Last modified by Xiaoling on 2025/07/10 16:21

From version 146.2
edited by Mengting Qiu
on 2025/07/08 10:57
Change comment: There is no comment for this version
To version 123.14
edited by Xiaoling
on 2025/04/01 17:11
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Xiaoling
Content
... ... @@ -1,7 +1,8 @@
1 1  
2 2  
3 3  
4 -[[image:image-20240109154731-4.png||data-xwiki-image-style-alignment="center" height="546" width="769"]]
4 +(% style="text-align:center" %)
5 +[[image:image-20240109154731-4.png||height="671" width="945"]]
5 5  
6 6  
7 7  
... ... @@ -47,7 +47,9 @@
47 47  Each PS-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
48 48  )))
49 49  
51 +[[image:1675071321348-194.png]]
50 50  
53 +
51 51  == 1.2 ​Features ==
52 52  
53 53  
... ... @@ -133,7 +133,7 @@
133 133  === 1.4.2 Immersion Type ===
134 134  
135 135  
136 -[[image:image-20240109160445-5.png||height="199" width="150"]]
139 +[[image:image-20240109160445-5.png||height="221" width="166"]]
137 137  
138 138  * Immersion Type, Probe IP Level: IP68
139 139  * Measuring Range: Measure range can be customized, up to 100m.
... ... @@ -141,15 +141,11 @@
141 141  * Long-Term Stability: ±0.2% F.S / Year
142 142  * Storage temperature: -30°C~~80°C
143 143  * Operating temperature: 0°C~~50°C
144 -* Probe Material: 316 stainless steels
145 -* Cable model specifications: CGYPU 5*0.2mm2
146 -* Usage characteristics of Cable
147 -1) Operating temperature:-40℃— +70℃
148 -2) -30℃ bending cable 15 times of outer diameter can work normally
147 +* Material: 316 stainless steels
149 149  
150 150  === 1.4.3 Wireless Differential Air Pressure Sensor ===
151 151  
152 -[[image:image-20240511174954-1.png||height="193" width="193"]]
151 +[[image:image-20240511174954-1.png||height="215" width="215"]]
153 153  
154 154  * Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
155 155  * Accuracy: 0.5% F.S, resolution is 0.05%.
... ... @@ -164,7 +164,7 @@
164 164  === 1.5.1 Thread Installation Type ===
165 165  
166 166  
167 -(% style="color:blue" %)**Application:**
166 +Application:
168 168  
169 169  * Hydraulic Pressure
170 170  * Petrochemical Industry
... ... @@ -182,7 +182,7 @@
182 182  === 1.5.2 Immersion Type ===
183 183  
184 184  
185 -(% style="color:blue" %)**Application:**
184 +Application:
186 186  
187 187  Liquid & Water Pressure / Level detect.
188 188  
... ... @@ -209,7 +209,7 @@
209 209  === 1.5.3 Wireless Differential Air Pressure Sensor ===
210 210  
211 211  
212 -(% style="color:blue" %)**Application:**
211 +Application:
213 213  
214 214  Indoor Air Control & Filter clogging Detect.
215 215  
... ... @@ -225,36 +225,40 @@
225 225  
226 226  Size of wind pressure transmitter:
227 227  
228 -[[image:image-20240513094047-2.png||height="462" width="518"]]
227 +[[image:image-20240513094047-2.png]]
229 229  
230 -(% style="color:red" %)**Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.**
229 +Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.
231 231  
232 232  
233 233  == 1.6 Sleep mode and working mode ==
234 234  
235 235  
236 -**Deep Sleep Mode:** Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
235 +Deep Sleep Mode: Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
237 237  
238 -**Working Mode: **In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
237 +Working Mode: In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
239 239  
240 240  
241 241  == 1.7 Button & LEDs ==
242 242  
243 243  
244 -[[image:image-20250419092225-1.jpeg]]
243 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
245 245  
246 246  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
247 247  |=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action
248 -|[[image:1749540420016-961.png]] 1~~3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
247 +|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
248 +
249 +
249 249  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once.
