Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/04/19 17:58
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 2 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -16,22 +16,33 @@ 16 16 == 1.1 What is LoRaWAN Pressure Sensor == 17 17 18 18 19 +((( 19 19 The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 21 +))) 20 20 23 +((( 21 21 The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 25 +))) 22 22 27 +((( 23 23 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 24 24 31 +((( 25 25 PS-LB supports BLE configure and wireless OTA update which make user easy to use. 33 +))) 26 26 35 +((( 27 27 PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 +))) 28 28 39 +((( 29 29 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 41 +))) 30 30 31 31 [[image:1675071321348-194.png]] 32 32 33 33 34 - 35 35 == 1.2 Features == 36 36 37 37 ... ... @@ -48,6 +48,8 @@ 48 48 * Downlink to change configure 49 49 * 8500mAh Battery for long term use 50 50 62 + 63 + 51 51 == 1.3 Specification == 52 52 53 53 ... ... @@ -94,6 +94,8 @@ 94 94 * Sleep Mode: 5uA @ 3.3v 95 95 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 96 96 110 + 111 + 97 97 == 1.4 Probe Types == 98 98 99 99 === 1.4.1 Thread Installation Type === ... ... @@ -112,6 +112,8 @@ 112 112 * Operating temperature: -20℃~~60℃ 113 113 * Connector Type: Various Types, see order info 114 114 130 + 131 + 115 115 === 1.4.2 Immersion Type === 116 116 117 117 ... ... @@ -128,11 +128,12 @@ 128 128 * Operating temperature: -40℃~~85℃ 129 129 * Material: 316 stainless steels 130 130 131 -== 1.5 Probe Dimension == 132 132 133 133 150 +== 1.5 Probe Dimension == 134 134 135 135 153 + 136 136 == 1.6 Application and Installation == 137 137 138 138 === 1.6.1 Thread Installation Type === ... ... @@ -187,18 +187,20 @@ 187 187 188 188 189 189 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 190 -|=(% style="width: 1 50px;" %)**Behavior on ACT**|=(% style="width:90px;" %)**Function**|=**Action**191 -|(% style="width: 260px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((208 +|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action** 209 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 192 192 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 193 193 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 194 194 ))) 195 -|(% style="width:1 38px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((213 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 196 196 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 197 197 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 198 198 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 199 199 ))) 200 -|(% style="width:1 38px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.218 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 201 201 220 + 221 + 202 202 == 1.9 Pin Mapping == 203 203 204 204 ... ... @@ -223,8 +223,6 @@ 223 223 == 1.11 Mechanical == 224 224 225 225 226 - 227 - 228 228 [[image:1675143884058-338.png]] 229 229 230 230 ... ... @@ -242,7 +242,6 @@ 242 242 The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 243 243 244 244 245 - 246 246 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 247 247 248 248 ... ... @@ -296,7 +296,6 @@ 296 296 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 297 297 298 298 299 - 300 300 == 2.3 Uplink Payload == 301 301 302 302 ... ... @@ -318,8 +318,8 @@ 318 318 319 319 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 320 320 |(% colspan="6" %)**Device Status (FPORT=5)** 321 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2** 322 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT 337 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 338 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 323 323 324 324 Example parse in TTNv3 325 325 ... ... @@ -389,15 +389,28 @@ 389 389 |(% style="width:97px" %)((( 390 390 **Size(bytes)** 391 391 )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1** 392 -|(% style="width:97px" %) **Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]]408 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] 393 393 394 394 [[image:1675144608950-310.png]] 395 395 396 396 413 +=== 2.3.3 Sensor value, FPORT~=7 === 397 397 398 -=== 2.3.3 Battery Info === 399 399 416 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %) 417 +|(% style="width:94px" %)((( 418 +**Size(bytes)** 419 +)))|(% style="width:43px" %)2|(% style="width:367px" %)n 420 +|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)((( 421 +Voltage value, each 2 bytes is a set of voltage values. 