Last modified by Xiaoling on 2025/07/10 16:21

From version 146.1
edited by Xiaoling
on 2025/06/10 15:28
Change comment: There is no comment for this version
To version 119.1
edited by Mengting Qiu
on 2025/04/01 10:21
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.ting
Content
... ... @@ -1,7 +1,8 @@
1 1  
2 2  
3 3  
4 -[[image:image-20240109154731-4.png||data-xwiki-image-style-alignment="center" height="546" width="769"]]
4 +(% style="text-align:center" %)
5 +[[image:image-20240109154731-4.png||height="671" width="945"]]
5 5  
6 6  
7 7  
... ... @@ -47,7 +47,9 @@
47 47  Each PS-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
48 48  )))
49 49  
51 +[[image:1675071321348-194.png]]
50 50  
53 +
51 51  == 1.2 ​Features ==
52 52  
53 53  
... ... @@ -133,7 +133,7 @@
133 133  === 1.4.2 Immersion Type ===
134 134  
135 135  
136 -[[image:image-20240109160445-5.png||height="199" width="150"]]
139 +[[image:image-20240109160445-5.png||height="221" width="166"]]
137 137  
138 138  * Immersion Type, Probe IP Level: IP68
139 139  * Measuring Range: Measure range can be customized, up to 100m.
... ... @@ -141,15 +141,11 @@
141 141  * Long-Term Stability: ±0.2% F.S / Year
142 142  * Storage temperature: -30°C~~80°C
143 143  * Operating temperature: 0°C~~50°C
144 -* Probe Material: 316 stainless steels
145 -* Cable model specifications: CGYPU 5*0.2mm2
146 -* Usage characteristics of Cable
147 -1) Operating temperature:-40℃— +70℃
148 -2) -30℃ bending cable 15 times of outer diameter can work normally
147 +* Material: 316 stainless steels
149 149  
150 150  === 1.4.3 Wireless Differential Air Pressure Sensor ===
151 151  
152 -[[image:image-20240511174954-1.png||height="193" width="193"]]
151 +[[image:image-20240511174954-1.png]]
153 153  
154 154  * Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
155 155  * Accuracy: 0.5% F.S, resolution is 0.05%.
... ... @@ -225,36 +225,36 @@
225 225  
226 226  Size of wind pressure transmitter:
227 227  
228 -[[image:image-20240513094047-2.png||height="462" width="518"]]
227 +[[image:image-20240513094047-2.png]]
229 229  
230 -(% style="color:red" %)**Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.**
229 +Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.
231 231  
232 232  
233 233  == 1.6 Sleep mode and working mode ==
234 234  
235 235  
236 -**Deep Sleep Mode:** Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
235 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
237 237  
238 -**Working Mode: **In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
237 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
239 239  
240 240  
241 241  == 1.7 Button & LEDs ==
242 242  
243 243  
244 -[[image:image-20250419092225-1.jpeg]]
243 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]](% style="display:none" %)
245 245  
246 246  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
247 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action
248 -|[[image:1749540420016-961.png]] 1~~3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
249 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once.
246 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
247 +|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
248 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
250 250  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
251 251  )))
252 -|[[image:1749540423574-437.png]] >3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
253 -Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network.
254 -Green led will solidly turn on for 5 seconds after joined in network.
251 +|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
252 +(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
253 +(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
255 255  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
256 256  )))
257 -|[[image:1749540397649-875.png]] x5|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
256 +|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
258 258  
259 259  == 1.8 Pin Mapping ==
260 260  
... ... @@ -282,13 +282,13 @@
282 282  === 1.10.1 for LB version ===
283 283  
284 284  
285 -[[image:image-20250401163530-1.jpeg]]
284 +[[image:image-20240109160800-6.png]]
286 286  
287 287  
288 288  === 1.10.2 for LS version ===
289 289  
290 290  
291 -[[image:image-20250401163539-2.jpeg]]
290 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/WebHome/image-20231231203439-3.png?width=886&height=385&rev=1.1||alt="image-20231231203439-3.png"]]
292 292  
293 293  
294 294  = 2. Configure PS-LB/LS to connect to LoRaWAN network =
... ... @@ -296,7 +296,7 @@
296 296  == 2.1 How it works ==
297 297  
298 298  
299 -The PS-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
298 +The PS-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
300 300  
301 301  
302 302  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -304,13 +304,13 @@
304 304  
305 305  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
306 306  
307 -[[image:image-20250419162538-1.png]]
306 +[[image:1675144005218-297.png]]
308 308  
309 309  
310 310  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
311 311  
312 312  
313 -(% style="color:blue" %)**Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.**
312 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB/LS.