250 250  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
251 251  )))
252 -|[[image:1749540423574-437.png]] >3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
253 +|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
254 +
255 +
253 253  Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network.
254 254  Green led will solidly turn on for 5 seconds after joined in network.
255 255  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
256 256  )))
257 -|[[image:1749540397649-875.png]] x5|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
260 +|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
258 258  
259 259  == 1.8 Pin Mapping ==
260 260  
... ... @@ -304,13 +304,13 @@
304 304  
305 305  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
306 306  
307 -[[image:image-20250419162538-1.png]]
310 +[[image:1675144005218-297.png]]
308 308  
309 309  
310 310  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
311 311  
312 312  
313 -(% style="color:blue" %)**Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.**
316 +Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.
314 314  
315 315  Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
316 316  
... ... @@ -319,45 +319,30 @@
319 319  
320 320  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
321 321  
322 -**Create the application.**
323 323  
324 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
326 +Register the device
325 325  
326 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
328 +[[image:1675144099263-405.png]]
327 327  
328 328  
329 -**Add devices to the created Application.**
331 +Add APP EUI and DEV EUI
330 330  
331 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
333 +[[image:1675144117571-832.png]]
332 332  
333 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
334 334  
336 +Add APP EUI in the application
335 335  
336 -**Enter end device specifics manually.**
337 337  
338 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
339 +[[image:1675144143021-195.png]]
339 339  
340 340  
341 -**Add DevEUI and AppKey. Customize a platform ID for the device.**
342 +Add APP KEY
342 342  
343 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
344 +[[image:1675144157838-392.png]]
344 344  
346 +Step 2: Activate on PS-LB/LS
345 345  
346 -(% style="color:blue" %)**Step 2: Add decoder.**
347 347  
348 -In TTN, user can add a custom payload so it shows friendly reading.
349 -
350 -Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
351 -
352 -Below is TTN screen shot:
353 -
354 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
355 -
356 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png" height="562" width="1168"]]
357 -
358 -
359 -(% style="color:blue" %)**Step 3: Activate on PS-LB/LS**
360 -
361 361  Press the button for 5 seconds to activate the PS-LB/LS.
362 362  
363 363  Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network.
... ... @@ -375,7 +375,7 @@
375 375  Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
376 376  
377 377  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
378 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
366 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)Device Status (FPORT=5)
379 379  |(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2
380 380  |(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
381 381  
... ... @@ -445,8 +445,10 @@
445 445  
446 446  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
447 447  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
448 -**Size(bytes)**
449 -)))|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
436 +
437 +
438 +Size(bytes)
439 +)))|(% style="background-color:#4f81bd; color:white; width:50px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
450 450  |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
451 451  
452 452  [[image:1675144608950-310.png]]
... ... @@ -467,10 +467,11 @@
467 467  
468 468  PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
469 469  
460 +
470 470  For example.
471 471  
472 472  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
473 -|(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
464 +|(% style="background-color:#4f81bd; color:white" %)Part Number|(% style="background-color:#4f81bd; color:white" %)Probe Used|(% style="background-color:#4f81bd; color:white" %)4~~20mA scale|(% style="background-color:#4f81bd; color:white" %)Example: 12mA meaning
474 474  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
475 475  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
476 476  |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
... ... @@ -478,23 +478,6 @@
478 478  The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
479 479  
480 480  
481 -When connecting to current sensors sold by our company, you can convert current readings to corresponding values by simply configuring the [[AT+PROBE>>||anchor="H3.3.4SettheProbeModel"]] command. If you prefer not to configure this command on the sensor, you can uniformly handle the conversion in the payload decoder instead.
482 -
483 -**Examples for decoder implementation:**
484 -
485 -~1. For AT+PROBE=0005, add the following processing in your decoder:
486 -
487 -[[image:image-20250512144042-1.png]]
488 -
489 -[[image:image-20250512144122-2.png]]
490 -
491 -2. For AT+PROBE=0102, add the following processing in your decoder(Corresponding to the position shown in the above screenshot).
