<
From version < 42.19 >
edited by Xiaoling
on 2023/01/31 16:17
To version < 45.3 >
edited by Xiaoling
on 2023/02/21 15:24
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -16,22 +16,33 @@
16 16  == 1.1 What is LoRaWAN Pressure Sensor ==
17 17  
18 18  
19 +(((
19 19  The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
21 +)))
20 20  
23 +(((
21 21  The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
25 +)))
22 22  
27 +(((
23 23  The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 +)))
24 24  
31 +(((
25 25  PS-LB supports BLE configure and wireless OTA update which make user easy to use.
33 +)))
26 26  
35 +(((
27 27  PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
37 +)))
28 28  
39 +(((
29 29  Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
41 +)))
30 30  
31 31  [[image:1675071321348-194.png]]
32 32  
33 33  
34 -
35 35  == 1.2 ​Features ==
36 36  
37 37  
... ... @@ -132,7 +132,6 @@
132 132  
133 133  
134 134  
135 -
136 136  == 1.6 Application and Installation ==
137 137  
138 138  === 1.6.1 Thread Installation Type ===
... ... @@ -187,22 +187,18 @@
187 187  
188 188  
189 189  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
190 -|(% style="width:138px" %)**Behavior on ACT**|(% style="width:100px" %)**Function**|**Action**
191 -|(% style="width:138px" %)Pressing ACT between 1s < time < 3s|(% style="width:100px" %)Send an uplink|(((
200 +|=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
201 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
192 192  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
193 -
194 194  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
195 195  )))
196 -|(% style="width:138px" %)Pressing ACT for more than 3s|(% style="width:100px" %)Active Device|(((
205 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
197 197  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
198 -
199 199  (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
200 -
201 201  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
202 202  )))
203 -|(% style="width:138px" %)Fast press ACT 5 times.|(% style="width:100px" %)Deactivate Device|red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
210 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
204 204  
205 -
206 206  == 1.9 Pin Mapping ==
207 207  
208 208  
... ... @@ -227,8 +227,6 @@
227 227  == 1.11 Mechanical ==
228 228  
229 229  
230 -
231 -
232 232  [[image:1675143884058-338.png]]
233 233  
234 234  
... ... @@ -246,7 +246,6 @@
246 246  The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
247 247  
248 248  
249 -
250 250  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
251 251  
252 252  
... ... @@ -322,8 +322,8 @@
322 322  
323 323  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
324 324  |(% colspan="6" %)**Device Status (FPORT=5)**
325 -|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|**1**|**1**|**2**
326 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|Frequency Band|Sub-band|BAT
328 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
329 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
327 327  
328 328  Example parse in TTNv3
329 329  
... ... @@ -392,16 +392,29 @@
392 392  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
393 393  |(% style="width:97px" %)(((
394 394  **Size(bytes)**
395 -)))|(% style="width:48px" %)**2**|(% style="width:58px" %)**2**|**2**|**2**|**1**
396 -|(% style="width:97px" %)**Value**|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:58px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
398 +)))|(% style="width:48px" %)**2**|(% style="width:71px" %)**2**|(% style="width:98px" %)**2**|(% style="width:73px" %)**2**|(% style="width:122px" %)**1**
399 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
397 397  
398 398  [[image:1675144608950-310.png]]
399 399  
400 400  
404 +=== 2.3.3 Sensor value, FPORT~=7 ===
401 401  
402 -=== 2.3.3 Battery Info ===
403 403  
407 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:508.222px" %)
408 +|(% style="width:94px" %)(((
409 +**Size(bytes)**
410 +)))|(% style="width:43px" %)2|(% style="width:367px" %)n
411 +|(% style="width:94px" %)**Value**|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
412 +Voltage value, each 2 bytes is a set of voltage values.
413 +)))
404 404  
415 +[[image:image-20230220171300-1.png||height="207" width="863"]]
416 +
417 +
418 +=== 2.3.4 Battery Info ===
419 +
420 +
405 405  Check the battery voltage for PS-LB.
406 406  
407 407  Ex1: 0x0B45 = 2885mV
... ... @@ -409,7 +409,7 @@
409 409  Ex2: 0x0B49 = 2889mV
410 410  
411 411  
412 -=== 2.3.4 Probe Model ===
428 +=== 2.3.5 Probe Model ===
413 413  
414 414  
415 415  PS-LB has different kind of probe, 0~~20mA represent the full scale of the measuring range. So a 15mA output means different meaning for different probe. 
... ... @@ -425,7 +425,7 @@
425 425  The probe model field provides the convenient for server to identical how it should parse the 0~~20mA sensor value and get the correct value.
