Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/04/19 17:58
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 2 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Bei - Content
-
... ... @@ -16,22 +16,33 @@ 16 16 == 1.1 What is LoRaWAN Pressure Sensor == 17 17 18 18 19 +((( 19 19 The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 21 +))) 20 20 23 +((( 21 21 The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 25 +))) 22 22 27 +((( 23 23 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 24 24 31 +((( 25 25 PS-LB supports BLE configure and wireless OTA update which make user easy to use. 33 +))) 26 26 35 +((( 27 27 PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 +))) 28 28 39 +((( 29 29 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 41 +))) 30 30 31 31 [[image:1675071321348-194.png]] 32 32 33 33 34 - 35 35 == 1.2 Features == 36 36 37 37 ... ... @@ -48,6 +48,7 @@ 48 48 * Downlink to change configure 49 49 * 8500mAh Battery for long term use 50 50 62 + 51 51 == 1.3 Specification == 52 52 53 53 ... ... @@ -94,6 +94,7 @@ 94 94 * Sleep Mode: 5uA @ 3.3v 95 95 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 96 96 109 + 97 97 == 1.4 Probe Types == 98 98 99 99 === 1.4.1 Thread Installation Type === ... ... @@ -112,6 +112,7 @@ 112 112 * Operating temperature: -20℃~~60℃ 113 113 * Connector Type: Various Types, see order info 114 114 128 + 115 115 === 1.4.2 Immersion Type === 116 116 117 117 ... ... @@ -128,11 +128,11 @@ 128 128 * Operating temperature: -40℃~~85℃ 129 129 * Material: 316 stainless steels 130 130 145 + 131 131 == 1.5 Probe Dimension == 132 132 133 133 134 134 135 - 136 136 == 1.6 Application and Installation == 137 137 138 138 === 1.6.1 Thread Installation Type === ... ... @@ -187,18 +187,19 @@ 187 187 188 188 189 189 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 190 -|=(% style="width: 1 50px;" %)**Behavior on ACT**|=(% style="width:90px;" %)**Function**|=**Action**191 -|(% style="width: 260px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((204 +|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action** 205 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 192 192 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 193 193 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 194 194 ))) 195 -|(% style="width:1 38px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((209 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 196 196 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 197 197 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 198 198 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 199 199 ))) 200 -|(% style="width:1 38px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.214 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 201 201 216 + 202 202 == 1.9 Pin Mapping == 203 203 204 204 ... ... @@ -223,8 +223,6 @@ 223 223 == 1.11 Mechanical == 224 224 225 225 226 - 227 - 228 228 [[image:1675143884058-338.png]] 229 229 230 230 ... ... @@ -242,7 +242,6 @@ 242 242 The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 243 243 244 244 245 - 246 246 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 247 247 248 248 ... ... @@ -318,8 +318,8 @@ 318 318 319 319 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 320 320 |(% colspan="6" %)**Device Status (FPORT=5)** 321 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2** 322 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT 333 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 334 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 323 323 324 324 Example parse in TTNv3 325 325 ... ... @@ -389,12 +389,26 @@ 389 389 |(% style="width:97px" %)((( 390 390 **Size(bytes)** 391 391 )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1** 392 -|(% style="width:97px" %) **Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]]404 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] 393 393 394 394 [[image:1675144608950-310.png]] 395 395 396 396 409 +(% class="wikigeneratedid" %) 410 +=== 2.3.3 Sensor value, FPORT~=7 === 397 397 412 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:543px" %) 413 +|(% style="width:99px" %)((( 414 +**Size(bytes)** 415 +)))|(% style="width:63px" %)2|(% style="width:378px" %)n 416 +|(% style="width:99px" %)Value|(% style="width:63px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:378px" %)((( 417 +Voltage value, each 2 bytes is a set of voltage values 418 +))) 419 + 420 + 421 +[[image:image-20230220171300-1.png||height="207" width="863"]] 422 + 423 + 398 398 === 2.3.3 Battery Info === 399 399 400 400 ... ... @@ -405,6 +405,7 @@ 405 405 Ex2: 0x0B49 = 2889mV 406 406 407 407 434 + 408 408 === 2.3.4 Probe Model === 409 409 410 410 ... ... @@ -522,7 +522,6 @@ 522 522 [[image:1675145060812-420.png]] 523 523 524 524 525 - 526 526 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 527 527 528 528 ... ... @@ -556,7 +556,7 @@ 556 556 557 557 There are two kinds of commands to configure PS-LB, they are: 558 558 559 -* (% style="color:#037691" %)**General Commands** .585 +* (% style="color:#037691" %)**General Commands** 560 560 561 561 These commands are to configure: 562 562 ... ... @@ -584,14 +584,11 @@ 584 584 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response** 585 585 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 586 586 30000 587 - 588 588 OK 589 - 590 590 the interval is 30000ms = 30s 591 591 ))) 592 592 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|((( 593 593 OK 594 - 595 595 Set transmit interval to 60000ms = 60 seconds 596 596 ))) 597 597 ... ... @@ -599,11 +599,12 @@ 599 599 600 600 Format: Command Code (0x01) followed by 3 bytes time value. 