Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/04/19 17:58
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 3 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Bei - Content
-
... ... @@ -16,22 +16,33 @@ 16 16 == 1.1 What is LoRaWAN Pressure Sensor == 17 17 18 18 19 +((( 19 19 The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 21 +))) 20 20 23 +((( 21 21 The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 25 +))) 22 22 27 +((( 23 23 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 24 24 31 +((( 25 25 PS-LB supports BLE configure and wireless OTA update which make user easy to use. 33 +))) 26 26 35 +((( 27 27 PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 +))) 28 28 39 +((( 29 29 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 41 +))) 30 30 31 31 [[image:1675071321348-194.png]] 32 32 33 33 34 - 35 35 == 1.2 Features == 36 36 37 37 ... ... @@ -47,6 +47,7 @@ 47 47 * Uplink on periodically 48 48 * Downlink to change configure 49 49 * 8500mAh Battery for long term use 61 +* Controllable 3.3v,5v and 12v output to power external sensor 50 50 51 51 == 1.3 Specification == 52 52 ... ... @@ -132,7 +132,6 @@ 132 132 133 133 134 134 135 - 136 136 == 1.6 Application and Installation == 137 137 138 138 === 1.6.1 Thread Installation Type === ... ... @@ -187,17 +187,17 @@ 187 187 188 188 189 189 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 190 -|=(% style="width: 1 50px;" %)**Behavior on ACT**|=(% style="width:90px;" %)**Function**|=**Action**191 -|(% style="width: 260px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((201 +|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action** 202 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 192 192 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 193 193 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 194 194 ))) 195 -|(% style="width:1 38px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((206 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 196 196 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 197 197 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 198 198 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 199 199 ))) 200 -|(% style="width:1 38px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.211 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 201 201 202 202 == 1.9 Pin Mapping == 203 203 ... ... @@ -223,8 +223,6 @@ 223 223 == 1.11 Mechanical == 224 224 225 225 226 - 227 - 228 228 [[image:1675143884058-338.png]] 229 229 230 230 ... ... @@ -242,7 +242,6 @@ 242 242 The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 243 243 244 244 245 - 246 246 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 247 247 248 248 ... ... @@ -296,18 +296,8 @@ 296 296 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 297 297 298 298 299 - 300 300 == 2.3 Uplink Payload == 301 301 302 - 303 -Uplink payloads have two types: 304 - 305 -* Distance Value: Use FPORT=2 306 -* Other control commands: Use other FPORT fields. 307 - 308 -The application server should parse the correct value based on FPORT settings. 309 - 310 - 311 311 === 2.3.1 Device Status, FPORT~=5 === 312 312 313 313 ... ... @@ -318,8 +318,8 @@ 318 318 319 319 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 320 320 |(% colspan="6" %)**Device Status (FPORT=5)** 321 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2** 322 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT 319 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 320 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 323 323 324 324 Example parse in TTNv3 325 325 ... ... @@ -388,13 +388,15 @@ 388 388 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 389 389 |(% style="width:97px" %)((( 390 390 **Size(bytes)** 391 -)))|(% style="width:48px" %)**2**|(% style="width: 58px" %)**2**|**2**|**2**|**1**392 -|(% style="width:97px" %) **Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]]389 +)))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1** 390 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.8IN126IN226INTpin"]] 393 393 394 394 [[image:1675144608950-310.png]] 395 395 396 396 395 +=== === 397 397 397 + 398 398 === 2.3.3 Battery Info === 399 399 400 400 ... ... @@ -408,19 +408,21 @@ 408 408 === 2.3.4 Probe Model === 409 409 410 410 411 -PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe.411 +PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 412 412 413 413 414 414 For example. 415 415 416 416 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 417 -|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning** 418 -|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 419 -|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 417 +|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning** 418 +|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 419 +|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 420 +|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure 420 420 421 -The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value. 422 422 423 +The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value. 423 423 425 + 424 424 === 2.3.5 0~~20mA value (IDC_IN) === 425 425 426 426 ... ... @@ -463,10 +463,27 @@ 463 463 464 464 0x01: Interrupt Uplink Packet. 465 465 468 +=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 === 466 466 467 -=== 2.3.8 Decode payload in The Things Network === 468 468 471 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %) 472 +|(% style="width:94px" %)((( 473 +**Size(bytes)** 474 +)))|(% style="width:43px" %)2|(% style="width:367px" %)n 475 +|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)((( 476 +Voltage value, each 2 bytes is a set of voltage values. 477 +))) 469 469 479 +[[image:image-20230220171300-1.png||height="207" width="863"]] 480 + 481 +Multiple sets of data collected are displayed in this form: 482 + 483 +[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2] 484 + 485 + 486 +=== 2.3.9 Decode payload in The Things Network === 487 + 488 + 470 470 While using TTN network, you can add the payload format to decode the payload. 