<
From version < 42.20 >
edited by Xiaoling
on 2023/01/31 16:19
To version < 50.2 >
edited by Xiaoling
on 2023/02/27 09:26
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -16,22 +16,33 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 +(((
19 19  The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 +)))
20 20  
23 +(((
21 21  The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 +)))
22 22  
27 +(((
23 23  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 +)))
24 24  
31 +(((
25 25  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 +)))
26 26  
35 +(((
27 27  PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 +)))
28 28  
39 +(((
29 29  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 +)))
30 30  
31 31  [[image:1675071321348-194.png]]
32 32  
33 33  
34 -
35 35  == 1.2 ​Features ==
36 36  
37 37  
... ... @@ -47,7 +47,10 @@
47 47  * Uplink on periodically
48 48  * Downlink to change configure
49 49  * 8500mAh Battery for long term use
61 +* Controllable 3.3v,5v and 12v output to power external sensor
50 50  
63 +
64 +
51 51  == 1.3 Specification ==
52 52  
53 53  
... ... @@ -94,6 +94,8 @@
94 94  * Sleep Mode: 5uA @ 3.3v
95 95  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
96 96  
111 +
112 +
97 97  == 1.4 Probe Types ==
98 98  
99 99  === 1.4.1 Thread Installation Type ===
... ... @@ -112,6 +112,8 @@
112 112  * Operating temperature: -20℃~~60℃
113 113  * Connector Type: Various Types, see order info
114 114  
131 +
132 +
115 115  === 1.4.2 Immersion Type ===
116 116  
117 117  
... ... @@ -128,11 +128,12 @@
128 128  * Operating temperature: -40℃~~85℃
129 129  * Material: 316 stainless steels
130 130  
131 -== 1.5 Probe Dimension ==
132 132  
133 133  
151 +== 1.5 Probe Dimension ==
134 134  
135 135  
154 +
136 136  == 1.6 Application and Installation ==
137 137  
138 138  === 1.6.1 Thread Installation Type ===
... ... @@ -187,22 +187,20 @@
187 187  
188 188  
189 189  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
190 -|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action**
191 -|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
209 +|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
210 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
192 192  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
193 -
194 194  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
195 195  )))
196 -|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
214 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
197 197  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
198 -
199 199  (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
200 -
201 201  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
202 202  )))
203 -|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
219 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
204 204  
205 205  
222 +
206 206  == 1.9 Pin Mapping ==
207 207  
208 208  
... ... @@ -227,8 +227,6 @@
227 227  == 1.11 Mechanical ==
228 228  
229 229  
230 -
231 -
232 232  [[image:1675143884058-338.png]]
233 233  
234 234  
... ... @@ -246,7 +246,6 @@
246 246  The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
247 247  
248 248  
249 -
250 250  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
251 251  
252 252  
... ... @@ -300,18 +300,8 @@
300 300  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
301 301  
302 302  
303 -
304 304  == 2.3 ​Uplink Payload ==
305 305  
306 -
307 -Uplink payloads have two types:
308 -
309 -* Distance Value: Use FPORT=2
310 -* Other control commands: Use other FPORT fields.
311 -
312 -The application server should parse the correct value based on FPORT settings.
313 -
314 -
315 315  === 2.3.1 Device Status, FPORT~=5 ===
316 316  
317 317  
... ... @@ -322,8 +322,8 @@
322 322  
323 323  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
324 324  |(% colspan="6" %)**Device Status (FPORT=5)**
325 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
326 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
329 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
330 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
327 327  
328 328  Example parse in TTNv3
329 329  
... ... @@ -392,13 +392,12 @@
392 392  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
393 393  |(% style="width:97px" %)(((
394 394  **Size(bytes)**
395 -)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1**
396 -|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
399 +)))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
400 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.5ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.607E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.707E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.8IN126IN226INTpin"]]
397 397  
398 398  [[image:1675144608950-310.png]]
399 399  
400 400  
401 -
402 402  === 2.3.3 Battery Info ===
403 403  
404 404  
... ... @@ -412,23 +412,24 @@
412 412  === 2.3.4 Probe Model ===
413 413  
414 414  
415 -PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
418 +PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
416 416  
417 417  
418 418  For example.