426 426  
427 427  
428 -=== 2.3.5 0~~20mA value (IDC_IN) ===
444 +=== 2.3.6 0~~20mA value (IDC_IN) ===
429 429  
430 430  
431 431  The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
... ... @@ -435,7 +435,7 @@
435 435  27AE(H) = 10158 (D)/1000 = 10.158mA.
436 436  
437 437  
438 -=== 2.3.6 0~~30V value ( pin VDC_IN) ===
454 +=== 2.3.7 0~~30V value ( pin VDC_IN) ===
439 439  
440 440  
441 441  Measure the voltage value. The range is 0 to 30V.
... ... @@ -445,7 +445,7 @@
445 445  138E(H) = 5006(D)/1000= 5.006V
446 446  
447 447  
448 -=== 2.3.7 IN1&IN2&INT pin ===
464 +=== 2.3.8 IN1&IN2&INT pin ===
449 449  
450 450  
451 451  IN1 and IN2 are used as digital input pins.
... ... @@ -468,7 +468,7 @@
468 468  0x01: Interrupt Uplink Packet.
469 469  
470 470  
471 -=== 2.3.8 ​Decode payload in The Things Network ===
487 +=== 2.3.9 ​Decode payload in The Things Network ===
472 472  
473 473  
474 474  While using TTN network, you can add the payload format to decode the payload.
... ... @@ -526,7 +526,6 @@
526 526  [[image:1675145060812-420.png]]
527 527  
528 528  
529 -
530 530  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
531 531  
532 532  
... ... @@ -560,7 +560,7 @@
560 560  
561 561  There are two kinds of commands to configure PS-LB, they are:
562 562  
563 -* **(% style="color:#037691" %)General Commands**.
578 +* (% style="color:#037691" %)**General Commands**
564 564  
565 565  These commands are to configure:
566 566  
... ... @@ -572,7 +572,7 @@
572 572  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
573 573  
574 574  
575 -* **(% style="color:#037691" %)Commands special design for PS-LB**
590 +* (% style="color:#037691" %)**Commands special design for PS-LB**
576 576  
577 577  These commands only valid for PS-LB, as below:
578 578  
... ... @@ -582,189 +582,185 @@
582 582  
583 583  Feature: Change LoRaWAN End Node Transmit Interval.
584 584  
585 -**(% style="color:blue" %)AT Command: AT+TDC**
600 +(% style="color:blue" %)**AT Command: AT+TDC**
586 586  
587 587  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
588 -|**Command Example**|**Function**|**Response**
589 -|AT+TDC=?|Show current transmit Interval|(((
603 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
604 +|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
590 590  30000
591 -
592 592  OK
593 -
594 594  the interval is 30000ms = 30s
595 595  )))
596 -|AT+TDC=60000|Set Transmit Interval|(((
609 +|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
597 597  OK
598 -
599 599  Set transmit interval to 60000ms = 60 seconds
600 600  )))
601 601  
602 -**(% style="color:blue" %)Downlink Command: 0x01**
614 +(% style="color:blue" %)**Downlink Command: 0x01**
603 603  
604 604  Format: Command Code (0x01) followed by 3 bytes time value.
605 605  
606 -If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
618 +If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
607 607  
608 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
609 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
620 +* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
621 +* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
610 610  
611 -
612 -
613 613  == 3.2 Set Interrupt Mode ==
614 614  
615 615  
616 616  Feature, Set Interrupt mode for GPIO_EXIT.
617 617  
618 -**(% style="color:blue" %)AT Command: AT+INTMOD**
628 +(% style="color:blue" %)**AT Command: AT+INTMOD**
619 619  
620 620  (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
621 -|**Command Example**|**Function**|**Response**
622 -|AT+INTMOD=?|Show current interrupt mode|(((
631 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 157px;" %)**Response**
632 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
623 623  0
624 -
625 625  OK
626 -
627 627  the mode is 0 = No interruption
628 628  )))
629 -|AT+INTMOD=2|(((
637 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
630 630  Set Transmit Interval
631 -
632 632  ~1. (Disable Interrupt),
633 -
634 -2. (Trigger by rising and falling edge),
635 -
640 +2. (Trigger by rising and falling edge)
636 636  3. (Trigger by falling edge)
637 -
638 638  4. (Trigger by rising edge)
639 -)))|OK
643 +)))|(% style="width:157px" %)OK
640 640  
641 -**(% style="color:blue" %)Downlink Command: 0x06**
645 +(% style="color:blue" %)**Downlink Command: 0x06**
642 642  
643 643  Format: Command Code (0x06) followed by 3 bytes.
644 644  
645 645  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
646 646  
647 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
648 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
651 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
652 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
649 649  
650 -
651 651  == 3.3 Set the output time ==
652 652  
653 653  
654 654  Feature, Control the output 3V3 , 5V or 12V.