471 471 472 472 ... ... @@ -522,7 +522,6 @@ 522 522 [[image:1675145060812-420.png]] 523 523 524 524 525 - 526 526 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 527 527 528 528 ... ... @@ -545,7 +545,6 @@ 545 545 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]] 546 546 547 547 548 - 549 549 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink = 550 550 551 551 ... ... @@ -556,7 +556,7 @@ 556 556 557 557 There are two kinds of commands to configure PS-LB, they are: 558 558 559 -* (% style="color:#037691" %)**General Commands** .576 +* (% style="color:#037691" %)**General Commands** 560 560 561 561 These commands are to configure: 562 562 ... ... @@ -581,17 +581,14 @@ 581 581 (% style="color:blue" %)**AT Command: AT+TDC** 582 582 583 583 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 584 -|**Command Example**|**Function**|**Response** 585 -|AT+TDC=?|Show current transmit Interval|((( 601 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response** 602 +|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 586 586 30000 587 - 588 588 OK 589 - 590 590 the interval is 30000ms = 30s 591 591 ))) 592 -|AT+TDC=60000|Set Transmit Interval|((( 607 +|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|((( 593 593 OK 594 - 595 595 Set transmit interval to 60000ms = 60 seconds 596 596 ))) 597 597 ... ... @@ -599,12 +599,11 @@ 599 599 600 600 Format: Command Code (0x01) followed by 3 bytes time value. 601 601 602 -If the downlink payload=0100003C, it means set the END Node ’s Transmit Interval to 0x00003C=60(S), while type code is 01.616 +If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01. 603 603 604 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 605 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 618 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 619 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 606 606 607 - 608 608 == 3.2 Set Interrupt Mode == 609 609 610 610 ... ... @@ -613,26 +613,20 @@ 613 613 (% style="color:blue" %)**AT Command: AT+INTMOD** 614 614 615 615 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 616 -|**Command Example**|**Function**|**Response** 617 -|AT+INTMOD=?|Show current interrupt mode|((( 629 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response** 630 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 618 618 0 619 - 620 620 OK 621 - 622 -the mode is 0 = No interruption 633 +the mode is 0 =Disable Interrupt 623 623 ))) 624 -|AT+INTMOD=2|((( 635 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 625 625 Set Transmit Interval 637 +0. (Disable Interrupt), 638 +~1. (Trigger by rising and falling edge) 639 +2. (Trigger by falling edge) 640 +3. (Trigger by rising edge) 641 +)))|(% style="width:157px" %)OK 626 626 627 -~1. (Disable Interrupt), 628 - 629 -2. (Trigger by rising and falling edge), 630 - 631 -3. (Trigger by falling edge) 632 - 633 -4. (Trigger by rising edge) 634 -)))|OK 635 - 636 636 (% style="color:blue" %)**Downlink Command: 0x06** 637 637 638 638 Format: Command Code (0x06) followed by 3 bytes. ... ... @@ -639,8 +639,8 @@ 639 639 640 640 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 641 641 642 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 643 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 649 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 650 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 644 644 645 645 == 3.3 Set the output time == 646 646 ... ... @@ -649,68 +649,53 @@ 649 649 650 650 (% style="color:blue" %)**AT Command: AT+3V3T** 651 651 652 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 510px" %)653 -|(% style="width:15 6px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**654 -|(% style="width:15 6px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((659 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %) 660 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response** 661 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)((( 655 655 0 656 - 657 657 OK 658 658 ))) 659 -|(% style="width:15 6px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((665 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)((( 660 660 OK 661 - 662 662 default setting 663 663 ))) 664 -|(% style="width:15 6px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((669 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)((( 665 665 OK 666 - 667 - 668 668 ))) 669 -|(% style="width:15 6px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((672 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)((( 670 670 OK 671 - 672 - 673 673 ))) 674 674 675 675 (% style="color:blue" %)**AT Command: AT+5VT** 676 676 677 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 510px" %)678 -|(% style="width:15 8px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**679 -|(% style="width:15 8px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((678 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %) 679 +|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response** 680 +|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)((( 680 680 0 681 - 682 682 OK 683 683 ))) 684 -|(% style="width:15 8px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((684 +|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)((( 685 685 OK 686 - 687 687 default setting 688 688 ))) 689 -|(% style="width:15 8px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((688 +|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)((( 690 690 OK 691 - 692 - 693 693 ))) 694 -|(% style="width:15 8px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((691 +|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)((( 695 695 OK 696 - 697 - 698 698 ))) 699 699 700 700 (% style="color:blue" %)**AT Command: AT+12VT** 701 701 702 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 510px" %)703 -|(% style="width:156px" %)**Command Example**|(% style="width: 268px" %)**Function**|**Response**704 -|(% style="width:156px" %)AT+12VT=?