419 419  
420 420  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
421 -|(% style="width:111px" %)**Part Number**|(% style="width:158px" %)**Probe Used**|**0~~20mA scale**|**Example: 10mA meaning**
422 -|(% style="width:111px" %)PS-LB-I3|(% style="width:158px" %)immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
423 -|(% style="width:111px" %)PS-LB-I5|(% style="width:158px" %)immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
424 +|**Part Number**|**Probe Used**|**4~~20mA scale**|**Example: 12mA meaning**
425 +|PS-LB-I3|immersion type with 3 meters cable|0~~3 meters|1.5 meters pure water
426 +|PS-LB-I5|immersion type with 5 meters cable|0~~5 meters|2.5 meters pure water
427 +|PS-LB-T20-B|T20 threaded probe|0~~1MPa|0.5MPa air / gas or water pressure
424 424  
425 -The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
429 +The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
426 426  
427 427  
428 428  === 2.3.5 0~~20mA value (IDC_IN) ===
429 429  
430 430  
431 -The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
435 +The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
432 432  
433 433  (% style="color:#037691" %)**Example**:
434 434  
... ... @@ -435,6 +435,11 @@
435 435  27AE(H) = 10158 (D)/1000 = 10.158mA.
436 436  
437 437  
442 +Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
443 +
444 +[[image:image-20230225154759-1.png||height="408" width="741"]]
445 +
446 +
438 438  === 2.3.6 0~~30V value ( pin VDC_IN) ===
439 439  
440 440  
... ... @@ -468,9 +468,27 @@
468 468  0x01: Interrupt Uplink Packet.
469 469  
470 470  
471 -=== 2.3.8 ​Decode payload in The Things Network ===
480 +=== (% id="cke_bm_109176S" style="display:none" %) (%%)2.3.8 Sensor value, FPORT~=7 ===
472 472  
473 473  
483 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
484 +|(% style="width:94px" %)(((
485 +**Size(bytes)**
486 +)))|(% style="width:43px" %)2|(% style="width:367px" %)n
487 +|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.4BatteryInfo"]]|(% style="width:367px" %)(((
488 +Voltage value, each 2 bytes is a set of voltage values.
489 +)))
490 +
491 +[[image:image-20230220171300-1.png||height="207" width="863"]]
492 +
493 +Multiple sets of data collected are displayed in this form:
494 +
495 +[voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
496 +
497 +
498 +=== 2.3.9 ​Decode payload in The Things Network ===
499 +
500 +
474 474  While using TTN network, you can add the payload format to decode the payload.
475 475  
476 476  
... ... @@ -526,7 +526,6 @@
526 526  [[image:1675145060812-420.png]]
527 527  
528 528  
529 -
530 530  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
531 531  
532 532  
... ... @@ -549,7 +549,6 @@
549 549  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
550 550  
551 551  
552 -
553 553  = 3. Configure PS-LB via AT Command or LoRaWAN Downlink =
554 554  
555 555  
... ... @@ -560,7 +560,7 @@
560 560  
561 561  There are two kinds of commands to configure PS-LB, they are:
562 562  
563 -* **(% style="color:#037691" %)General Commands**.
588 +* (% style="color:#037691" %)**General Commands**
564 564  
565 565  These commands are to configure:
566 566  
... ... @@ -572,7 +572,7 @@
572 572  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
573 573  
574 574  
575 -* **(% style="color:#037691" %)Commands special design for PS-LB**
600 +* (% style="color:#037691" %)**Commands special design for PS-LB**
576 576  
577 577  These commands only valid for PS-LB, as below:
578 578  
... ... @@ -582,31 +582,28 @@
582 582  
583 583  Feature: Change LoRaWAN End Node Transmit Interval.
584 584  
585 -**(% style="color:blue" %)AT Command: AT+TDC**
610 +(% style="color:blue" %)**AT Command: AT+TDC**
586 586  
587 587  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
588 -|**Command Example**|**Function**|**Response**
589 -|AT+TDC=?|Show current transmit Interval|(((
613 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
614 +|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
590 590  30000
591 -
592 592  OK
593 -
594 594  the interval is 30000ms = 30s
595 595  )))
596 -|AT+TDC=60000|Set Transmit Interval|(((
619 +|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
597 597  OK
598 -
599 599  Set transmit interval to 60000ms = 60 seconds
600 600  )))
601 601  
602 -**(% style="color:blue" %)Downlink Command: 0x01**
624 +(% style="color:blue" %)**Downlink Command: 0x01**
603 603  
604 604  Format: Command Code (0x01) followed by 3 bytes time value.