492 -
493 -bytes[i]=0x01;bytes[1+i]=0x02;
494 -
495 -bytes[2]=0x01;bytes[3]=0x02;
496 -
497 -
498 498  === 2.3.5 0~~20mA value (IDC_IN) ===
499 499  
500 500  
... ... @@ -548,8 +548,10 @@
548 548  
549 549  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
550 550  |(% style="background-color:#4f81bd; color:white; width:65px" %)(((
551 -**Size(bytes)**
552 -)))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
525 +
526 +
527 +Size(bytes)
528 +)))|(% style="background-color:#4f81bd; color:white; width:35px" %)2|(% style="background-color:#4f81bd; color:white; width:400px" %)n
553 553  |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
554 554  
555 555  
... ... @@ -624,52 +624,43 @@
624 624  == 2.6 Datalog Feature (Since V1.1) ==
625 625  
626 626  
627 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB/LS will store the reading for future retrieving purposes.
603 +When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot.
628 628  
629 629  
630 -=== 2.5.1 How datalog works ===
606 +=== 2.6.1 Unix TimeStamp ===
631 631  
632 632  
633 -PS-LB/LS will wait for ACK for every uplink, when there is no LoRaWAN network,PS-LB/LS will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
609 +PS-LB uses Unix TimeStamp format based on
634 634  
635 -* (((
636 -a) PS-LB/LS will do an ACK check for data records sending to make sure every data arrive server.
637 -)))
638 -* (((
639 -b) PS-LB/LS will send data in **CONFIRMED Mode**, but PS-LB/LS won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if PS-LB/LS gets a ACK, PS-LB/LS will consider there is a network connection and resend all NONE-ACK messages.
611 +[[image:image-20250401163826-3.jpeg]]
640 640  
641 -
642 -)))
613 +Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
643 643  
644 -=== 2.5.2 Enable Datalog ===
615 +Below is the converter example:
645 645  
617 +[[image:image-20250401163906-4.jpeg]]
646 646  
647 -User need to make sure below two settings are enable to use datalog;
648 648  
649 -* (% style="color:blue" %)**SYNCMOD=1(Default)**(%%) to enable sync time via LoRaWAN MAC command, click here ([[AT+SYNCMOD>>https://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.6Settimesynchronizationmethod28ThenetworkservermustsupportLoRaWANv1.0.329]]) for detailed instructions.
650 -* (% style="color:blue" %)**PNACKMD=1**(%%)** **to enable datalog feature, click here ([[AT+PNACKMD>>https://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.26RequesttheservertosendanACK]]) for detailed instructions.
620 +=== 2.6.2 Set Device Time ===
651 651  
652 652  
623 +There are two ways to set the device's time:
653 653  
654 -Once PS-LB/LS Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB/LS. If S31x-LB/LS fails to get the time from the server, S31x-LB/LS will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
655 655  
656 -(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
626 +~1. Through LoRaWAN MAC Command (Default settings)
657 657  
628 +Users need to set SYNCMOD=1 to enable sync time via the MAC command.
658 658  
659 -=== 2.6.1 Unix TimeStamp ===
630 +Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
660 660  
632 +Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.
661 661  
662 -PS-LB uses Unix TimeStamp format based on
663 663  
664 -[[image:image-20250401163826-3.jpeg]]
635 + 2. Manually Set Time
665 665  
666 -Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
637 +Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
667 667  
668 -Below is the converter example:
669 669  
670 -[[image:image-20250401163906-4.jpeg]]
671 -
672 -
673 673  === 2.6.3 Poll sensor value ===
674 674  
675 675  Users can poll sensor values based on timestamps. Below is the downlink command.
