<
From version < 42.23 >
edited by Xiaoling
on 2023/01/31 16:34
To version < 45.1 >
edited by Bei Jinggeng
on 2023/02/20 17:13
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Bei
Content
... ... @@ -16,22 +16,33 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 +(((
19 19  The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 +)))
20 20  
23 +(((
21 21  The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 +)))
22 22  
27 +(((
23 23  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 +)))
24 24  
31 +(((
25 25  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 +)))
26 26  
35 +(((
27 27  PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 +)))
28 28  
39 +(((
29 29  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 +)))
30 30  
31 31  [[image:1675071321348-194.png]]
32 32  
33 33  
34 -
35 35  == 1.2 ​Features ==
36 36  
37 37  
... ... @@ -48,6 +48,7 @@
48 48  * Downlink to change configure
49 49  * 8500mAh Battery for long term use
50 50  
62 +
51 51  == 1.3 Specification ==
52 52  
53 53  
... ... @@ -94,6 +94,7 @@
94 94  * Sleep Mode: 5uA @ 3.3v
95 95  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
96 96  
109 +
97 97  == 1.4 Probe Types ==
98 98  
99 99  === 1.4.1 Thread Installation Type ===
... ... @@ -112,6 +112,7 @@
112 112  * Operating temperature: -20℃~~60℃
113 113  * Connector Type: Various Types, see order info
114 114  
128 +
115 115  === 1.4.2 Immersion Type ===
116 116  
117 117  
... ... @@ -128,11 +128,11 @@
128 128  * Operating temperature: -40℃~~85℃
129 129  * Material: 316 stainless steels
130 130  
145 +
131 131  == 1.5 Probe Dimension ==
132 132  
133 133  
134 134  
135 -
136 136  == 1.6 Application and Installation ==
137 137  
138 138  === 1.6.1 Thread Installation Type ===
... ... @@ -187,18 +187,19 @@
187 187  
188 188  
189 189  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
190 -|=(% style="width: 150px;" %)**Behavior on ACT**|=(% style="width: 90px;" %)**Function**|=**Action**
191 -|(% style="width:260px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
204 +|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
205 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
192 192  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
193 193  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
194 194  )))
195 -|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
209 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
196 196  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
197 197  (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
198 198  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
199 199  )))
200 -|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
214 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
201 201  
216 +
202 202  == 1.9 Pin Mapping ==
203 203  
204 204  
... ... @@ -223,8 +223,6 @@
223 223  == 1.11 Mechanical ==
224 224  
225 225  
226 -
227 -
228 228  [[image:1675143884058-338.png]]
229 229  
230 230  
... ... @@ -242,7 +242,6 @@
242 242  The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
243 243  
244 244  
245 -
246 246  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
247 247  
248 248  
... ... @@ -318,8 +318,8 @@
318 318  
319 319  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
320 320  |(% colspan="6" %)**Device Status (FPORT=5)**
321 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
322 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
333 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
334 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
323 323  
324 324  Example parse in TTNv3
325 325  
... ... @@ -388,13 +388,27 @@
388 388  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
389 389  |(% style="width:97px" %)(((
390 390  **Size(bytes)**
391 -)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1**
392 -|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
403 +)))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
404 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
393 393  
394 394  [[image:1675144608950-310.png]]
395 395  
396 396  
409 +(% class="wikigeneratedid" %)
410 +=== 2.3.3 Sensor value, FPORT~=7 ===
397 397  
412 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:543px" %)
413 +|(% style="width:99px" %)(((
414 +**Size(bytes)**
415 +)))|(% style="width:63px" %)2|(% style="width:378px" %)n
416 +|(% style="width:99px" %)Value|(% style="width:63px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:378px" %)(((
417 +Voltage value, each 2 bytes is a set of voltage values
418 +)))
419 +
420 +
421 +[[image:image-20230220171300-1.png||height="207" width="863"]]
422 +
423 +
398 398  === 2.3.3 Battery Info ===
399 399  
400 400  
... ... @@ -405,6 +405,7 @@
405 405  Ex2: 0x0B49 = 2889mV
406 406  
407 407  
434 +
408 408  === 2.3.4 Probe Model ===
409 409  
410 410  
... ... @@ -522,7 +522,6 @@
522 522  [[image:1675145060812-420.png]]
523 523  
524 524  
525 -
526 526  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
527 527  
528 528  
... ... @@ -556,7 +556,7 @@
556 556  
557 557  There are two kinds of commands to configure PS-LB, they are:
558 558  
559 -* (% style="color:#037691" %)**General Commands**.