605 605  
606 -If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
628 +If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
607 607  
608 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
609 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
630 +* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
631 +* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
610 610  
611 611  
612 612  
... ... @@ -615,156 +615,186 @@
615 615  
616 616  Feature, Set Interrupt mode for GPIO_EXIT.
617 617  
618 -**(% style="color:blue" %)AT Command: AT+INTMOD**
640 +(% style="color:blue" %)**AT Command: AT+INTMOD**
619 619  
620 620  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
621 -|**Command Example**|**Function**|**Response**
622 -|AT+INTMOD=?|Show current interrupt mode|(((
643 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
644 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
623 623  0
624 -
625 625  OK
626 -
627 -the mode is 0 = No interruption
647 +the mode is 0 =Disable Interrupt
628 628  )))
629 -|AT+INTMOD=2|(((
649 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
630 630  Set Transmit Interval
651 +0. (Disable Interrupt),
652 +~1. (Trigger by rising and falling edge)
653 +2. (Trigger by falling edge)
654 +3. (Trigger by rising edge)
655 +)))|(% style="width:157px" %)OK
631 631  
632 -~1. (Disable Interrupt),
657 +(% style="color:blue" %)**Downlink Command: 0x06**
633 633  
634 -2. (Trigger by rising and falling edge),
635 -
636 -3. (Trigger by falling edge)
637 -
638 -4. (Trigger by rising edge)
639 -)))|OK
640 -
641 -**(% style="color:blue" %)Downlink Command: 0x06**
642 -
643 643  Format: Command Code (0x06) followed by 3 bytes.
644 644  
645 645  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
646 646  
647 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
648 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
663 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
664 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
649 649  
650 650  
667 +
651 651  == 3.3 Set the output time ==
652 652  
653 653  
654 654  Feature, Control the output 3V3 , 5V or 12V.
655 655  
656 -**(% style="color:blue" %)AT Command: AT+3V3T**
673 +(% style="color:blue" %)**AT Command: AT+3V3T**
657 657  
658 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
659 -|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**
660 -|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
675 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
676 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
677 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
661 661  0
662 -
663 663  OK
664 664  )))
665 -|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
681 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
666 666  OK
667 -
668 668  default setting
669 669  )))
670 -|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
685 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
671 671  OK
672 -
673 -
674 674  )))
675 -|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
688 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
676 676  OK
677 -
678 -
679 679  )))
680 680  
681 -**(% style="color:blue" %)AT Command: AT+5VT**
692 +(% style="color:blue" %)**AT Command: AT+5VT**
682 682  
683 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
684 -|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**
685 -|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
694 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
695 +|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
696 +|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
686 686  0
687 -
688 688  OK
689 689  )))
690 -|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
700 +|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
691 691  OK
692 -
693 693  default setting
694 694  )))
695 -|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
704 +|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
696 696  OK
697 -
698 -
699 699  )))
700 -|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
707 +|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
701 701  OK
702 -
703 -
704 704  )))
705 705  
706 -**(% style="color:blue" %)AT Command: AT+12VT**
711 +(% style="color:blue" %)**AT Command: AT+12VT**
707 707  
708 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
709 -|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response**
710 -|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
713 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
714 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
715 +|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
711 711  0
712 -
713 713  OK
714 714  )))
715 -|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
716 -|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
719 +|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
720 +|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
717 717  OK
718 -
719 -
720 720  )))
721 721  
722 -**(% style="color:blue" %)Downlink Command: 0x07**
724 +(% style="color:blue" %)**Downlink Command: 0x07**
723 723  
724 724  Format: Command Code (0x07) followed by 3 bytes.
725 725  
726 726  The first byte is which power, the second and third bytes are the time to turn on.