... ... @@ -711,6 +711,7 @@
711 711  IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status
712 712  )))|(% style="width:86px" %)Unix Time Stamp
713 713  
681 +
714 714  IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:
715 715  
716 716  [[image:image-20250117104847-4.png]]
... ... @@ -1059,7 +1059,7 @@
1059 1059  
1060 1060  AT Command: AT+TDC
1061 1061  
1062 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1030 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1063 1063  |=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response
1064 1064  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
1065 1065  30000
... ... @@ -1087,14 +1087,18 @@
1087 1087  
1088 1088  AT Command: AT+INTMOD
1089 1089  
1090 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1058 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1091 1091  |=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response
1092 1092  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
1061 +
1062 +
1093 1093  0
1094 1094  OK
1095 1095  the mode is 0 =Disable Interrupt
1096 1096  )))
1097 1097  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
1068 +
1069 +
1098 1098  Set Transmit Interval
1099 1099  0. (Disable Interrupt),
1100 1100  ~1. (Trigger by rising and falling edge)
... ... @@ -1118,52 +1118,72 @@
1118 1118  
1119 1119  AT Command: AT+3V3T
1120 1120  
1121 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:474px" %)
1093 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
1122 1122  |=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1123 1123  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
1096 +
1097 +
1124 1124  0
1125 1125  OK
1126 1126  )))
1127 1127  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1102 +
1103 +
1128 1128  OK
1129 1129  default setting
1130 1130  )))
1131 1131  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
1108 +
1109 +
1132 1132  OK
1133 1133  )))
1134 1134  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1113 +
1114 +
1135 1135  OK
1136 1136  )))
1137 1137  
1138 1138  AT Command: AT+5VT
1139 1139  
1140 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
1120 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
1141 1141  |=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1142 1142  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1123 +
1124 +
1143 1143  0
1144 1144  OK
1145 1145  )))
1146 1146  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1129 +
1130 +
1147 1147  OK
1148 1148  default setting
1149 1149  )))
1150 1150  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
1135 +
1136 +
1151 1151  OK
1152 1152  )))
1153 1153  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1140 +
1141 +
1154 1154  OK
1155 1155  )))
1156 1156  
1157 1157  AT Command: AT+12VT
1158 1158  
1159 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:443px" %)
1147 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
1160 1160  |=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response
1161 1161  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1150 +
1151 +
1162 1162  0
1163 1163  OK
1164 1164  )))
1165 1165  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
1166 1166  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
1157 +
1158 +
1167 1167  OK
1168 1168  )))
1169 1169  
... ... @@ -1219,6 +1219,8 @@
1219 1219  OK
1220 1220  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
1221 1221  |(% style="background-color:#f2f2f2; width:154px" %)(((
1214 +
1215 +
1222 1222  AT+PROBE=000A
1223 1223  )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
1224 1224  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
... ... @@ -1239,7 +1239,7 @@
1239 1239  
1240 1240  AT Command: AT +STDC
1241 1241  
1242 -AT+STDC=aa,bb,cc
1236 +AT+STDC=aa,bb,bb
1243 1243  
1244 1244  aa:
1245 1245  0: means disable this function and use TDC to send packets.
... ... @@ -1248,12 +1248,15 @@
1248 1248  bb: Each collection interval (s), the value is 1~~65535
1249 1249  cc: the number of collection times, the value is 1~~120
1250 1250  
1251 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1245 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1252 1252  |(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1253 1253  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
1254 1254  OK
1255 1255  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1250 +
1251 +
1256 1256  Attention:Take effect after ATZ
1253 +
1257 1257  OK
1258 1258  )))
1259 1259  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
... ... @@ -1263,7 +1263,10 @@
1263 1263  
1264 1264  
1265 1265  )))|(% style="background-color:#f2f2f2" %)(((
1263 +
1264 +
1266 1266  Attention:Take effect after ATZ
1266 +
1267 1267  OK
1268 1268  )))
1269 1269  
... ... @@ -1273,113 +1273,6 @@
1273 1273  
1274 1274  * Example 1: Downlink Payload: AE 01 02 58 12 ~-~-->  AT+STDC=1,600,18
1275 1275  
1276 -== 3.4 Print data entries base on page(Since v1.1.0) ==
1277 -
1278 -
1279 -Feature: Print the sector data from start page to stop page (max is 416 pages).
