<
From version < 42.25 >
edited by Xiaoling
on 2023/01/31 16:42
To version < 45.3 >
edited by Xiaoling
on 2023/02/21 15:24
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -16,22 +16,33 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 +(((
19 19  The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 +)))
20 20  
23 +(((
21 21  The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 +)))
22 22  
27 +(((
23 23  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 +)))
24 24  
31 +(((
25 25  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 +)))
26 26  
35 +(((
27 27  PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 +)))
28 28  
39 +(((
29 29  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 +)))
30 30  
31 31  [[image:1675071321348-194.png]]
32 32  
33 33  
34 -
35 35  == 1.2 ​Features ==
36 36  
37 37  
... ... @@ -132,7 +132,6 @@
132 132  
133 133  
134 134  
135 -
136 136  == 1.6 Application and Installation ==
137 137  
138 138  === 1.6.1 Thread Installation Type ===
... ... @@ -187,17 +187,17 @@
187 187  
188 188  
189 189  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
190 -|=(% style="width: 150px;" %)**Behavior on ACT**|=(% style="width: 90px;" %)**Function**|=**Action**
191 -|(% style="width:260px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
200 +|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
201 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
192 192  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
193 193  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
194 194  )))
195 -|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
205 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
196 196  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
197 197  (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
198 198  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
199 199  )))
200 -|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
210 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
201 201  
202 202  == 1.9 Pin Mapping ==
203 203  
... ... @@ -223,8 +223,6 @@
223 223  == 1.11 Mechanical ==
224 224  
225 225  
226 -
227 -
228 228  [[image:1675143884058-338.png]]
229 229  
230 230  
... ... @@ -242,7 +242,6 @@
242 242  The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
243 243  
244 244  
245 -
246 246  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
247 247  
248 248  
... ... @@ -318,8 +318,8 @@
318 318  
319 319  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
320 320  |(% colspan="6" %)**Device Status (FPORT=5)**
321 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
322 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
328 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
329 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
323 323  
324 324  Example parse in TTNv3
325 325  
... ... @@ -389,15 +389,28 @@
389 389  |(% style="width:97px" %)(((
390 390  **Size(bytes)**
391 391  )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
392 -|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
399 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
393 393  
394 394  [[image:1675144608950-310.png]]
395 395  
396 396  
404 +=== 2.3.3 Sensor value, FPORT~=7 ===
397 397  
398 -=== 2.3.3 Battery Info ===
399 399  
407 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
408 +|(% style="width:94px" %)(((
409 +**Size(bytes)**
410 +)))|(% style="width:43px" %)2|(% style="width:367px" %)n
411 +|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
412 +Voltage value, each 2 bytes is a set of voltage values.
413 +)))
400 400  
415 +[[image:image-20230220171300-1.png||height="207" width="863"]]
416 +
417 +
418 +=== 2.3.4 Battery Info ===
419 +
420 +
401 401  Check the battery voltage for PS-LB.
402 402  
403 403  Ex1: 0x0B45 = 2885mV
... ... @@ -405,7 +405,7 @@
405 405  Ex2: 0x0B49 = 2889mV
406 406  
407 407  
408 -=== 2.3.4 Probe Model ===
428 +=== 2.3.5 Probe Model ===
409 409  
410 410  
411 411  PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
... ... @@ -421,7 +421,7 @@
421 421  The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
422 422  
423 423  
424 -=== 2.3.5 0~~20mA value (IDC_IN) ===
444 +=== 2.3.6 0~~20mA value (IDC_IN) ===
425 425  
426 426  
427 427  The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
... ... @@ -431,7 +431,7 @@
431 431  27AE(H) = 10158 (D)/1000 = 10.158mA.
432 432  
433 433  
434 -=== 2.3.6 0~~30V value ( pin VDC_IN) ===
454 +=== 2.3.7 0~~30V value ( pin VDC_IN) ===
435 435  
436 436  
437 437  Measure the voltage value. The range is 0 to 30V.
... ... @@ -441,7 +441,7 @@
441 441  138E(H) = 5006(D)/1000= 5.006V
442 442  
443 443  
444 -=== 2.3.7 IN1&IN2&INT pin ===
464 +=== 2.3.8 IN1&IN2&INT pin ===
445 445  
446 446  
447 447  IN1 and IN2 are used as digital input pins.