727 727  
728 -* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
729 -* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
730 -* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
731 -* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
732 -* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
733 -* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
730 +* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
731 +* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
732 +* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
733 +* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
734 +* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
735 +* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
734 734  
735 735  
738 +
736 736  == 3.4 Set the Probe Model ==
737 737  
738 738  
739 -**(% style="color:blue" %)AT Command: AT** **+PROBE**
742 +Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
740 740  
741 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
742 -|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response**
743 -|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
744 -0
744 +**AT Command: AT** **+PROBE**
745 745  
746 +AT+PROBE=aabb
747 +
748 +When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
749 +
750 +When aa=01, it is the pressure mode, which converts the current into a pressure value;
751 +
752 +bb represents which type of pressure sensor it is.
753 +
754 +(A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
755 +
756 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
757 +|**Command Example**|**Function**|**Response**
758 +|AT +PROBE =?|Get or Set the probe model.|0
746 746  OK
747 -)))
748 -|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
749 -|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
750 -OK
760 +|AT +PROBE =0003|Set water depth sensor mode, 3m type.|OK
761 +|(((
762 +AT +PROBE =000A
751 751  
752 752  
753 -)))
754 -|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
765 +)))|Set water depth sensor mode, 10m type.|OK
766 +|AT +PROBE =0101|Set pressure transmitters mode, first type(A).|OK
767 +|AT +PROBE =0000|Initial state, no settings.|OK
768 +
769 +**Downlink Command: 0x08**
770 +
771 +Format: Command Code (0x08) followed by 2 bytes.
772 +
773 +* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
774 +* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
775 +
776 +
777 +
778 +== 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
779 +
780 +
781 +Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
782 +
783 +(% style="color:blue" %)**AT Command: AT** **+STDC**
784 +
785 +AT+STDC=aa,bb,bb
786 +
787 +(% style="color:#037691" %)**aa:**(%%)
788 +**0:** means disable this function and use TDC to send packets.
789 +**1:** means enable this function, use the method of multiple acquisitions to send packets.
790 +(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
791 +(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
792 +
793 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
794 +|**Command Example**|**Function**|**Response**
795 +|AT+STDC=?|Get the mode of multiple acquisitions and one uplink.|1,10,18
755 755  OK
797 +|AT+STDC=1,10,18|Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(((
798 +Attention:Take effect after ATZ
756 756  
800 +OK
801 +)))
802 +|AT+STDC=0, 0,0|(((
803 +Use the TDC interval to send packets.(default)
804 +
757 757  
806 +)))|(((
807 +Attention:Take effect after ATZ
808 +
809 +OK
758 758  )))
759 759  
760 -**(% style="color:blue" %)Downlink Command: 0x08**
812 +(% style="color:blue" %)**Downlink Command: 0xAE**
761 761  
762 -Format: Command Code (0x08) followed by 2 bytes.
814 +Format: Command Code (0x08) followed by 5 bytes.
763 763  
764 -* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
765 -* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
816 +* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
766 766  
767 767  
819 +
768 768  = 4. Battery & how to replace =
769 769  
770 770  == 4.1 Battery Type ==
... ... @@ -772,7 +772,6 @@
772 772  
773 773  PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
774 774  
775 -
776 776  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
777 777  
778 778  [[image:1675146710956-626.png]]
... ... @@ -796,17 +796,12 @@
796 796  
797 797  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
798 798  
799 -
800 800  Instruction to use as below:
801 801  
852 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
802 802  
803 -**(% style="color:blue" %)Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
854 +(% style="color:blue" %)**Step 2:**(%%) Open it and choose
804 804  
805 -[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
806 -
807 -
808 -**(% style="color:blue" %)Step 2:**(%%) Open it and choose
809 -
810 810  * Product Model
811 811  * Uplink Interval
812 812  * Working Mode
... ... @@ -887,11 +887,11 @@
887 887  = 9. ​Packing Info =
888 888  
889 889  
890 -**(% style="color:#037691" %)Package Includes**:
936 +(% style="color:#037691" %)**Package Includes**:
891 891  
892 892  * PS-LB LoRaWAN Pressure Sensor
893 893  
894 -**(% style="color:#037691" %)Dimension and weight**:
940 +(% style="color:#037691" %)**Dimension and weight**:
895 895  
896 896  * Device Size: cm
897 897  * Device Weight: g
... ... @@ -899,6 +899,7 @@
899 899  * Weight / pcs : g
900 900  
901 901  
948 +
902 902  = 10. Support =
903 903  
904 904  
image-20230201090514-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +98.0 KB
Content
image-20230222174559-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +19.4 KB
Content
image-20230225154759-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +468.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0