422 +))) 400 400 424 +[[image:image-20230220171300-1.png||height="207" width="863"]] 425 + 426 + 427 +=== 2.3.4 Battery Info === 428 + 429 + 401 401 Check the battery voltage for PS-LB. 402 402 403 403 Ex1: 0x0B45 = 2885mV ... ... @@ -405,7 +405,7 @@ 405 405 Ex2: 0x0B49 = 2889mV 406 406 407 407 408 -=== 2.3. 4Probe Model ===437 +=== 2.3.5 Probe Model === 409 409 410 410 411 411 PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. ... ... @@ -421,7 +421,7 @@ 421 421 The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value. 422 422 423 423 424 -=== 2.3. 50~~20mA value (IDC_IN) ===453 +=== 2.3.6 0~~20mA value (IDC_IN) === 425 425 426 426 427 427 The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level. ... ... @@ -431,7 +431,7 @@ 431 431 27AE(H) = 10158 (D)/1000 = 10.158mA. 432 432 433 433 434 -=== 2.3. 60~~30V value ( pin VDC_IN) ===463 +=== 2.3.7 0~~30V value ( pin VDC_IN) === 435 435 436 436 437 437 Measure the voltage value. The range is 0 to 30V. ... ... @@ -441,7 +441,7 @@ 441 441 138E(H) = 5006(D)/1000= 5.006V 442 442 443 443 444 -=== 2.3. 7IN1&IN2&INT pin ===473 +=== 2.3.8 IN1&IN2&INT pin === 445 445 446 446 447 447 IN1 and IN2 are used as digital input pins. ... ... @@ -464,7 +464,7 @@ 464 464 0x01: Interrupt Uplink Packet. 465 465 466 466 467 -=== 2.3. 8Decode payload in The Things Network ===496 +=== 2.3.9 Decode payload in The Things Network === 468 468 469 469 470 470 While using TTN network, you can add the payload format to decode the payload. ... ... @@ -522,7 +522,6 @@ 522 522 [[image:1675145060812-420.png]] 523 523 524 524 525 - 526 526 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 527 527 528 528 ... ... @@ -556,7 +556,7 @@ 556 556 557 557 There are two kinds of commands to configure PS-LB, they are: 558 558 559 -* (% style="color:#037691" %)**General Commands** .587 +* (% style="color:#037691" %)**General Commands** 560 560 561 561 These commands are to configure: 562 562 ... ... @@ -596,11 +596,13 @@ 596 596 597 597 Format: Command Code (0x01) followed by 3 bytes time value. 598 598 599 -If the downlink payload=0100003C, it means set the END Node ’s Transmit Interval to 0x00003C=60(S), while type code is 01.627 +If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01. 600 600 601 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 602 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 629 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 630 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 603 603 632 + 633 + 604 604 == 3.2 Set Interrupt Mode == 605 605 606 606 ... ... @@ -609,25 +609,19 @@ 609 609 (% style="color:blue" %)**AT Command: AT+INTMOD** 610 610 611 611 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 612 -|=**Command Example**|=**Function**|=**Response** 613 -|AT+INTMOD=?|Show current interrupt mode|((( 642 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response** 643 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 614 614 0 615 - 616 616 OK 617 - 618 618 the mode is 0 = No interruption 619 619 ))) 620 -|AT+INTMOD=2|((( 648 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 621 621 Set Transmit Interval 622 - 623 623 ~1. (Disable Interrupt), 624 - 625 -2. (Trigger by rising and falling edge), 626 - 651 +2. (Trigger by rising and falling edge) 627 627 3. (Trigger by falling edge) 628 - 629 629 4. (Trigger by rising edge) 630 -)))|OK 654 +)))|(% style="width:157px" %)OK 631 631 632 632 (% style="color:blue" %)**Downlink Command: 0x06** 633 633 ... ... @@ -635,9 +635,11 @@ 635 635 636 636 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 637 637 638 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 639 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 662 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 663 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 640 640 665 + 666 + 641 641 == 3.3 Set the output time == 642 642 643 643 ... ... @@ -645,68 +645,53 @@ 645 645 646 646 (% style="color:blue" %)**AT Command: AT+3V3T** 647 647 648 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 510px" %)649 -|=(% style="width: 15 6px;" %)**Command Example**|=(% style="width: 236px;" %)**Function**|=(% style="width: 117px;" %)**Response**650 -|(% style="width:15 6px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((674 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %) 675 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response** 676 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)((( 651 651 0 652 - 653 653 OK 654 654 ))) 655 -|(% style="width:15 6px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((680 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)((( 656 656 OK 657 - 658 658 default setting 659 659 ))) 660 -|(% style="width:15 6px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((684 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)((( 661 661 OK 662 - 663 - 664 664 ))) 665 -|(% style="width:15 6px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((687 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)((( 666 666 OK 667 - 668 - 669 669 ))) 670 670 671 671 (% style="color:blue" %)**AT Command: AT+5VT** 672 672 673 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 510px" %)674 -|=(% style="width: 15 8px;" %)**Command Example**|=(% style="width:232px;" %)**Function**|=(% style="width: 119px;" %)**Response**675 -|(% style="width:15 8px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((693 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %) 694 +|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response** 695 +|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)((( 676 676 0 677 - 678 678 OK 679 679 ))) 680 -|(% style="width:15 8px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((699 +|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)((( 681 681 OK 682 - 683 683 default setting 684 684 ))) 685 -|(% style="width:15 8px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((703 +|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)((( 686 686 OK 687 - 688 - 689 689 ))) 690 -|(% style="width:15 8px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((706 +|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)((( 691 691 OK 692 - 693 - 694 694 ))) 695 695 696 696 (% style="color:blue" %)**AT Command: AT+12VT** 697 697 698 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 510px" %)699 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 268px;" %)**Function**|=**Response**700 -|(% style="width:156px" %)AT+12VT=?|(% style="width: 268px" %)Show 12V open time.|(((712 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %) 713 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response** 714 +|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)((( 701 701 0 702 - 703 703 OK 704 704 ))) 705 -|(% style="width:156px" %)AT+12VT=0|(% style="width: 268px" %)Normally closed 12V power supply.|OK706 -|(% style="width:156px" %)AT+12VT=500|(% style="width: 268px" %)Close after a delay of 500 milliseconds.|(((718 +|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK 719 +|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)((( 707 707 OK 708 - 709 - 710 710 ))) 711 711 712 712 (% style="color:blue" %)**Downlink Command: 0x07** ... ... @@ -715,35 +715,32 @@ 715 715 716 716 The first byte is which power, the second and third bytes are the time to turn on. 717 717 718 -* Example 1: Downlink Payload: 070101F4 -> AT+3V3T=500 719 -* Example 2: Downlink Payload: 0701FFFF -> AT+3V3T=65535 720 -* Example 3: Downlink Payload: 070203E8 -> AT+5VT=1000 721 -* Example 4: Downlink Payload: 07020000 -> AT+5VT=0 722 -* Example 5: Downlink Payload: 070301F4 -> AT+12VT=500 723 -* Example 6: Downlink Payload: 07030000 -> AT+12VT=0 729 +* Example 1: Downlink Payload: 070101F4 **~-~-->** AT+3V3T=500 730 +* Example 2: Downlink Payload: 0701FFFF **~-~-->** AT+3V3T=65535 731 +* Example 3: Downlink Payload: 070203E8 **~-~-->** AT+5VT=1000 732 +* Example 4: Downlink Payload: 07020000 **~-~-->** AT+5VT=0 733 +* Example 5: Downlink Payload: 070301F4 **~-~-->** AT+12VT=500 734 +* Example 6: Downlink Payload: 07030000 **~-~-->** AT+12VT=0 724 724 736 + 737 + 725 725 == 3.4 Set the Probe Model == 726 726 727 727 728 728 (% style="color:blue" %)**AT Command: AT** **+PROBE** 729 729 730 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 510px" %)731 -|=(% style="width: 15 7px;" %)**Command Example**|=(% style="width: 267px;" %)**Function**|=**Response**732 -|(% style="width:15 7px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((743 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:448px" %) 744 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 204px;" %)**Function**|=(% style="width: 85px;" %)**Response** 745 +|(% style="width:154px" %)AT +PROBE =?