... ... @@ -464,7 +464,7 @@
464 464  0x01: Interrupt Uplink Packet.
465 465  
466 466  
467 -=== 2.3.8 ​Decode payload in The Things Network ===
487 +=== 2.3.9 ​Decode payload in The Things Network ===
468 468  
469 469  
470 470  While using TTN network, you can add the payload format to decode the payload.
... ... @@ -522,7 +522,6 @@
522 522  [[image:1675145060812-420.png]]
523 523  
524 524  
525 -
526 526  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
527 527  
528 528  
... ... @@ -556,7 +556,7 @@
556 556  
557 557  There are two kinds of commands to configure PS-LB, they are:
558 558  
559 -* (% style="color:#037691" %)**General Commands**.
578 +* (% style="color:#037691" %)**General Commands**
560 560  
561 561  These commands are to configure:
562 562  
... ... @@ -584,14 +584,11 @@
584 584  |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
585 585  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
586 586  30000
587 -
588 588  OK
589 -
590 590  the interval is 30000ms = 30s
591 591  )))
592 592  |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
593 593  OK
594 -
595 595  Set transmit interval to 60000ms = 60 seconds
596 596  )))
597 597  
... ... @@ -599,10 +599,10 @@
599 599  
600 600  Format: Command Code (0x01) followed by 3 bytes time value.
601 601  
602 -If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
618 +If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
603 603  
604 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
605 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
620 +* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
621 +* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
606 606  
607 607  == 3.2 Set Interrupt Mode ==
608 608  
... ... @@ -612,25 +612,19 @@
612 612  (% style="color:blue" %)**AT Command: AT+INTMOD**
613 613  
614 614  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
615 -|=**Command Example**|=**Function**|=**Response**
616 -|AT+INTMOD=?|Show current interrupt mode|(((
631 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
632 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
617 617  0
618 -
619 619  OK
620 -
621 621  the mode is 0 = No interruption
622 622  )))
623 -|AT+INTMOD=2|(((
637 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
624 624  Set Transmit Interval
625 -
626 626  ~1. (Disable Interrupt),
627 -
628 -2. (Trigger by rising and falling edge),
629 -
640 +2. (Trigger by rising and falling edge)
630 630  3. (Trigger by falling edge)
631 -
632 632  4. (Trigger by rising edge)
633 -)))|OK
643 +)))|(% style="width:157px" %)OK
634 634  
635 635  (% style="color:blue" %)**Downlink Command: 0x06**
636 636  
... ... @@ -638,8 +638,8 @@
638 638  
639 639  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
640 640  
641 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
642 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
651 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
652 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
643 643  
644 644  == 3.3 Set the output time ==
645 645  
... ... @@ -648,68 +648,53 @@
648 648  
649 649  (% style="color:blue" %)**AT Command: AT+3V3T**
650 650  
651 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
652 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 236px;" %)**Function**|=(% style="width: 117px;" %)**Response**
653 -|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
661 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
662 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
663 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
654 654  0
655 -
656 656  OK
657 657  )))
658 -|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
667 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
659 659  OK
660 -
661 661  default setting
662 662  )))
663 -|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
671 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
664 664  OK
665 -
666 -
667 667  )))
668 -|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
674 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
669 669  OK
670 -
671 -
672 672  )))
673 673  
674 674  (% style="color:blue" %)**AT Command: AT+5VT**
675 675  
676 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
677 -|=(% style="width: 158px;" %)**Command Example**|=(% style="width: 232px;" %)**Function**|=(% style="width: 119px;" %)**Response**
678 -|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
680 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
681 +|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
682 +|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
679 679  0
680 -
681 681  OK
682 682  )))
683 -|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
686 +|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
684 684  OK
685 -
686 686  default setting
687 687  )))
688 -|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
690 +|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
689 689  OK
690 -
691 -
692 692  )))
693 -|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
693 +|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
694 694  OK
695 -
696 -
697 697  )))
698 698  
699 699  (% style="color:blue" %)**AT Command: AT+12VT**
700 700  
701 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
702 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 268px;" %)**Function**|=**Response**
703 -|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
699 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
700 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
701 +|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
704 704  0
705 -
706 706  OK
707 707  )))
708 -|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
709 -|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
705 +|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
706 +|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
710 710  OK
711 -
712 -
713 713  )))
714 714  
715 715  (% style="color:blue" %)**Downlink Command: 0x07**
... ... @@ -718,12 +718,12 @@
718 718  
719 719  The first byte is which power, the second and third bytes are the time to turn on.