1280 -
1281 -(% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1282 -
1283 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1284 -|(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1285 -|(% style="width:156px" %)(((
1286 - AT+PDTA=1,1
1287 -Print page 1 to 1
1288 -)))|(% style="width:311px" %)(((
1289 -Stop Tx events when read sensor data
1290 -
1291 -8031000 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1292 -
1293 -8031010 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1294 -
1295 -8031020 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1296 -
1297 -8031030 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1298 -
1299 -8031040 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1300 -
1301 -8031050 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1302 -
1303 -8031060 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1304 -
1305 -8031070 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1306 -
1307 -Start Tx events
1308 -
1309 -
1310 -OK
1311 -)))
1312 -
1313 -(% style="color:#4f81bd" %)**Downlink Command:**
1314 -
1315 -No downlink commands for feature
1316 -
1317 -
1318 -== 3.5 Print last few data entries(Since v1.1.0) ==
1319 -
1320 -
1321 -Feature: Print the last few data entries
1322 -
1323 -
1324 -(% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1325 -
1326 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1327 -|(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1328 -|(% style="width:156px" %)(((
1329 -AT+PLDTA=10
1330 -Print last 10 entries
1331 -)))|(% style="width:311px" %)(((
1332 -Stop Tx events when read sensor data
1333 -
1334 -0001 2025/5/19 06:16:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1335 -
1336 -0002 2025/5/19 06:17:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1337 -
1338 -0003 2025/5/19 06:18:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1339 -
1340 -0004 2025/5/19 06:19:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1341 -
1342 -0005 2025/5/19 06:20:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1343 -
1344 -0006 2025/5/19 06:21:50 3246 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1345 -
1346 -0007 2025/5/19 06:22:50 3240 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1347 -
1348 -0008 2025/5/19 06:26:44 3276 in1:low in2:low exti:low status:false vdc:3.385 idc:0.000 proble:0000 water_deep:0.000
1349 -
1350 -0009 2025/5/19 06:27:36 3246 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1351 -
1352 -0010 2025/5/19 06:28:36 3240 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1353 -
1354 -Start Tx events
1355 -
1356 -OK
1357 -)))
1358 -
1359 -(% style="color:#4f81bd" %)**Downlink Command:**
1360 -
1361 -No downlink commands for feature
1362 -
1363 -
1364 -== 3.6 Clear Flash Record(Since v1.1.0) ==
1365 -
1366 -
1367 -Feature: Clear flash storage for data log feature.
1368 -
1369 -(% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1370 -
1371 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1372 -|(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1373 -|(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1374 -Clear all stored sensor data…
1375 -
1376 -OK
1377 -)))
1378 -
1379 -(% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1380 -
1381 -* Example: 0xA301  ~/~/  Same as AT+CLRDTA
1382 -
1383 1383  = 4. Battery & Power Consumption =
1384 1384  
1385 1385  
... ... @@ -1425,18 +1425,18 @@
1425 1425  
1426 1426  Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
1427 1427  
1428 -Calculate scale factor:
1321 +Calculate scale factor
1429 1429  Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
1430 1430  
1431 -Calculation formula:
1324 +Calculation formula
1432 1432  
1433 1433  Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
1434 1434  
1435 -Actual calculations:
1328 +Actual calculations
1436 1436  
1437 1437  Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
1438 1438  
1439 -Error:
1332 +Error
1440 1440  
1441 1441  0.009810726
1442 1442  
... ... @@ -1443,31 +1443,6 @@
1443 1443  
1444 1444  [[image:image-20240329175044-1.png]]
1445 1445  
1446 -
1447 -== 6.5 Cable & Probe Material Compatibility(Immersion type) ==
1448 -
1449 -
1450 -Since the installation method of immersion sensors requires immersion in a liquid environment, the discussion of liquids that can be safely installed is very important.