|(% style="width: 268px" %)Show 12V open time.|(((697 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %) 698 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response** 699 +|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)((( 705 705 0 706 - 707 707 OK 708 708 ))) 709 -|(% style="width:156px" %)AT+12VT=0|(% style="width: 268px" %)Normally closed 12V power supply.|OK710 -|(% style="width:156px" %)AT+12VT=500|(% style="width: 268px" %)Close after a delay of 500 milliseconds.|(((703 +|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK 704 +|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)((( 711 711 OK 712 - 713 - 714 714 ))) 715 715 716 716 (% style="color:blue" %)**Downlink Command: 0x07** ... ... @@ -719,44 +719,92 @@ 719 719 720 720 The first byte is which power, the second and third bytes are the time to turn on. 721 721 722 -* Example 1: Downlink Payload: 070101F4 -> AT+3V3T=500 723 -* Example 2: Downlink Payload: 0701FFFF -> AT+3V3T=65535 724 -* Example 3: Downlink Payload: 070203E8 -> AT+5VT=1000 725 -* Example 4: Downlink Payload: 07020000 -> AT+5VT=0 726 -* Example 5: Downlink Payload: 070301F4 -> AT+12VT=500 727 -* Example 6: Downlink Payload: 07030000 -> AT+12VT=0 714 +* Example 1: Downlink Payload: 070101F4 **~-~-->** AT+3V3T=500 715 +* Example 2: Downlink Payload: 0701FFFF **~-~-->** AT+3V3T=65535 716 +* Example 3: Downlink Payload: 070203E8 **~-~-->** AT+5VT=1000 717 +* Example 4: Downlink Payload: 07020000 **~-~-->** AT+5VT=0 718 +* Example 5: Downlink Payload: 070301F4 **~-~-->** AT+12VT=500 719 +* Example 6: Downlink Payload: 07030000 **~-~-->** AT+12VT=0 728 728 729 729 == 3.4 Set the Probe Model == 730 730 731 731 732 - (%style="color:blue"%)**ATCommand:AT****+PROBE**724 +Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value. 733 733 734 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 735 -|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response** 736 -|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|((( 737 -0 726 +**AT Command: AT** **+PROBE** 738 738 728 +AT+PROBE=aabb 729 + 730 +When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters. 731 + 732 +When aa=01, it is the pressure mode, which converts the current into a pressure value; 733 + 734 +bb represents which type of pressure sensor it is. 735 + 736 +(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C) 737 + 738 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 739 +|**Command Example**|**Function**|**Response** 740 +|AT +PROBE =?|Get or Set the probe model.|0 739 739 OK 740 -))) 741 -|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK 742 -|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|((( 743 -OK 742 +|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK 743 +|((( 744 +AT +PROBE =000A 744 744 745 745 746 -))) 747 -|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|((( 747 +)))|Set water depth sensor mode, 10m type.|OK 748 +|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK 749 +|AT +PROBE =0000|Initial state, no settings.|OK 750 + 751 + 752 +**Downlink Command: 0x08** 753 + 754 +Format: Command Code (0x08) followed by 2 bytes. 755 + 756 +* Example 1: Downlink Payload: 080003 **~-~-->** AT+PROBE=0003 757 +* Example 2: Downlink Payload: 080101 **~-~-->** AT+PROBE=0101 758 + 759 +== 3.5 Multiple collections are one uplink(Since firmware V1.1) == 760 + 761 + 762 +Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time. 763 + 764 +(% style="color:blue" %)**AT Command: AT** **+STDC** 765 + 766 +AT+STDC=aa,bb,bb 767 + 768 +(% style="color:#037691" %)**aa:**(%%) 769 +**0:** means disable this function and use TDC to send packets. 770 +**1:** means enable this function, use the method of multiple acquisitions to send packets. 771 +(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535 772 +(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120 773 + 774 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 775 +|**Command Example**|**Function**|**Response** 776 +|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18 748 748 OK 778 +|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|((( 779 +Attention:Take effect after ATZ 749 749 781 +OK 782 +))) 783 +|AT+STDC=0, 0,0|((( 784 +Use the TDC interval to send packets.(default) 785 + 750 750 787 +)))|((( 788 +Attention:Take effect after ATZ 789 + 790 +OK 751 751 ))) 752 752 753 -(% style="color:blue" %)**Downlink Command: 0x08** 754 754 755 - Format: CommandCode (0x08) followed by 2 bytes.794 +(% style="color:blue" %)**Downlink Command: 0xAE** 756 756 757 -* Example 1: Downlink Payload: 080003 -> AT+PROBE=0003 758 -* Example 2: Downlink Payload: 080101 -> AT+PROBE=0101 796 +Format: Command Code (0x08) followed by 5 bytes. 759 759 798 +* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->** AT+STDC=1,600,18 799 + 760 760 = 4. Battery & how to replace = 761 761 762 762 == 4.1 Battery Type == ... ... @@ -764,7 +764,6 @@ 764 764 765 765 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 766 766 767 - 768 768 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 769 769 770 770 [[image:1675146710956-626.png]] ... ... @@ -788,15 +788,10 @@ 788 788 789 789 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 790 790 791 - 792 792 Instruction to use as below: 793 793 832 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 794 794 795 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 796 - 797 -[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 798 - 799 - 800 800 (% style="color:blue" %)**Step 2:**(%%) Open it and choose 801 801 802 802 * Product Model
- image-20230201090514-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +560.9 KB - Content
- image-20230220171300-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Bei - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.0 KB - Content
- image-20230222174559-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Bei - Size
-
... ... @@ -1,0 +1,1 @@ 1 +19.4 KB - Content