Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/04/19 17:58
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 4 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -16,22 +16,33 @@ 16 16 == 1.1 What is LoRaWAN Pressure Sensor == 17 17 18 18 19 +((( 19 19 The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server. 21 +))) 20 20 23 +((( 21 21 The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement. 25 +))) 22 22 27 +((( 23 23 The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 24 24 31 +((( 25 25 PS-LB supports BLE configure and wireless OTA update which make user easy to use. 33 +))) 26 26 35 +((( 27 27 PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 37 +))) 28 28 39 +((( 29 29 Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 41 +))) 30 30 31 31 [[image:1675071321348-194.png]] 32 32 33 33 34 - 35 35 == 1.2 Features == 36 36 37 37 ... ... @@ -47,7 +47,10 @@ 47 47 * Uplink on periodically 48 48 * Downlink to change configure 49 49 * 8500mAh Battery for long term use 61 +* Controllable 3.3v,5v and 12v output to power external sensor 50 50 63 + 64 + 51 51 == 1.3 Specification == 52 52 53 53 ... ... @@ -94,6 +94,8 @@ 94 94 * Sleep Mode: 5uA @ 3.3v 95 95 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 96 96 111 + 112 + 97 97 == 1.4 Probe Types == 98 98 99 99 === 1.4.1 Thread Installation Type === ... ... @@ -112,6 +112,8 @@ 112 112 * Operating temperature: -20℃~~60℃ 113 113 * Connector Type: Various Types, see order info 114 114 131 + 132 + 115 115 === 1.4.2 Immersion Type === 116 116 117 117 ... ... @@ -128,11 +128,12 @@ 128 128 * Operating temperature: -40℃~~85℃ 129 129 * Material: 316 stainless steels 130 130 131 -== 1.5 Probe Dimension == 132 132 133 133 151 +== 1.5 Probe Dimension == 134 134 135 135 154 + 136 136 == 1.6 Application and Installation == 137 137 138 138 === 1.6.1 Thread Installation Type === ... ... @@ -187,22 +187,20 @@ 187 187 188 188 189 189 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 190 -|(% style="width:1 38px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action**191 -|(% style="width:1 38px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((209 +|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action** 210 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 192 192 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 193 - 194 194 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 195 195 ))) 196 -|(% style="width:1 38px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((214 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( 197 197 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. 198 - 199 199 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 200 - 201 201 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 202 202 ))) 203 -|(% style="width:1 38px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.219 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 204 204 205 205 222 + 206 206 == 1.9 Pin Mapping == 207 207 208 208 ... ... @@ -227,8 +227,6 @@ 227 227 == 1.11 Mechanical == 228 228 229 229 230 - 231 - 232 232 [[image:1675143884058-338.png]] 233 233 234 234 ... ... @@ -246,7 +246,6 @@ 246 246 The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 247 247 248 248 249 - 250 250 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 251 251 252 252 ... ... @@ -300,18 +300,8 @@ 300 300 After join success, it will start to upload messages to TTN and you can see the messages in the panel. 301 301 302 302 303 - 304 304 == 2.3 Uplink Payload == 305 305 306 - 307 -Uplink payloads have two types: 308 - 309 -* Distance Value: Use FPORT=2 310 -* Other control commands: Use other FPORT fields. 311 - 312 -The application server should parse the correct value based on FPORT settings. 313 - 314 - 315 315 === 2.3.1 Device Status, FPORT~=5 === 316 316 317 317 ... ... @@ -322,8 +322,8 @@ 322 322 323 323 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 324 324 |(% colspan="6" %)**Device Status (FPORT=5)** 325 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2** 326 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT 329 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 330 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 327 327 328 328 Example parse in TTNv3 329 329 ... ... @@ -392,13 +392,12 @@ 392 392 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 393 393 |(% style="width:97px" %)((( 394 394 **Size(bytes)** 395 -)))|(% style="width:48px" %)**2**|(% style="width: 58px" %)**2**|**2**|**2**|**1**396 -|(% style="width:97px" %) **Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]]399 +)))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1** 400 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.8IN126IN226INTpin"]] 397 397 398 398 [[image:1675144608950-310.png]] 399 399 400 400 401 - 402 402 === 2.3.3 Battery Info === 403 403 404 404 ... ... @@ -412,23 +412,24 @@ 412 412 === 2.3.4 Probe Model === 413 413 414 414 415 -PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe.418 +PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 416 416 417 417 418 418 For example. 