601 601 602 -If the downlink payload=0100003C, it means set the END Node ’s Transmit Interval to 0x00003C=60(S), while type code is 01.625 +If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01. 603 603 604 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 605 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 627 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 628 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 606 606 630 + 607 607 == 3.2 Set Interrupt Mode == 608 608 609 609 ... ... @@ -612,25 +612,19 @@ 612 612 (% style="color:blue" %)**AT Command: AT+INTMOD** 613 613 614 614 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 615 -|=**Command Example**|=**Function**|=**Response** 616 -|AT+INTMOD=?|Show current interrupt mode|((( 639 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response** 640 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 617 617 0 618 - 619 619 OK 620 - 621 621 the mode is 0 = No interruption 622 622 ))) 623 -|AT+INTMOD=2|((( 645 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 624 624 Set Transmit Interval 625 - 626 626 ~1. (Disable Interrupt), 627 - 628 -2. (Trigger by rising and falling edge), 629 - 648 +2. (Trigger by rising and falling edge) 630 630 3. (Trigger by falling edge) 631 - 632 632 4. (Trigger by rising edge) 633 -)))|OK 651 +)))|(% style="width:157px" %)OK 634 634 635 635 (% style="color:blue" %)**Downlink Command: 0x06** 636 636 ... ... @@ -638,9 +638,10 @@ 638 638 639 639 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 640 640 641 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 642 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 659 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 660 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 643 643 662 + 644 644 == 3.3 Set the output time == 645 645 646 646 ... ... @@ -648,68 +648,53 @@ 648 648 649 649 (% style="color:blue" %)**AT Command: AT+3V3T** 650 650 651 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 510px" %)652 -|=(% style="width: 15 6px;" %)**Command Example**|=(% style="width: 236px;" %)**Function**|=(% style="width: 117px;" %)**Response**653 -|(% style="width:15 6px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((670 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %) 671 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response** 672 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)((( 654 654 0 655 - 656 656 OK 657 657 ))) 658 -|(% style="width:15 6px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((676 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)((( 659 659 OK 660 - 661 661 default setting 662 662 ))) 663 -|(% style="width:15 6px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((680 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)((( 664 664 OK 665 - 666 - 667 667 ))) 668 -|(% style="width:15 6px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((683 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)((( 669 669 OK 670 - 671 - 672 672 ))) 673 673 674 674 (% style="color:blue" %)**AT Command: AT+5VT** 675 675 676 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 510px" %)677 -|=(% style="width: 15 8px;" %)**Command Example**|=(% style="width:232px;" %)**Function**|=(% style="width: 119px;" %)**Response**678 -|(% style="width:15 8px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((689 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %) 690 +|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response** 691 +|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)((( 679 679 0 680 - 681 681 OK 682 682 ))) 683 -|(% style="width:15 8px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((695 +|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)((( 684 684 OK 685 - 686 686 default setting 687 687 ))) 688 -|(% style="width:15 8px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((699 +|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)((( 689 689 OK 690 - 691 - 692 692 ))) 693 -|(% style="width:15 8px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((702 +|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)((( 694 694 OK 695 - 696 - 697 697 ))) 698 698 699 699 (% style="color:blue" %)**AT Command: AT+12VT** 700 700 701 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 510px" %)702 -|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 268px;" %)**Function**|=**Response**703 -|(% style="width:156px" %)AT+12VT=?|(% style="width: 268px" %)Show 12V open time.|(((708 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %) 709 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response** 710 +|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)((( 704 704 0 705 - 706 706 OK 707 707 ))) 708 -|(% style="width:156px" %)AT+12VT=0|(% style="width: 268px" %)Normally closed 12V power supply.|OK709 -|(% style="width:156px" %)AT+12VT=500|(% style="width: 268px" %)Close after a delay of 500 milliseconds.