655 655  
656 -**(% style="color:blue" %)AT Command: AT+3V3T**
659 +(% style="color:blue" %)**AT Command: AT+3V3T**
657 657  
658 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
659 -|(% style="width:156px" %)**Command Example**|(% style="width:236px" %)**Function**|(% style="width:117px" %)**Response**
660 -|(% style="width:156px" %)AT+3V3T=?|(% style="width:236px" %)Show 3V3 open time.|(% style="width:117px" %)(((
661 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
662 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
663 +|(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
661 661  0
662 -
663 663  OK
664 664  )))
665 -|(% style="width:156px" %)AT+3V3T=0|(% style="width:236px" %)Normally open 3V3 power supply.|(% style="width:117px" %)(((
667 +|(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
666 666  OK
667 -
668 668  default setting
669 669  )))
670 -|(% style="width:156px" %)AT+3V3T=1000|(% style="width:236px" %)Close after a delay of 1000 milliseconds.|(% style="width:117px" %)(((
671 +|(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
671 671  OK
672 -
673 -
674 674  )))
675 -|(% style="width:156px" %)AT+3V3T=65535|(% style="width:236px" %)Normally closed 3V3 power supply.|(% style="width:117px" %)(((
674 +|(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
676 676  OK
677 -
678 -
679 679  )))
680 680  
681 -**(% style="color:blue" %)AT Command: AT+5VT**
678 +(% style="color:blue" %)**AT Command: AT+5VT**
682 682  
683 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
684 -|(% style="width:158px" %)**Command Example**|(% style="width:232px" %)**Function**|(% style="width:119px" %)**Response**
685 -|(% style="width:158px" %)AT+5VT=?|(% style="width:232px" %)Show 5V open time.|(% style="width:119px" %)(((
680 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
681 +|=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
682 +|(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
686 686  0
687 -
688 688  OK
689 689  )))
690 -|(% style="width:158px" %)AT+5VT=0|(% style="width:232px" %)Normally closed 5V power supply.|(% style="width:119px" %)(((
686 +|(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
691 691  OK
692 -
693 693  default setting
694 694  )))
695 -|(% style="width:158px" %)AT+5VT=1000|(% style="width:232px" %)Close after a delay of 1000 milliseconds.|(% style="width:119px" %)(((
690 +|(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
696 696  OK
697 -
698 -
699 699  )))
700 -|(% style="width:158px" %)AT+5VT=65535|(% style="width:232px" %)Normally open 5V power supply.|(% style="width:119px" %)(((
693 +|(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
701 701  OK
702 -
703 -
704 704  )))
705 705  
706 -**(% style="color:blue" %)AT Command: AT+12VT**
697 +(% style="color:blue" %)**AT Command: AT+12VT**
707 707  
708 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
709 -|(% style="width:156px" %)**Command Example**|(% style="width:268px" %)**Function**|**Response**
710 -|(% style="width:156px" %)AT+12VT=?|(% style="width:268px" %)Show 12V open time.|(((
699 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
700 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
701 +|(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
711 711  0
712 -
713 713  OK
714 714  )))
715 -|(% style="width:156px" %)AT+12VT=0|(% style="width:268px" %)Normally closed 12V power supply.|OK
716 -|(% style="width:156px" %)AT+12VT=500|(% style="width:268px" %)Close after a delay of 500 milliseconds.|(((
705 +|(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
706 +|(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
717 717  OK
718 -
719 -
720 720  )))
721 721  
722 -**(% style="color:blue" %)Downlink Command: 0x07**
710 +(% style="color:blue" %)**Downlink Command: 0x07**
723 723  
724 724  Format: Command Code (0x07) followed by 3 bytes.
725 725  
726 726  The first byte is which power, the second and third bytes are the time to turn on.