|(% style="width:204px" %)Get or Set the probe model.|(% style="width:85px" %)((( 733 733 0 734 - 735 735 OK 736 736 ))) 737 -|(% style="width:15 7px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK738 -|(% style="width:15 7px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((749 +|(% style="width:154px" %)AT +PROBE =0003|(% style="width:204px" %)Set water depth sensor mode, 3m type.|(% style="width:85px" %)OK 750 +|(% style="width:154px" %)AT +PROBE =0101|(% style="width:204px" %)Set pressure transmitters mode, first type.|(% style="width:85px" %)((( 739 739 OK 740 - 741 - 742 742 ))) 743 -|(% style="width:15 7px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((753 +|(% style="width:154px" %)AT +PROBE =0000|(% style="width:204px" %)Initial state, no settings.|(% style="width:85px" %)((( 744 744 OK 745 - 746 - 747 747 ))) 748 748 749 749 (% style="color:blue" %)**Downlink Command: 0x08** ... ... @@ -750,9 +750,43 @@ 750 750 751 751 Format: Command Code (0x08) followed by 2 bytes. 752 752 753 -* Example 1: Downlink Payload: 080003 -> AT+PROBE=0003 754 -* Example 2: Downlink Payload: 080101 -> AT+PROBE=0101 761 +* Example 1: Downlink Payload: 080003 **~-~-->** AT+PROBE=0003 762 +* Example 2: Downlink Payload: 080101 **~-~-->** AT+PROBE=0101 755 755 764 + 765 + 766 +== 3.5 Multiple collections are one uplink(Since firmware V1.1) == 767 + 768 + 769 +Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time. 770 + 771 +(% style="color:blue" %)**AT Command: AT** **+STDC** 772 + 773 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 774 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response** 775 +|(% style="width:156px" %)AT+STDC=?|(% style="width:137px" %)((( 776 +Get the mode of multiple acquisitions and one uplink 777 +)))|((( 778 +1,10,18 779 +OK 780 +))) 781 +|(% style="width:156px" %)AT+STDC=1,10,18|(% style="width:137px" %)Set the mode of multiple acquisitions and one uplink|((( 782 +OK 783 +(% style="color:#037691" %)**aa:**(%%) 784 +**0:** means disable this function and use TDC to send packets. 785 +**1:** means enable this function, use the method of multiple acquisitions to send packets. 786 +(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535 787 +(% style="color:#037691" %)**cc: **(%%)the number of collection times, the value is 1~~120 788 +))) 789 + 790 +(% style="color:blue" %)**Downlink Command: 0xAE** 791 + 792 +Format: Command Code (0x08) followed by 5 bytes. 793 + 794 +* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->** AT+STDC=1,600,18 795 + 796 + 797 + 756 756 = 4. Battery & how to replace = 757 757 758 758 == 4.1 Battery Type == ... ... @@ -760,7 +760,6 @@ 760 760 761 761 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 762 762 763 - 764 764 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 765 765 766 766 [[image:1675146710956-626.png]] ... ... @@ -784,15 +784,10 @@ 784 784 785 785 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 786 786 787 - 788 788 Instruction to use as below: 789 789 830 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 790 790 791 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 792 - 793 -[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 794 - 795 - 796 796 (% style="color:blue" %)**Step 2:**(%%) Open it and choose 797 797 798 798 * Product Model ... ... @@ -886,6 +886,8 @@ 886 886 * Package Size / pcs : cm 887 887 * Weight / pcs : g 888 888 925 + 926 + 889 889 = 10. Support = 890 890 891 891
- image-20230201090514-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +560.9 KB - Content
- image-20230220171300-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Bei - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.0 KB - Content