419 419 420 420 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 421 -|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning** 422 -|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 423 -|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 424 +|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning** 425 +|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water 426 +|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water 427 +|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure 424 424 425 -The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.429 +The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value. 426 426 427 427 428 428 === 2.3.5 0~~20mA value (IDC_IN) === 429 429 430 430 431 -The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level. 435 +The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level. 432 432 433 433 (% style="color:#037691" %)**Example**: 434 434 ... ... @@ -435,6 +435,11 @@ 435 435 27AE(H) = 10158 (D)/1000 = 10.158mA. 436 436 437 437 442 +Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example: 443 + 444 +[[image:image-20230225154759-1.png||height="408" width="741"]] 445 + 446 + 438 438 === 2.3.6 0~~30V value ( pin VDC_IN) === 439 439 440 440 ... ... @@ -468,9 +468,27 @@ 468 468 0x01: Interrupt Uplink Packet. 469 469 470 470 471 -=== 2.3.8DecodepayloadTheThingsNetwork===480 +=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 === 472 472 473 473 483 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %) 484 +|(% style="width:94px" %)((( 485 +**Size(bytes)** 486 +)))|(% style="width:43px" %)2|(% style="width:367px" %)n 487 +|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)((( 488 +Voltage value, each 2 bytes is a set of voltage values. 489 +))) 490 + 491 +[[image:image-20230220171300-1.png||height="207" width="863"]] 492 + 493 +Multiple sets of data collected are displayed in this form: 494 + 495 +[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2] 496 + 497 + 498 +=== 2.3.9 Decode payload in The Things Network === 499 + 500 + 474 474 While using TTN network, you can add the payload format to decode the payload. 475 475 476 476 ... ... @@ -526,7 +526,6 @@ 526 526 [[image:1675145060812-420.png]] 527 527 528 528 529 - 530 530 After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 531 531 532 532 ... ... @@ -549,7 +549,6 @@ 549 549 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]] 550 550 551 551 552 - 553 553 = 3. Configure PS-LB via AT Command or LoRaWAN Downlink = 554 554 555 555 ... ... @@ -560,7 +560,7 @@ 560 560 561 561 There are two kinds of commands to configure PS-LB, they are: 562 562 563 -* **(% style="color:#037691" %)General Commands**.588 +* (% style="color:#037691" %)**General Commands** 564 564 565 565 These commands are to configure: 566 566 ... ... @@ -572,7 +572,7 @@ 572 572 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 573 573 574 574 575 -* **(% style="color:#037691" %)Commands special design for PS-LB**600 +* (% style="color:#037691" %)**Commands special design for PS-LB** 576 576 577 577 These commands only valid for PS-LB, as below: 578 578 ... ... @@ -582,31 +582,28 @@ 582 582 583 583 Feature: Change LoRaWAN End Node Transmit Interval. 584 584 585 - **(% style="color:blue" %)AT Command: AT+TDC**610 +(% style="color:blue" %)**AT Command: AT+TDC** 586 586 587 587 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 588 -|**Command Example**|**Function**|**Response** 589 -|AT+TDC=?|Show current transmit Interval|((( 613 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response** 614 +|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 590 590 30000 591 - 592 592 OK 593 - 594 594 the interval is 30000ms = 30s 595 595 ))) 596 -|AT+TDC=60000|Set Transmit Interval|((( 619 +|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|((( 597 597 OK 598 - 599 599 Set transmit interval to 60000ms = 60 seconds 600 600 ))) 601 601 602 - **(% style="color:blue" %)Downlink Command: 0x01**624 +(% style="color:blue" %)**Downlink Command: 0x01** 603 603 604 604 Format: Command Code (0x01) followed by 3 bytes time value. 605 605 606 -If the downlink payload=0100003C, it means set the END Node ’s Transmit Interval to 0x00003C=60(S), while type code is 01.628 +If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01. 607 607 608 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 609 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 630 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 631 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 610 610 611 611 612 612 ... ... @@ -615,156 +615,186 @@ 615 615 616 616 Feature, Set Interrupt mode for GPIO_EXIT. 617 617 618 - **(% style="color:blue" %)AT Command: AT+INTMOD**640 +(% style="color:blue" %)**AT Command: AT+INTMOD** 619 619 620 620 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 621 -|**Command Example**|**Function**|**Response** 622 -|AT+INTMOD=?|Show current interrupt mode|((( 643 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response** 644 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 623 623 0 624 - 625 625 OK 626 - 627 -the mode is 0 = No interruption 647 +the mode is 0 =Disable Interrupt 628 628 ))) 629 -|AT+INTMOD=2|((( 649 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 630 630 Set Transmit Interval 651 +0. (Disable Interrupt), 652 +~1. (Trigger by rising and falling edge) 653 +2. (Trigger by falling edge) 654 +3. (Trigger by rising edge) 655 +)))|(% style="width:157px" %)OK 631 631 632 - ~1.