585 +* (% style="color:#037691" %)**General Commands**
560 560  
561 561  These commands are to configure:
562 562  
... ... @@ -581,17 +581,14 @@
581 581  (% style="color:blue" %)**AT Command: AT+TDC**
582 582  
583 583  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
584 -|**Command Example**|**Function**|**Response**
585 -|AT+TDC=?|Show current transmit Interval|(((
610 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
611 +|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
586 586  30000
587 -
588 588  OK
589 -
590 590  the interval is 30000ms = 30s
591 591  )))
592 -|AT+TDC=60000|Set Transmit Interval|(((
616 +|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
593 593  OK
594 -
595 595  Set transmit interval to 60000ms = 60 seconds
596 596  )))
597 597  
... ... @@ -599,10 +599,10 @@
599 599  
600 600  Format: Command Code (0x01) followed by 3 bytes time value.
601 601  
602 -If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
625 +If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
603 603  
604 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
605 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
627 +* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
628 +* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
606 606  
607 607  
608 608  == 3.2 Set Interrupt Mode ==
... ... @@ -613,25 +613,19 @@
613 613  (% style="color:blue" %)**AT Command: AT+INTMOD**
614 614  
615 615  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
616 -|**Command Example**|**Function**|**Response**
617 -|AT+INTMOD=?|Show current interrupt mode|(((
639 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
640 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
618 618  0
619 -
620 620  OK
621 -
622 622  the mode is 0 = No interruption
623 623  )))
624 -|AT+INTMOD=2|(((
645 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
625 625  Set Transmit Interval
626 -
627 627  ~1. (Disable Interrupt),
628 -
629 -2. (Trigger by rising and falling edge),
630 -
648 +2. (Trigger by rising and falling edge)
631 631  3. (Trigger by falling edge)
632 -
633 633  4. (Trigger by rising edge)
634 -)))|OK
651 +)))|(% style="width:157px" %)OK
635 635  
636 636  (% style="color:blue" %)**Downlink Command: 0x06**
637 637  
... ... @@ -639,9 +639,10 @@
639 639  
640 640  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
641 641  
642 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
643 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
659 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
660 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
644 644  
662 +
645 645  == 3.3 Set the output time ==
646 646  
647 647  
... ... @@ -649,68 +649,53 @@
649 649  
650 650  (% style="color:blue" %)**AT Command: AT+3V3T**
651 651  
652 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
653 -|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**
654 -|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
670 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
671 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
672 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
655 655  0
656 -
657 657  OK
658 658  )))
659 -|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
676 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
660 660  OK
661 -
662 662  default setting
663 663  )))
664 -|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
680 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
665 665  OK
666 -
667 -
668 668  )))
669 -|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
683 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
670 670  OK
671 -
672 -
673 673  )))
674 674  
675 675  (% style="color:blue" %)**AT Command: AT+5VT**
676 676  
677 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
678 -|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**
679 -|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
689 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
690 +|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
691 +|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
680 680  0
681 -
682 682  OK
683 683  )))
684 -|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
695 +|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
685 685  OK
686 -
687 687  default setting
688 688  )))
689 -|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
699 +|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
690 690  OK
691 -
692 -
693 693  )))
694 -|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
702 +|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
695 695  OK
696 -
697 -
698 698  )))
699 699  
700 700  (% style="color:blue" %)**AT Command: AT+12VT**
701 701  
702 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
703 -|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response**
704 -|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
708 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
709 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
710 +|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
705 705  0
706 -
707 707  OK
708 708  )))
709 -|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
710 -|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
714 +|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
715 +|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
711 711  OK
712 -
713 -
714 714  )))
715 715  
716 716  (% style="color:blue" %)**Downlink Command: 0x07**
... ... @@ -719,35 +719,31 @@
719 719  
720 720  The first byte is which power, the second and third bytes are the time to turn on.
