**
418 +|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
419 +|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
420 +|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure
420 420  
421 -The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
422 422  
423 +The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
423 423  
425 +
424 424  === 2.3.5 0~~20mA value (IDC_IN) ===
425 425  
426 426  
... ... @@ -463,10 +463,27 @@
463 463  
464 464  0x01: Interrupt Uplink Packet.
465 465  
468 +=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 ===
466 466  
467 -=== 2.3.8 ​Decode payload in The Things Network ===
468 468  
471 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
472 +|(% style="width:94px" %)(((
473 +**Size(bytes)**
474 +)))|(% style="width:43px" %)2|(% style="width:367px" %)n
475 +|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
476 +Voltage value, each 2 bytes is a set of voltage values.
477 +)))
469 469  
479 +[[image:image-20230220171300-1.png||height="207" width="863"]]
480 +
481 +Multiple sets of data collected are displayed in this form:
482 +
483 +[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
484 +
485 +
486 +=== 2.3.9 ​Decode payload in The Things Network ===
487 +
488 +
470 470  While using TTN network, you can add the payload format to decode the payload.
471 471  
472 472  
... ... @@ -522,7 +522,6 @@
522 522  [[image:1675145060812-420.png]]
523 523  
524 524  
525 -
526 526  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
527 527  
528 528  
... ... @@ -545,7 +545,6 @@
545 545  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
546 546  
547 547  
548 -
549 549  = 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
550 550  
551 551  
... ... @@ -556,7 +556,7 @@
556 556  
557 557  There are two kinds of commands to configure PS-LB, they are:
558 558  
559 -* (% style="color:#037691" %)**General Commands**.
576 +* (% style="color:#037691" %)**General Commands**
560 560  
561 561  These commands are to configure:
562 562  
... ... @@ -596,10 +596,10 @@
596 596  
597 597  Format: Command Code (0x01) followed by 3 bytes time value.
598 598  
599 -If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
616 +If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
600 600  
601 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
602 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
618 +* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
619 +* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
603 603  
604 604  == 3.2 Set Interrupt Mode ==
605 605  
... ... @@ -609,26 +609,20 @@
609 609  (% style="color:blue" %)**AT Command: AT+INTMOD**
610 610  
611 611  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
612 -|=**Command Example**|=**Function**|=**Response**
613 -|AT+INTMOD=?|Show current interrupt mode|(((
629 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
630 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
614 614  0
615 -
616 616  OK
617 -
618 -the mode is 0 = No interruption
633 +the mode is 0 =Disable Interrupt
619 619  )))
620 -|AT+INTMOD=2|(((
635 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
621 621  Set Transmit Interval
637 +0. (Disable Interrupt),
638 +~1. (Trigger by rising and falling edge)
639 +2. (Trigger by falling edge)
640 +3. (Trigger by rising edge)
641 +)))|(% style="width:157px" %)OK
622 622  
623 -~1. (Disable Interrupt),
624 -
625 -2. (Trigger by rising and falling edge),
626 -
627 -3. (Trigger by falling edge)
628 -
629 -4. (Trigger by rising edge)
630 -)))|OK
631 -
632 632  (% style="color:blue" %)**Downlink Command: 0x06**
633 633  
634 634  Format: Command Code (0x06) followed by 3 bytes.
... ... @@ -635,8 +635,8 @@
635 635  
636 636  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
637 637  
638 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
639 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
649 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
650 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
640 640  
641 641  == 3.3 Set the output time ==
642 642  
... ... @@ -645,68 +645,53 @@
645 645  
646 646  (% style="color:blue" %)**AT Command: AT+3V3T**
647 647  
648 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
649 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 236px;" %)**Function**|=(% style="width: 117px;" %)**Response**
650 -|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
659 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
660 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
661 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
651 651  0
652 -
653 653  OK
654 654  )))
655 -|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
665 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
656 656  OK
657 -
658 658  default setting
659 659  )))
660 -|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
669 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
661 661  OK
662 -
663 -
664 664  )))
665 -|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
672 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
666 666  OK
667 -
668 -
669 669  )))
670 670  
671 671  (% style="color:blue" %)**AT Command: AT+5VT**
672 672  
673 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
674 -|=(% style="width: 158px;" %)**Command Example**|=(% style="width: 232px;" %)**Function**|=(% style="width: 119px;" %)**Response**
675 -|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
678 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
679 +|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
680 +|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
676 676  0
677 -
678 678  OK
679 679  )))
680 -|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
684 +|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
681 681  OK
682 -
683 683  default setting
684 684  )))
685 -|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
688 +|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
686 686  OK
687 -
688 -
689 689  )))
690 -|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
691 +|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
691 691  OK
692 -
693 -
694 694  )))
695 695  
696 696  (% style="color:blue" %)**AT Command: AT+12VT**
697 697  
698 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
699 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 268px;" %)**Function**|=**Response**
700 -|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
697 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
698 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
699 +|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
701 701  0
702 -
703 703  OK
704 704  )))
705 -|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
706 -|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
703 +|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
704 +|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
707 707  OK
708 -
709 -
710 710  )))
711 711  
712 712  (% style="color:blue" %)**Downlink Command: 0x07**
... ... @@ -715,44 +715,92 @@
715 715  
716 716  The first byte is which power, the second and third bytes are the time to turn on.
