<
From version < 42.24 >
edited by Xiaoling
on 2023/01/31 16:37
To version < 53.2 >
edited by Xiaoling
on 2023/04/03 10:59
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -16,22 +16,33 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 +(((
19 19  The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 +)))
20 20  
23 +(((
21 21  The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 +)))
22 22  
27 +(((
23 23  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 +)))
24 24  
31 +(((
25 25  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 +)))
26 26  
35 +(((
27 27  PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 +)))
28 28  
39 +(((
29 29  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 +)))
30 30  
31 31  [[image:1675071321348-194.png]]
32 32  
33 33  
34 -
35 35  == 1.2 ​Features ==
36 36  
37 37  
... ... @@ -47,6 +47,7 @@
47 47  * Uplink on periodically
48 48  * Downlink to change configure
49 49  * 8500mAh Battery for long term use
61 +* Controllable 3.3v,5v and 12v output to power external sensor
50 50  
51 51  == 1.3 Specification ==
52 52  
... ... @@ -121,11 +121,8 @@
121 121  * Measuring Range: Measure range can be customized, up to 100m.
122 122  * Accuracy: 0.2% F.S
123 123  * Long-Term Stability: ±0.2% F.S / Year
124 -* Overload 200% F.S
125 -* Zero Temperature Drift: ±2% F.S)
126 -* FS Temperature Drift: ±2% F.S
127 127  * Storage temperature: -30℃~~80℃
128 -* Operating temperature: -40℃~~85℃
137 +* Operating temperature: 0℃~~50
129 129  * Material: 316 stainless steels
130 130  
131 131  == 1.5 Probe Dimension ==
... ... @@ -132,7 +132,6 @@
132 132  
133 133  
134 134  
135 -
136 136  == 1.6 Application and Installation ==
137 137  
138 138  === 1.6.1 Thread Installation Type ===
... ... @@ -186,19 +186,20 @@
186 186  [[image:1675071855856-879.png]]
187 187  
188 188  
189 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
190 -|=(% style="width: 150px;" %)**Behavior on ACT**|=(% style="width: 90px;" %)**Function**|=**Action**
191 -|(% style="width:260px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
197 +(% border="1" cellspacing="4" style="width:510px" %)
198 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
199 +|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
192 192  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
193 193  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
194 194  )))
195 -|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
196 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
197 -(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
203 +|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
204 +(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
205 +(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
198 198  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
199 199  )))
200 -|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
208 +|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB-NA is in Deep Sleep Mode.
201 201  
210 +
202 202  == 1.9 Pin Mapping ==
203 203  
204 204  
... ... @@ -223,8 +223,6 @@
223 223  == 1.11 Mechanical ==
224 224  
225 225  
226 -
227 -
228 228  [[image:1675143884058-338.png]]
229 229  
230 230  
... ... @@ -242,7 +242,6 @@
242 242  The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
243 243  
244 244  
245 -
246 246  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
247 247  
248 248  
... ... @@ -296,18 +296,8 @@
296 296  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
297 297  
298 298  
299 -
300 300  == 2.3 ​Uplink Payload ==
301 301  
302 -
303 -Uplink payloads have two types:
304 -
305 -* Distance Value: Use FPORT=2
306 -* Other control commands: Use other FPORT fields.
307 -
308 -The application server should parse the correct value based on FPORT settings.
309 -
310 -
311 311  === 2.3.1 Device Status, FPORT~=5 ===
312 312  
313 313  
... ... @@ -318,8 +318,8 @@
318 318  
319 319  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
320 320  |(% colspan="6" %)**Device Status (FPORT=5)**
321 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
322 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
317 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
318 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
323 323  
324 324  Example parse in TTNv3
325 325  
... ... @@ -389,12 +389,11 @@
389 389  |(% style="width:97px" %)(((
390 390  **Size(bytes)**
391 391  )))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
392 -|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
388 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
393 393  
394 394  [[image:1675144608950-310.png]]
395 395  
396 396  
397 -
398 398  === 2.3.3 Battery Info ===
399 399  
400 400  
... ... @@ -408,23 +408,24 @@
408 408  === 2.3.4 Probe Model ===
409 409  
410 410  
411 -PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
406 +PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
412 412  
413 413  
414 414  For example.