|(((714 +|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK 715 +|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)((( 710 710 OK 711 - 712 - 713 713 ))) 714 714 715 715 (% style="color:blue" %)**Downlink Command: 0x07** ... ... @@ -718,35 +718,31 @@ 718 718 719 719 The first byte is which power, the second and third bytes are the time to turn on. 720 720 721 -* Example 1: Downlink Payload: 070101F4 -> AT+3V3T=500 722 -* Example 2: Downlink Payload: 0701FFFF -> AT+3V3T=65535 723 -* Example 3: Downlink Payload: 070203E8 -> AT+5VT=1000 724 -* Example 4: Downlink Payload: 07020000 -> AT+5VT=0 725 -* Example 5: Downlink Payload: 070301F4 -> AT+12VT=500 726 -* Example 6: Downlink Payload: 07030000 -> AT+12VT=0 725 +* Example 1: Downlink Payload: 070101F4 **~-~-->** AT+3V3T=500 726 +* Example 2: Downlink Payload: 0701FFFF **~-~-->** AT+3V3T=65535 727 +* Example 3: Downlink Payload: 070203E8 **~-~-->** AT+5VT=1000 728 +* Example 4: Downlink Payload: 07020000 **~-~-->** AT+5VT=0 729 +* Example 5: Downlink Payload: 070301F4 **~-~-->** AT+12VT=500 730 +* Example 6: Downlink Payload: 07030000 **~-~-->** AT+12VT=0 727 727 732 + 728 728 == 3.4 Set the Probe Model == 729 729 730 730 731 731 (% style="color:blue" %)**AT Command: AT** **+PROBE** 732 732 733 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 510px" %)734 -|=(% style="width: 15 7px;" %)**Command Example**|=(% style="width: 267px;" %)**Function**|=**Response**735 -|(% style="width:15 7px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((738 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:448px" %) 739 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 204px;" %)**Function**|=(% style="width: 85px;" %)**Response** 740 +|(% style="width:154px" %)AT +PROBE =?|(% style="width:204px" %)Get or Set the probe model.|(% style="width:85px" %)((( 736 736 0 737 - 738 738 OK 739 739 ))) 740 -|(% style="width:15 7px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK741 -|(% style="width:15 7px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((744 +|(% style="width:154px" %)AT +PROBE =0003|(% style="width:204px" %)Set water depth sensor mode, 3m type.|(% style="width:85px" %)OK 745 +|(% style="width:154px" %)AT +PROBE =0101|(% style="width:204px" %)Set pressure transmitters mode, first type.|(% style="width:85px" %)((( 742 742 OK 743 - 744 - 745 745 ))) 746 -|(% style="width:15 7px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((748 +|(% style="width:154px" %)AT +PROBE =0000|(% style="width:204px" %)Initial state, no settings.|(% style="width:85px" %)((( 747 747 OK 748 - 749 - 750 750 ))) 751 751 752 752 (% style="color:blue" %)**Downlink Command: 0x08** ... ... @@ -753,9 +753,44 @@ 753 753 754 754 Format: Command Code (0x08) followed by 2 bytes. 755 755 756 -* Example 1: Downlink Payload: 080003 -> AT+PROBE=0003 757 -* Example 2: Downlink Payload: 080101 -> AT+PROBE=0101 756 +* Example 1: Downlink Payload: 080003 **~-~-->** AT+PROBE=0003 757 +* Example 2: Downlink Payload: 080101 **~-~-->** AT+PROBE=0101 758 758 759 + 760 +== 3.5 Multiple collections are one uplink(Since firmware V1.1) == 761 + 762 +Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time. 763 + 764 +(% style="color:blue" %)**AT Command: AT** **+STDC** 765 + 766 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 767 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response** 768 +|(% style="width:156px" %)AT+STDC=?|(% style="width:137px" %)((( 769 +Get the mode of multiple acquisitions and one uplink 770 +)))|((( 771 +1,10,18 772 +OK 773 +))) 774 +|(% style="width:156px" %)AT+STDC=1,10,18|(% style="width:137px" %)Set the mode of multiple acquisitions and one uplink|((( 775 +OK 776 + 777 +aa: 778 + 779 +0 means disable this function and use TDC to send packets. 780 + 781 +1 means enable this function, use the method of multiple acquisitions to send packets. 782 + 783 +bb: Each collection interval (s), the value is 1~~65535 784 + 785 +cc: the number of collection times, the value is 1~~120 786 +))) 787 + 788 +(% style="color:blue" %)**Downlink Command: 0xAE** 789 + 790 +Format: Command Code (0x08) followed by 5 bytes. 791 + 792 +* Example 1: Downlink Payload: AE 01 02 58 12 **~-~-->** AT+STDC=1,600,18 793 + 759 759 = 4. Battery & how to replace = 760 760 761 761 == 4.1 Battery Type == ... ... @@ -763,7 +763,6 @@ 763 763 764 764 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 765 765 766 - 767 767 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 768 768 769 769 [[image:1675146710956-626.png]] ... ... @@ -787,15 +787,10 @@ 787 787 788 788 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 789 789 790 - 791 791 Instruction to use as below: 792 792 826 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 793 793 794 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 795 - 796 -[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 797 - 798 - 799 799 (% style="color:blue" %)**Step 2:**(%%) Open it and choose 800 800 801 801 * Product Model ... ... @@ -889,6 +889,7 @@ 889 889 * Package Size / pcs : cm 890 890 * Weight / pcs : g 891 891 921 + 892 892 = 10. Support = 893 893 894 894 ... ... @@ -896,4 +896,5 @@ 896 896 897 897 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 898 898 929 + 899 899
- image-20230201090514-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +560.9 KB - Content
- image-20230220171300-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Bei - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.0 KB - Content