720 720  
721 -* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
722 -* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
723 -* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
724 -* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
725 -* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
726 -* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
716 +* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
717 +* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
718 +* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
719 +* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
720 +* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
721 +* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
727 727  
728 728  == 3.4 Set the Probe Model ==
729 729  
... ... @@ -730,23 +730,18 @@
730 730  
731 731  (% style="color:blue" %)**AT Command: AT** **+PROBE**
732 732  
733 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
734 -|=(% style="width: 157px;" %)**Command Example**|=(% style="width: 267px;" %)**Function**|=**Response**
735 -|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
728 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:448px" %)
729 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 204px;" %)**Function**|=(% style="width: 85px;" %)**Response**
730 +|(% style="width:154px" %)AT +PROBE =?|(% style="width:204px" %)Get or Set the probe model.|(% style="width:85px" %)(((
736 736  0
737 -
738 738  OK
739 739  )))
740 -|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
741 -|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
734 +|(% style="width:154px" %)AT +PROBE =0003|(% style="width:204px" %)Set water depth sensor mode, 3m type.|(% style="width:85px" %)OK
735 +|(% style="width:154px" %)AT +PROBE =0101|(% style="width:204px" %)Set pressure transmitters mode, first type.|(% style="width:85px" %)(((
742 742  OK
743 -
744 -
745 745  )))
746 -|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
738 +|(% style="width:154px" %)AT +PROBE =0000|(% style="width:204px" %)Initial state, no settings.|(% style="width:85px" %)(((
747 747  OK
748 -
749 -
750 750  )))
751 751  
752 752  (% style="color:blue" %)**Downlink Command: 0x08**
... ... @@ -753,9 +753,39 @@
753 753  
754 754  Format: Command Code (0x08) followed by 2 bytes.
755 755  
756 -* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
757 -* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
746 +* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
747 +* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
758 758  
749 +== 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
750 +
751 +
752 +Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
753 +
754 +(% style="color:blue" %)**AT Command: AT** **+STDC**
755 +
756 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
757 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
758 +|(% style="width:156px" %)AT+STDC=?|(% style="width:137px" %)(((
759 +Get the mode of multiple acquisitions and one uplink
760 +)))|(((
761 +1,10,18
762 +OK
763 +)))
764 +|(% style="width:156px" %)AT+STDC=1,10,18|(% style="width:137px" %)Set the mode of multiple acquisitions and one uplink|(((
765 +OK
766 +**(% style="color:#037691" %)aa:**(%%)
767 +**0** means disable this function and use TDC to send packets.
768 +**1** means enable this function, use the method of multiple acquisitions to send packets.
769 +**(% style="color:#037691" %)bb:**(%%) Each collection interval (s), the value is 1~~65535
770 +**(% style="color:#037691" %)cc:**(%%)the number of collection times, the value is 1~~120
771 +)))
772 +
773 +(% style="color:blue" %)**Downlink Command: 0xAE**
774 +
775 +Format: Command Code (0x08) followed by 5 bytes.
776 +
777 +* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
778 +
759 759  = 4. Battery & how to replace =
760 760  
761 761  == 4.1 Battery Type ==
... ... @@ -763,7 +763,6 @@
763 763  
764 764  PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
765 765  
766 -
767 767  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
768 768  
769 769  [[image:1675146710956-626.png]]
... ... @@ -787,15 +787,10 @@
787 787  
788 788  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
789 789  
790 -
791 791  Instruction to use as below:
792 792  
811 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
793 793  
794 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
795 -
796 -[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
797 -
798 -
799 799  (% style="color:blue" %)**Step 2:**(%%) Open it and choose
800 800  
801 801  * Product Model
image-20230201090514-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +98.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0