(DisableInterrupt),657 +(% style="color:blue" %)**Downlink Command: 0x06** 633 633 634 -2. (Trigger by rising and falling edge), 635 - 636 -3. (Trigger by falling edge) 637 - 638 -4. (Trigger by rising edge) 639 -)))|OK 640 - 641 -**(% style="color:blue" %)Downlink Command: 0x06** 642 - 643 643 Format: Command Code (0x06) followed by 3 bytes. 644 644 645 645 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 646 646 647 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 648 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 663 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 664 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 649 649 650 650 667 + 651 651 == 3.3 Set the output time == 652 652 653 653 654 654 Feature, Control the output 3V3 , 5V or 12V. 655 655 656 - **(% style="color:blue" %)AT Command: AT+3V3T**673 +(% style="color:blue" %)**AT Command: AT+3V3T** 657 657 658 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 510px" %)659 -|(% style="width:15 6px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**660 -|(% style="width:15 6px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((675 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %) 676 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response** 677 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)((( 661 661 0 662 - 663 663 OK 664 664 ))) 665 -|(% style="width:15 6px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((681 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)((( 666 666 OK 667 - 668 668 default setting 669 669 ))) 670 -|(% style="width:15 6px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((685 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)((( 671 671 OK 672 - 673 - 674 674 ))) 675 -|(% style="width:15 6px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((688 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)((( 676 676 OK 677 - 678 - 679 679 ))) 680 680 681 - **(% style="color:blue" %)AT Command: AT+5VT**692 +(% style="color:blue" %)**AT Command: AT+5VT** 682 682 683 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 510px" %)684 -|(% style="width:15 8px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**685 -|(% style="width:15 8px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((694 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %) 695 +|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response** 696 +|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)((( 686 686 0 687 - 688 688 OK 689 689 ))) 690 -|(% style="width:15 8px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((700 +|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)((( 691 691 OK 692 - 693 693 default setting 694 694 ))) 695 -|(% style="width:15 8px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((704 +|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)((( 696 696 OK 697 - 698 - 699 699 ))) 700 -|(% style="width:15 8px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((707 +|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)((( 701 701 OK 702 - 703 - 704 704 ))) 705 705 706 - **(% style="color:blue" %)AT Command: AT+12VT**711 +(% style="color:blue" %)**AT Command: AT+12VT** 707 707 708 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width: 510px" %)709 -|(% style="width:156px" %)**Command Example**|(% style="width: 268px" %)**Function**|**Response**710 -|(% style="width:156px" %)AT+12VT=?|(% style="width: 268px" %)Show 12V open time.|(((713 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %) 714 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response** 715 +|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)((( 711 711 0 712 - 713 713 OK 714 714 ))) 715 -|(% style="width:156px" %)AT+12VT=0|(% style="width: 268px" %)Normally closed 12V power supply.|OK716 -|(% style="width:156px" %)AT+12VT=500|(% style="width: 268px" %)Close after a delay of 500 milliseconds.|(((719 +|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK 720 +|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)((( 717 717 OK 718 - 719 - 720 720 ))) 721 721 722 - **(% style="color:blue" %)Downlink Command: 0x07**724 +(% style="color:blue" %)**Downlink Command: 0x07** 723 723 724 724 Format: Command Code (0x07) followed by 3 bytes. 725 725 726 726 The first byte is which power, the second and third bytes are the time to turn on. 727 727 728 -* Example 1: Downlink Payload: 070101F4 -> AT+3V3T=500 729 -* Example 2: Downlink Payload: 0701FFFF -> AT+3V3T=65535 730 -* Example 3: Downlink Payload: 070203E8 -> AT+5VT=1000 731 -* Example 4: Downlink Payload: 07020000 -> AT+5VT=0 732 -* Example 5: Downlink Payload: 070301F4 -> AT+12VT=500 733 -* Example 6: Downlink Payload: 07030000 -> AT+12VT=0 730 +* Example 1: Downlink Payload: 070101F4 **~-~-->** AT+3V3T=500 731 +* Example 2: Downlink Payload: 0701FFFF **~-~-->** AT+3V3T=65535 732 +* Example 3: Downlink Payload: 070203E8 **~-~-->** AT+5VT=1000 733 +* Example 4: Downlink Payload: 07020000 **~-~-->** AT+5VT=0 734 +* Example 5: Downlink Payload: 070301F4 **~-~-->** AT+12VT=500 735 +* Example 6: Downlink Payload: 07030000 **~-~-->** AT+12VT=0 734 734 735 735 738 + 736 736 == 3.4 Set the Probe Model == 737 737 738 738 739 - **(%style="color:blue"%)ATCommand:AT****+PROBE**742 +Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value. 