415 415  
416 416  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
417 -|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
418 -|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
419 -|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
412 +|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning**
413 +|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
414 +|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
415 +|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure
420 420  
421 -The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
417 +The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
422 422  
423 423  
424 424  === 2.3.5 0~~20mA value (IDC_IN) ===
425 425  
426 426  
427 -The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
423 +The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
428 428  
429 429  (% style="color:#037691" %)**Example**:
430 430  
... ... @@ -431,6 +431,11 @@
431 431  27AE(H) = 10158 (D)/1000 = 10.158mA.
432 432  
433 433  
430 +Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
431 +
432 +[[image:image-20230225154759-1.png||height="408" width="741"]]
433 +
434 +
434 434  === 2.3.6 0~~30V value ( pin VDC_IN) ===
435 435  
436 436  
... ... @@ -464,9 +464,27 @@
464 464  0x01: Interrupt Uplink Packet.
465 465  
466 466  
467 -=== 2.3.8 ​Decode payload in The Things Network ===
468 +=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 ===
468 468  
469 469  
471 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
472 +|(% style="width:94px" %)(((
473 +**Size(bytes)**
474 +)))|(% style="width:43px" %)2|(% style="width:367px" %)n
475 +|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
476 +Voltage value, each 2 bytes is a set of voltage values.
477 +)))
478 +
479 +[[image:image-20230220171300-1.png||height="207" width="863"]]
480 +
481 +Multiple sets of data collected are displayed in this form:
482 +
483 +[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
484 +
485 +
486 +=== 2.3.9 ​Decode payload in The Things Network ===
487 +
488 +
470 470  While using TTN network, you can add the payload format to decode the payload.
471 471  
472 472  
... ... @@ -522,7 +522,6 @@
522 522  [[image:1675145060812-420.png]]
523 523  
524 524  
525 -
526 526  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
527 527  
528 528  
... ... @@ -545,35 +545,35 @@
545 545  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
546 546  
547 547  
566 += 3. Configure PS-LB =
548 548  
549 -= 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
568 +== 3.1 Configure Methods ==
550 550  
570 +PS-LB-NA supports below configure method:
551 551  
552 -Use can configure PS-LB via AT Command or LoRaWAN Downlink.
572 +* AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
573 +* AT Command via UART Connection : See [[FAQ>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual/#H7.FAQ]].
574 +* LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
553 553  
554 -* AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
555 -* LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
576 +== 3.2 General Commands ==
556 556  
557 -There are two kinds of commands to configure PS-LB, they are:
558 -
559 -* (% style="color:#037691" %)**General Commands**.
560 -
561 561  These commands are to configure:
562 562  
563 563  * General system settings like: uplink interval.
564 564  * LoRaWAN protocol & radio related command.
565 565  
566 -They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
583 +They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
567 567  
568 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
585 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
569 569  
570 570  
571 -* (% style="color:#037691" %)**Commands special design for PS-LB**
572 572  
589 +== 3.3 Commands special design for PS-LB ==
590 +
573 573  These commands only valid for PS-LB, as below:
574 574  
575 575  
576 -== 3.1 Set Transmit Interval Time ==
594 +=== 3.3.1 Set Transmit Interval Time ===
577 577  
578 578  
579 579  Feature: Change LoRaWAN End Node Transmit Interval.
... ... @@ -581,17 +581,14 @@
581 581  (% style="color:blue" %)**AT Command: AT+TDC**
582 582  
583 583  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
584 -|**Command Example**|**Function**|**Response**
585 -|AT+TDC=?|Show current transmit Interval|(((
602 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
603 +|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
586 586  30000
587 -
588 588  OK
589 -
590 590  the interval is 30000ms = 30s
591 591  )))
592 -|AT+TDC=60000|Set Transmit Interval|(((
608 +|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
593 593  OK
594 -
595 595  Set transmit interval to 60000ms = 60 seconds
596 596  )))
597 597  
... ... @@ -599,12 +599,12 @@
599 599  
600 600  Format: Command Code (0x01) followed by 3 bytes time value.
601 601  
602 -If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
617 +If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
603 603  
604 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
605 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
619 +* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
620 +* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
606 606  
607 -== 3.2 Set Interrupt Mode ==
622 +=== 3.3.2 Set Interrupt Mode ===
608 608  
609 609  
610 610  Feature, Set Interrupt mode for GPIO_EXIT.