314 314  
315 315  Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
316 316  
... ... @@ -319,48 +319,33 @@
319 319  
320 320  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
321 321  
322 -**Create the application.**
323 323  
324 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
322 +(% style="color:blue" %)**Register the device**
325 325  
326 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
324 +[[image:1675144099263-405.png]]
327 327  
328 328  
329 -**Add devices to the created Application.**
327 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
330 330  
331 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
329 +[[image:1675144117571-832.png]]
332 332  
333 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
334 334  
332 +(% style="color:blue" %)**Add APP EUI in the application**
335 335  
336 -**Enter end device specifics manually.**
337 337  
338 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
335 +[[image:1675144143021-195.png]]
339 339  
340 340  
341 -**Add DevEUI and AppKey. Customize a platform ID for the device.**
338 +(% style="color:blue" %)**Add APP KEY**
342 342  
343 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
340 +[[image:1675144157838-392.png]]
344 344  
342 +(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB/LS
345 345  
346 -(% style="color:blue" %)**Step 2: Add decoder.**
347 347  
348 -In TTN, user can add a custom payload so it shows friendly reading.
349 -
350 -Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
351 -
352 -Below is TTN screen shot:
353 -
354 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
355 -
356 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png" height="562" width="1168"]]
357 -
358 -
359 -(% style="color:blue" %)**Step 3: Activate on PS-LB/LS**
360 -
361 361  Press the button for 5 seconds to activate the PS-LB/LS.
362 362  
363 -Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network.
347 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
364 364  
365 365  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
366 366  
... ... @@ -376,8 +376,8 @@
376 376  
377 377  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
378 378  |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
379 -|(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2
380 -|(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
363 +|(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
364 +|(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
381 381  
382 382  Example parse in TTNv3
383 383  
... ... @@ -384,11 +384,11 @@
384 384  [[image:1675144504430-490.png]]
385 385  
386 386  
387 -Sensor Model: For PS-LB/LS, this value is 0x16
371 +(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB/LS, this value is 0x16
388 388  
389 -Firmware Version: 0x0100, Means: v1.0.0 version
373 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
390 390  
391 -Frequency Band:
375 +(% style="color:#037691" %)**Frequency Band**:
392 392  
393 393  *0x01: EU868
394 394  
... ... @@ -419,7 +419,7 @@
419 419  *0x0e: MA869
420 420  
421 421  
422 -Sub-Band:
406 +(% style="color:#037691" %)**Sub-Band**:
423 423  
424 424  AU915 and US915:value 0x00 ~~ 0x08
425 425  
... ... @@ -428,7 +428,7 @@
428 428  Other Bands: Always 0x00
429 429  
430 430  
431 -Battery Info:
415 +(% style="color:#037691" %)**Battery Info**:
432 432  
433 433  Check the battery voltage.
434 434  
... ... @@ -443,10 +443,10 @@
443 443  Uplink payload includes in total 9 bytes.
444 444  
445 445  
446 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
430 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
447 447  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
448 448  **Size(bytes)**
449 -)))|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
433 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
450 450  |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
451 451  
452 452  [[image:1675144608950-310.png]]
... ... @@ -467,8 +467,9 @@
467 467  
468 468  PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
469 469  
470 -For example.
471 471  
455 +**For example.**
456 +
472 472  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
473 473  |(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
474 474  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
... ... @@ -478,29 +478,12 @@
478 478  The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
479 479  
480 480  
481 -When connecting to current sensors sold by our company, you can convert current readings to corresponding values by simply configuring the [[AT+PROBE>>||anchor="H3.3.4SettheProbeModel"]] command. If you prefer not to configure this command on the sensor, you can uniformly handle the conversion in the payload decoder instead.
482 -
483 -**Examples for decoder implementation:**
484 -
485 -~1. For AT+PROBE=0005, add the following processing in your decoder:
486 -
487 -[[image:image-20250512144042-1.png]]
488 -
489 -[[image:image-20250512144122-2.png]]
490 -
491 -2. For AT+PROBE=0102, add the following processing in your decoder(Corresponding to the position shown in the above screenshot).