717 717  
718 -* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
719 -* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
720 -* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
721 -* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
722 -* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
723 -* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
714 +* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
715 +* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
716 +* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
717 +* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
718 +* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
719 +* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
724 724  
725 725  == 3.4 Set the Probe Model ==
726 726  
727 727  
728 -(% style="color:blue" %)**AT Command: AT** **+PROBE**
724 +Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
729 729  
730 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
731 -|=(% style="width: 157px;" %)**Command Example**|=(% style="width: 267px;" %)**Function**|=**Response**
732 -|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
733 -0
726 +**AT Command: AT** **+PROBE**
734 734  
728 +AT+PROBE=aabb
729 +
730 +When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
731 +
732 +When aa=01, it is the pressure mode, which converts the current into a pressure value;
733 +
734 +bb represents which type of pressure sensor it is.
735 +
736 +(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
737 +
738 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
739 +|**Command Example**|**Function**|**Response**
740 +|AT +PROBE =?|Get or Set the probe model.|0
735 735  OK
736 -)))
737 -|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
738 -|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
739 -OK
742 +|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK
743 +|(((
744 +AT +PROBE =000A
740 740  
741 741  
742 -)))
743 -|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
747 +)))|Set water depth sensor mode, 10m type.|OK
748 +|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK
749 +|AT +PROBE =0000|Initial state, no settings.|OK
750 +
751 +
752 +**Downlink Command: 0x08**
753 +
754 +Format: Command Code (0x08) followed by 2 bytes.
755 +
756 +* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
757 +* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
758 +
759 +== 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
760 +
761 +
762 +Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
763 +
764 +(% style="color:blue" %)**AT Command: AT** **+STDC**
765 +
766 +AT+STDC=aa,bb,bb
767 +
768 +(% style="color:#037691" %)**aa:**(%%)
769 +**0:** means disable this function and use TDC to send packets.
770 +**1:** means enable this function, use the method of multiple acquisitions to send packets.
771 +(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
772 +(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
773 +
774 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
775 +|**Command Example**|**Function**|**Response**
776 +|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18
744 744  OK
778 +|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(((
779 +Attention:Take effect after ATZ
745 745  
781 +OK
782 +)))
783 +|AT+STDC=0, 0,0|(((
784 +Use the TDC interval to send packets.(default)
785 +
746 746  
787 +)))|(((
788 +Attention:Take effect after ATZ
789 +
790 +OK
747 747  )))
748 748  
749 -(% style="color:blue" %)**Downlink Command: 0x08**
750 750  
751 -Format: Command Code (0x08) followed by 2 bytes.
794 +(% style="color:blue" %)**Downlink Command: 0xAE**
752 752  
753 -* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
754 -* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
796 +Format: Command Code (0x08) followed by 5 bytes.
755 755  
798 +* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
799 +
756 756  = 4. Battery & how to replace =
757 757  
758 758  == 4.1 Battery Type ==
... ... @@ -760,7 +760,6 @@
760 760  
761 761  PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
762 762  
763 -
764 764  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
765 765  
766 766  [[image:1675146710956-626.png]]
... ... @@ -784,15 +784,10 @@
784 784  
785 785  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
786 786  
787 -
788 788  Instruction to use as below:
789 789  
832 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
790 790  
791 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
792 -
793 -[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
794 -
795 -
796 796  (% style="color:blue" %)**Step 2:**(%%) Open it and choose
797 797  
798 798  * Product Model
image-20230201090514-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +98.0 KB
Content
image-20230222174559-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +19.4 KB
Content
image-20230225154759-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +468.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0