727 727  
728 -* Example 1: Downlink Payload: 070101F4  -> AT+3V3T=500
729 -* Example 2: Downlink Payload: 0701FFFF   -> AT+3V3T=65535
730 -* Example 3: Downlink Payload: 070203E8  -> AT+5VT=1000
731 -* Example 4: Downlink Payload: 07020000  -> AT+5VT=0
732 -* Example 5: Downlink Payload: 070301F4  -> AT+12VT=500
733 -* Example 6: Downlink Payload: 07030000  -> AT+12VT=0
716 +* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
717 +* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
718 +* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
719 +* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
720 +* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
721 +* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
734 734  
735 -
736 736  == 3.4 Set the Probe Model ==
737 737  
738 738  
739 -**(% style="color:blue" %)AT Command: AT** **+PROBE**
726 +(% style="color:blue" %)**AT Command: AT** **+PROBE**
740 740  
741 -(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
742 -|(% style="width:157px" %)**Command Example**|(% style="width:267px" %)**Function**|**Response**
743 -|(% style="width:157px" %)AT +PROBE =?|(% style="width:267px" %)Get or Set the probe model.|(((
728 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:448px" %)
729 +|=(% style="width: 154px;" %)**Command Example**|=(% style="width: 204px;" %)**Function**|=(% style="width: 85px;" %)**Response**
730 +|(% style="width:154px" %)AT +PROBE =?|(% style="width:204px" %)Get or Set the probe model.|(% style="width:85px" %)(((
744 744  0
745 -
746 746  OK
747 747  )))
748 -|(% style="width:157px" %)AT +PROBE =0003|(% style="width:267px" %)Set water depth sensor mode, 3m type.|OK
749 -|(% style="width:157px" %)AT +PROBE =0101|(% style="width:267px" %)Set pressure transmitters mode, first type.|(((
734 +|(% style="width:154px" %)AT +PROBE =0003|(% style="width:204px" %)Set water depth sensor mode, 3m type.|(% style="width:85px" %)OK
735 +|(% style="width:154px" %)AT +PROBE =0101|(% style="width:204px" %)Set pressure transmitters mode, first type.|(% style="width:85px" %)(((
750 750  OK
751 -
752 -
753 753  )))
754 -|(% style="width:157px" %)AT +PROBE =0000|(% style="width:267px" %)Initial state, no settings.|(((
738 +|(% style="width:154px" %)AT +PROBE =0000|(% style="width:204px" %)Initial state, no settings.|(% style="width:85px" %)(((
755 755  OK
756 -
757 -
758 758  )))
759 759  
760 -**(% style="color:blue" %)Downlink Command: 0x08**
742 +(% style="color:blue" %)**Downlink Command: 0x08**
761 761  
762 762  Format: Command Code (0x08) followed by 2 bytes.
763 763  
764 -* Example 1: Downlink Payload: 080003  -> AT+PROBE=0003
765 -* Example 2: Downlink Payload: 080101  -> AT+PROBE=0101
746 +* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
747 +* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
766 766  
749 +== 3.5 Multiple collections are one uplink(Since firmware V1.1) ==
767 767  
751 +
752 +Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
753 +
754 +(% style="color:blue" %)**AT Command: AT** **+STDC**
755 +
756 +(% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
757 +|=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
758 +|(% style="width:156px" %)AT+STDC=?|(% style="width:137px" %)(((
759 +Get the mode of multiple acquisitions and one uplink
760 +)))|(((
761 +1,10,18
762 +OK
763 +)))
764 +|(% style="width:156px" %)AT+STDC=1,10,18|(% style="width:137px" %)Set the mode of multiple acquisitions and one uplink|(((
765 +OK
766 +**(% style="color:#037691" %)aa:**(%%)
767 +**0** means disable this function and use TDC to send packets.
768 +**1** means enable this function, use the method of multiple acquisitions to send packets.
769 +**(% style="color:#037691" %)bb:**(%%) Each collection interval (s), the value is 1~~65535
770 +**(% style="color:#037691" %)cc:**(%%)the number of collection times, the value is 1~~120
771 +)))
772 +
773 +(% style="color:blue" %)**Downlink Command: 0xAE**
774 +
775 +Format: Command Code (0x08) followed by 5 bytes.
776 +
777 +* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
778 +
768 768  = 4. Battery & how to replace =
769 769  
770 770  == 4.1 Battery Type ==
... ... @@ -772,7 +772,6 @@
772 772  
773 773  PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
774 774  
775 -
776 776  The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
777 777  
778 778  [[image:1675146710956-626.png]]
... ... @@ -796,17 +796,12 @@
796 796  
797 797  Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
798 798  
799 -
800 800  Instruction to use as below:
801 801  
811 +(% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
802 802  
803 -**Step 1:** Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
813 +(% style="color:blue" %)**Step 2:**(%%) Open it and choose
804 804  
805 -[[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
806 -
807 -
808 -**Step 2:** Open it and choose
809 -
810 810  * Product Model
811 811  * Uplink Interval
812 812  * Working Mode
... ... @@ -887,11 +887,11 @@
887 887  = 9. ​Packing Info =
888 888  
889 889  
890 -**Package Includes**:
895 +(% style="color:#037691" %)**Package Includes**:
891 891  
892 892  * PS-LB LoRaWAN Pressure Sensor
893 893  
894 -**Dimension and weight**:
899 +(% style="color:#037691" %)**Dimension and weight**:
895 895  
896 896  * Device Size: cm
897 897  * Device Weight: g
... ... @@ -898,11 +898,11 @@
898 898  * Package Size / pcs : cm
899 899  * Weight / pcs : g
900 900  
901 -
902 902  = 10. Support =
903 903  
904 904  
905 905  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
910 +
906 906  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
907 907  
908 908  
image-20230201090514-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +560.9 KB
Content
image-20230220171300-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +98.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0