... ... @@ -612,26 +612,20 @@
612 612  (% style="color:blue" %)**AT Command: AT+INTMOD**
613 613  
614 614  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
615 -|**Command Example**|**Function**|**Response**
616 -|AT+INTMOD=?|Show current interrupt mode|(((
630 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
631 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
617 617  0
618 -
619 619  OK
620 -
621 -the mode is 0 = No interruption
634 +the mode is 0 =Disable Interrupt
622 622  )))
623 -|AT+INTMOD=2|(((
636 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
624 624  Set Transmit Interval
638 +0. (Disable Interrupt),
639 +~1. (Trigger by rising and falling edge)
640 +2. (Trigger by falling edge)
641 +3. (Trigger by rising edge)
642 +)))|(% style="width:157px" %)OK
625 625  
626 -~1. (Disable Interrupt),
627 -
628 -2. (Trigger by rising and falling edge),
629 -
630 -3. (Trigger by falling edge)
631 -
632 -4. (Trigger by rising edge)
633 -)))|OK
634 -
635 635  (% style="color:blue" %)**Downlink Command: 0x06**
636 636  
637 637  Format: Command Code (0x06) followed by 3 bytes.
... ... @@ -638,10 +638,10 @@
638 638  
639 639  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
640 640  
641 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
642 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
650 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
651 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
643 643  
644 -== 3.3 Set the output time ==
653 +=== 3.3.3 Set the output time ===
645 645  
646 646  
647 647  Feature, Control the output 3V3 , 5V or 12V.
... ... @@ -648,68 +648,53 @@
648 648  
649 649  (% style="color:blue" %)**AT Command: AT+3V3T**
650 650  
651 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
652 -|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**
653 -|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
660 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
661 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
662 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
654 654  0
655 -
656 656  OK
657 657  )))
658 -|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
666 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
659 659  OK
660 -
661 661  default setting
662 662  )))
663 -|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
670 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
664 664  OK
665 -
666 -
667 667  )))
668 -|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
673 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
669 669  OK
670 -
671 -
672 672  )))
673 673  
674 674  (% style="color:blue" %)**AT Command: AT+5VT**
675 675  
676 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
677 -|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**
678 -|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
679 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
680 +|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
681 +|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
679 679  0
680 -
681 681  OK
682 682  )))
683 -|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
685 +|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
684 684  OK
685 -
686 686  default setting
687 687  )))
688 -|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
689 +|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
689 689  OK
690 -
691 -
692 692  )))
693 -|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
692 +|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
694 694  OK
695 -
696 -
697 697  )))
698 698  
699 699  (% style="color:blue" %)**AT Command: AT+12VT**
700 700  
701 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
702 -|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response**
703 -|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
698 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
699 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
700 +|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
704 704  0
705 -
706 706  OK
707 707  )))
708 -|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
709 -|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
704 +|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
705 +|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
710 710  OK
711 -
712 -
713 713  )))
714 714  
715 715  (% style="color:blue" %)**Downlink Command: 0x07**
... ... @@ -718,151 +718,118 @@
718 718  
719 719  The first byte is which power, the second and third bytes are the time to turn on.
720 720  
721 -* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
722 -* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
723 -* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
724 -* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
725 -* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
726 -* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
715 +* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
716 +* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
717 +* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
718 +* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
719 +* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
720 +* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
727 727  
728 -== 3.4 Set the Probe Model ==
722 +=== 3.3.4 Set the Probe Model ===
729 729  
730 730  
731 -(% style="color:blue" %)**AT Command: AT** **+PROBE**
725 +Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
732 732  
733 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
734 -|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response**
735 -|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
736 -0
727 +**AT Command: AT** **+PROBE**
737 737  
738 -OK
739 -)))
740 -|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
741 -|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
742 -OK
729 +AT+PROBE=aabb
743 743  
744 -
745 -)))
746 -|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
747 -OK
731 +When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
748 748  
749 -
750 -)))
733 +When aa=01, it is the pressure mode, which converts the current into a pressure value;
751 751  
752 -(% style="color:blue" %)**Downlink Command: 0x08**
735 +bb represents which type of pressure sensor it is.
753 753  
754 -Format: Command Code (0x08) followed by 2 bytes.
737 +(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
755 755  
756 -* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
757 -* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
739 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
740 +|**Command Example**|**Function**|**Response**
741 +|AT +PROBE =?|Get or Set the probe model.|0
742 +OK
743 +|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK
744 +|(((
745 +AT +PROBE =000A
758 758  
759 -= 4. Battery & how to replace =
747 +
748 +)))|Set water depth sensor mode, 10m type.|OK
749 +|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK
750 +|AT +PROBE =0000|Initial state, no settings.|OK
760 760  
761 -== 4.1 Battery Type ==
752 +**Downlink Command: 0x08**
762 762  
754 +Format: Command Code (0x08) followed by 2 bytes.