1451 -
1452 -(% style="color:blue" %)**The material of the immersed part of the immersion sensor:**
1453 -
1454 -* **Cable Jacket**: Black polyurethane (PU) – Resistant to water, oils, and mild chemicals.
1455 -* **Probe Material**: 316 stainless steel – Corrosion-resistant in most industrial/marine environments.
1456 -
1457 -(% style="color:blue" %)**Chemical Compatibility:**
1458 -
1459 -* **Polyurethane (PU) Cable:** Resists water, oils, fuels, and mild chemicals but may degrade with prolonged exposure to strong acids, bases, or solvents (e.g., acetone, chlorinated hydrocarbons).
1460 -* 3**16 Stainless Steel Probe:** Suitable for water, seawater, mild acids/alkalis, and industrial fluids. Avoid highly concentrated acids (e.g., hydrochloric acid) or chlorides at high temperatures.
1461 -
1462 -**Chemical Resistance Chart for Polyurethane (PU) Cable**
1463 -
1464 -[[image:image-20250603171424-1.png||height="429" width="625"]]
1465 -
1466 -**Chemical Resistance Chart for 316 Stainless Steel Probe**
1467 -
1468 -[[image:image-20250603171503-2.png||height="350" width="616"]]
1469 -
1470 -
1471 1471  = 7. Troubleshooting =
1472 1472  
1473 1473  == 7.1 Water Depth Always shows 0 in payload ==
... ... @@ -1484,40 +1484,16 @@
1484 1484  
1485 1485  = 8. Order Info =
1486 1486  
1487 -== 8.1 Thread Installation Type & Immersion Type Pressure Sensor ==
1488 1488  
1489 1489  
1490 -Part Number: (% style="color:blue" %)**PS-NB/NS-Txx-YY  or  PS-NB/NS-Ixx-YY**
1491 -
1492 -(% style="color:blue" %)**XX:**(%%)** Pressure Range and Thread Type **
1493 -
1494 -(% style="color:blue" %)**YY:**(%%)** The default frequency band**
1495 -
1496 -* YY: Frequency Bands, options: EU433,CN470,EU868,IN865,KR920,AS923,AU915,US915
1497 -
1498 1498  [[image:image-20241021093209-1.png]]
1499 1499  
1500 -
1501 -== 8.2 Wireless Differential Air Pressure Sensor ==
1502 -
1503 -
1504 -Part Number: (% style="color:blue" %)**PS-LB-Dxx-YY  or  PS-LS-Dxx-YY **
1505 -
1506 -(% style="color:blue" %)**XX:**(%%)** Differential Pressure Range**
1507 -
1508 -(% style="color:blue" %)**YY:**(%%)** The default frequency band**
1509 -
1510 -* YY: Frequency Bands, options: EU433,CN470,EU868,IN865,KR920,AS923,AU915,US915
1511 -
1512 -[[image:image-20250401174215-1.png||height="486" width="656"]]
1513 -
1514 -
1515 1515  = 9. ​Packing Info =
1516 1516  
1517 1517  
1518 1518  Package Includes:
1519 1519  
1520 -* PS-LB/LS-Txx/Ixx, PS-LB/LS-Dxx   LoRaWAN Pressure Sensor
1364 +* PS-LB or PS-LS LoRaWAN Pressure Sensor
1521 1521  
1522 1522  Dimension and weight:
1523 1523  
1749540397649-875.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.4 KB
Content
1749540420016-961.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 KB
Content
1749540423574-437.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 KB
Content
image-20250401174215-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.3 KB
Content
image-20250419092225-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -47.6 KB
Content
image-20250419162538-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -90.3 KB
Content
image-20250512144042-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -471.4 KB
Content
image-20250512144122-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -572.9 KB
Content
image-20250603171424-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -38.7 KB
Content
image-20250603171503-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -33.7 KB
Content