740 740 741 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 742 -|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response** 743 -|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|((( 744 -0 744 +**AT Command: AT** **+PROBE** 745 745 746 +AT+PROBE=aabb 747 + 748 +When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters. 749 + 750 +When aa=01, it is the pressure mode, which converts the current into a pressure value; 751 + 752 +bb represents which type of pressure sensor it is. 753 + 754 +(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C) 755 + 756 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 757 +|**Command Example**|**Function**|**Response** 758 +|AT +PROBE =?|Get or Set the probe model.|0 746 746 OK 747 -))) 748 -|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK 749 -|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|((( 750 -OK 760 +|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK 761 +|((( 762 +AT +PROBE =000A 751 751 752 752 753 -))) 754 -|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|((( 765 +)))|Set water depth sensor mode, 10m type.|OK 766 +|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK 767 +|AT +PROBE =0000|Initial state, no settings.|OK 768 + 769 +**Downlink Command: 0x08** 770 + 771 +Format: Command Code (0x08) followed by 2 bytes. 772 + 773 +* Example 1: Downlink Payload: 080003 **~-~-->** AT+PROBE=0003 774 +* Example 2: Downlink Payload: 080101 **~-~-->** AT+PROBE=0101 775 + 776 + 777 + 778 +== 3.5 Multiple collections are one uplink(Since firmware V1.1) == 779 + 780 + 781 +Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time. 782 + 783 +(% style="color:blue" %)**AT Command: AT** **+STDC** 784 + 785 +AT+STDC=aa,bb,bb 786 + 787 +(% style="color:#037691" %)**aa:**(%%) 788 +**0:** means disable this function and use TDC to send packets. 789 +**1:** means enable this function, use the method of multiple acquisitions to send packets. 790 +(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535 791 +(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120 792 + 793 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %) 794 +|**Command Example**|**Function**|**Response** 795 +|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18 755 755 OK 797 +|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|((( 798 +Attention:Take effect after ATZ 756 756 800 +OK 801 +))) 802 +|AT+STDC=0, 0,0|((( 803 +Use the TDC interval to send packets.(default) 804 + 757 757 806 +)))|((( 807 +Attention:Take effect after ATZ 808 + 809 +OK 758 758 ))) 759 759 760 - **(% style="color:blue" %)Downlink Command: 0x08**812 +(% style="color:blue" %)**Downlink Command: 0xAE** 761 761 762 -Format: Command Code (0x08) followed by 2bytes.814 +Format: Command Code (0x08) followed by 5 bytes. 763 763 764 -* Example 1: Downlink Payload: 080003 -> AT+PROBE=0003 765 -* Example 2: Downlink Payload: 080101 -> AT+PROBE=0101 816 +* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->** AT+STDC=1,600,18 766 766 767 767 819 + 768 768 = 4. Battery & how to replace = 769 769 770 770 == 4.1 Battery Type == ... ... @@ -772,7 +772,6 @@ 772 772 773 773 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 774 774 775 - 776 776 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 777 777 778 778 [[image:1675146710956-626.png]] ... ... @@ -796,17 +796,12 @@ 796 796 797 797 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 798 798 799 - 800 800 Instruction to use as below: 801 801 852 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 802 802 803 - **(% style="color:blue" %)Step1:**(%%)Downlinktheup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:854 +(% style="color:blue" %)**Step 2:**(%%) Open it and choose 804 804 805 -[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]] 806 - 807 - 808 -**(% style="color:blue" %)Step 2:**(%%) Open it and choose 809 - 810 810 * Product Model 811 811 * Uplink Interval 812 812 * Working Mode ... ... @@ -887,11 +887,11 @@ 887 887 = 9. Packing Info = 888 888 889 889 890 - **(% style="color:#037691" %)Package Includes**:936 +(% style="color:#037691" %)**Package Includes**: 891 891 892 892 * PS-LB LoRaWAN Pressure Sensor 893 893 894 - **(% style="color:#037691" %)Dimension and weight**:940 +(% style="color:#037691" %)**Dimension and weight**: 895 895 896 896 * Device Size: cm 897 897 * Device Weight: g ... ... @@ -899,6 +899,7 @@ 899 899 * Weight / pcs : g 900 900 901 901 948 + 902 902 = 10. Support = 903 903 904 904
- image-20230201090514-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +560.9 KB - Content
- image-20230220171300-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Bei - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.0 KB - Content
- image-20230222174559-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Bei - Size
-
... ... @@ -1,0 +1,1 @@ 1 +19.4 KB - Content
- image-20230225154759-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +468.9 KB - Content