763 763  
764 -PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
756 +* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
757 +* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
765 765  
759 +=== 3.3.5 Multiple collections are one uplink(Since firmware V1.1) ===
766 766  
767 -The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
768 768  
769 -[[image:1675146710956-626.png]]
762 +Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
770 770  
764 +(% style="color:blue" %)**AT Command: AT** **+STDC**
771 771  
772 -Minimum Working Voltage for the PS-LB:
766 +AT+STDC=aa,bb,bb
773 773  
774 -PS-LB:  2.45v ~~ 3.6v
768 +(% style="color:#037691" %)**aa:**(%%)
769 +**0:** means disable this function and use TDC to send packets.
770 +**1:** means enable this function, use the method of multiple acquisitions to send packets.
771 +(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
772 +(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
775 775  
774 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
775 +|**Command Example**|**Function**|**Response**
776 +|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18
777 +OK
778 +|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(((
779 +Attention:Take effect after ATZ
776 776  
777 -== 4.2 Replace Battery ==
781 +OK
782 +)))
783 +|AT+STDC=0, 0,0|(((
784 +Use the TDC interval to send packets.(default)
778 778  
786 +
787 +)))|(((
788 +Attention:Take effect after ATZ
779 779  
780 -Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
790 +OK
791 +)))
781 781  
782 -And make sure the positive and negative pins match.
793 +(% style="color:blue" %)**Downlink Command: 0xAE**
783 783  
795 +Format: Command Code (0x08) followed by 5 bytes.
784 784  
785 -== 4.3 Power Consumption Analyze ==
797 +* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
786 786  
799 += 4. Battery & Power Consumption =
787 787  
788 -Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
801 +PS-LB-NA uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
789 789  
803 + [[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
790 790  
791 -Instruction to use as below:
792 792  
806 += 5. OTA firmware update =
793 793  
794 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
795 795  
796 -[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
797 -
798 -
799 -(% style="color:blue" %)**Step 2:**(%%) Open it and choose
800 -
801 -* Product Model
802 -* Uplink Interval
803 -* Working Mode
804 -
805 -And the Life expectation in difference case will be shown on the right.
806 -
807 -[[image:1675146895108-304.png]]
808 -
809 -
810 -The battery related documents as below:
811 -
812 -* [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
813 -* [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
814 -* [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
815 -
816 -[[image:image-20230131145708-3.png]]
817 -
818 -
819 -=== 4.3.1 ​Battery Note ===
820 -
821 -
822 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
823 -
824 -
825 -=== 4.3.2 Replace the battery ===
826 -
827 -
828 -You can change the battery in the PS-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
829 -
830 -The default battery pack of PS-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
831 -
832 -
833 -= 5. Remote Configure device =
834 -
835 -== 5.1 Connect via BLE ==
836 -
837 -
838 -Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
839 -
840 -
841 -== 5.2 AT Command Set ==
842 -
843 -
844 -
845 -= 6. OTA firmware update =
846 -
847 -
848 848  Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
849 849  
850 850  
851 -= 7. FAQ =
812 += 6. FAQ =
852 852  
853 -== 7.1 How to use AT Command to access device? ==
814 +== 6.1 How to use AT Command via UART to access device? ==
854 854  
855 855  
856 856  See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
857 857  
858 858  
859 -== 7.2 How to update firmware via UART port? ==
820 +== 6.2 How to update firmware via UART port? ==
860 860  
861 861  
862 862  See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
863 863  
864 864  
865 -== 7.3 How to change the LoRa Frequency Bands/Region? ==
826 +== 6.3 How to change the LoRa Frequency Bands/Region? ==
866 866  
867 867  
868 868  You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
... ... @@ -869,13 +869,13 @@
869 869  When downloading the images, choose the required image file for download. ​
870 870  
871 871  
872 -= 8. Order Info =
833 += 7. Order Info =
873 873  
874 874  
875 875  [[image:image-20230131153105-4.png]]
876 876  
877 877  
878 -= 9. ​Packing Info =
839 += 8. ​Packing Info =
879 879  
880 880  
881 881  (% style="color:#037691" %)**Package Includes**:
... ... @@ -889,7 +889,7 @@
889 889  * Package Size / pcs : cm
890 890  * Weight / pcs : g
891 891  
892 -= 10. Support =
853 += 9. Support =
893 893  
894 894  
895 895  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
image-20230201090514-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +98.0 KB
Content
image-20230222174559-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +19.4 KB
Content
image-20230225154759-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +468.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0