721 721  
722 -* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
723 -* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
724 -* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
725 -* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
726 -* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
727 -* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
725 +* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
726 +* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
727 +* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
728 +* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
729 +* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
730 +* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
728 728  
732 +
729 729  == 3.4 Set the Probe Model ==
730 730  
731 731  
732 732  (% style="color:blue" %)**AT Command: AT** **+PROBE**
733 733  
734 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
735 -|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response**
736 -|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
738 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:448px" %)
739 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 204px;" %)**Function**|=(% style="width: 85px;" %)**Response**
740 +|(% style="width:154px" %)AT +PROBE =?|(% style="width:204px" %)Get or Set the probe model.|(% style="width:85px" %)(((
737 737  0
738 -
739 739  OK
740 740  )))
741 -|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
742 -|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
744 +|(% style="width:154px" %)AT +PROBE =0003|(% style="width:204px" %)Set water depth sensor mode, 3m type.|(% style="width:85px" %)OK
745 +|(% style="width:154px" %)AT +PROBE =0101|(% style="width:204px" %)Set pressure transmitters mode, first type.|(% style="width:85px" %)(((
743 743  OK
744 -
745 -
746 746  )))
747 -|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
748 +|(% style="width:154px" %)AT +PROBE =0000|(% style="width:204px" %)Initial state, no settings.|(% style="width:85px" %)(((
748 748  OK
749 -
750 -
751 751  )))
752 752  
753 753  (% style="color:blue" %)**Downlink Command: 0x08**
... ... @@ -754,9 +754,44 @@
754 754  
755 755  Format: Command Code (0x08) followed by 2 bytes.
756 756  
757 -* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
758 -* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
756 +* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
757 +* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
759 759  
759 +
760 +== 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
761 +
762 +Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
763 +
764 +(% style="color:blue" %)**AT Command: AT** **+STDC**
765 +
766 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
767 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
768 +|(% style="width:156px" %)AT+STDC=?|(% style="width:137px" %)(((
769 +Get the mode of multiple acquisitions and one uplink
770 +)))|(((
771 +1,10,18
772 +OK
773 +)))
774 +|(% style="width:156px" %)AT+STDC=1,10,18|(% style="width:137px" %)Set the mode of multiple acquisitions and one uplink|(((
775 +OK
776 +
777 +aa:
778 +
779 +0 means disable this function and use TDC to send packets.
780 +
781 +1 means enable this function, use the method of multiple acquisitions to send packets.
782 +
783 +bb: Each collection interval (s), the value is 1~~65535
784 +
785 +cc: the number of collection times, the value is 1~~120
786 +)))
787 +
788 +(% style="color:blue" %)**Downlink Command: 0xAE**
789 +
790 +Format: Command Code (0x08) followed by 5 bytes.
791 +
792 +* Example 1: Downlink Payload: AE 01 02 58 12 **~-~-->**  AT+STDC=1,600,18
793 +
760 760  = 4. Battery & how to replace =
761 761  
762 762  == 4.1 Battery Type ==
... ... @@ -764,7 +764,6 @@
764 764  
765 765  PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
766 766  
767 -
768 768  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
769 769  
770 770  [[image:1675146710956-626.png]]
... ... @@ -788,15 +788,10 @@
788 788  
789 789  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
790 790  
791 -
792 792  Instruction to use as below:
793 793  
826 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
794 794  
795 -(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
796 -
797 -[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
798 -
799 -
800 800  (% style="color:blue" %)**Step 2:**(%%) Open it and choose
801 801  
802 802  * Product Model
... ... @@ -890,6 +890,7 @@
890 890  * Package Size / pcs : cm
891 891  * Weight / pcs : g
892 892  
921 +
893 893  = 10. Support =
894 894  
895 895  
... ... @@ -897,4 +897,5 @@
897 897  
898 898  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
899 899  
929 +
900 900  
image-20230201090514-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +98.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0