492 -
493 -bytes[i]=0x01;bytes[1+i]=0x02;
494 -
495 -bytes[2]=0x01;bytes[3]=0x02;
496 -
497 -
498 498  === 2.3.5 0~~20mA value (IDC_IN) ===
499 499  
500 500  
501 -The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
469 +The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
502 502  
503 -Example:
471 +(% style="color:#037691" %)**Example**:
504 504  
505 505  27AE(H) = 10158 (D)/1000 = 10.158mA.
506 506  
... ... @@ -515,7 +515,7 @@
515 515  
516 516  Measure the voltage value. The range is 0 to 30V.
517 517  
518 -Example:
486 +(% style="color:#037691" %)**Example**:
519 519  
520 520  138E(H) = 5006(D)/1000= 5.006V
521 521  
... ... @@ -525,7 +525,7 @@
525 525  
526 526  IN1 and IN2 are used as digital input pins.
527 527  
528 -Example:
496 +(% style="color:#037691" %)**Example**:
529 529  
530 530  09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
531 531  
... ... @@ -532,9 +532,9 @@
532 532  09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
533 533  
534 534  
535 -This data field shows if this packet is generated by Interrupt Pin or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
503 +This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
536 536  
537 -Example:
505 +(% style="color:#037691" %)**Example:**
538 538  
539 539  09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
540 540  
... ... @@ -551,8 +551,6 @@
551 551  **Size(bytes)**
552 552  )))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
553 553  |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
554 -
555 -
556 556  Voltage value, each 2 bytes is a set of voltage values.
557 557  )))
558 558  
... ... @@ -585,9 +585,9 @@
585 585  
586 586  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
587 587  
588 -Step 1: Be sure that your device is programmed and properly connected to the network at this time.
554 +(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
589 589  
590 -Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
556 +(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
591 591  
592 592  [[image:1675144951092-237.png]]
593 593  
... ... @@ -595,9 +595,9 @@
595 595  [[image:1675144960452-126.png]]
596 596  
597 597  
598 -Step 3: Create an account or log in Datacake.
564 +(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
599 599  
600 -Step 4: Create PS-LB/LS product.
566 +(% style="color:blue" %)**Step 4:** (%%)Create PS-LB/LS product.
601 601  
602 602  [[image:1675145004465-869.png]]
603 603  
... ... @@ -608,7 +608,7 @@
608 608  [[image:1675145029119-717.png]]
609 609  
610 610  
611 -Step 5: add payload decode
577 +(% style="color:blue" %)**Step 5: **(%%)add payload decode
612 612  
613 613  [[image:1675145051360-659.png]]
614 614  
... ... @@ -632,13 +632,13 @@
632 632  
633 633  PS-LB uses Unix TimeStamp format based on
634 634  
635 -[[image:image-20250401163826-3.jpeg]]
601 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861618065-927.png?width=705&height=109&rev=1.1||alt="1652861618065-927.png" height="109" width="705"]]
636 636  
637 637  Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
638 638  
639 639  Below is the converter example:
640 640  
641 -[[image:image-20250401163906-4.jpeg]]
607 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861637105-371.png?width=732&height=428&rev=1.1||alt="1652861637105-371.png"]]
642 642  
643 643  
644 644  === 2.6.2 Set Device Time ===
... ... @@ -647,16 +647,16 @@
647 647  There are two ways to set the device's time:
648 648  
649 649  
650 -~1. Through LoRaWAN MAC Command (Default settings)
616 +(% style="color:blue" %)**1. Through LoRaWAN MAC Command (Default settings)**
651 651  
652 652  Users need to set SYNCMOD=1 to enable sync time via the MAC command.
653 653  
654 654  Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
655 655  
656 -Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.
622 +(% style="color:red" %)**Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.**
657 657  
658 658  
659 - 2. Manually Set Time
625 +(% style="color:blue" %)** 2. Manually Set Time**
660 660  
661 661  Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
662 662  
... ... @@ -666,8 +666,8 @@
666 666  Users can poll sensor values based on timestamps. Below is the downlink command.
667 667  
668 668  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
669 -|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31)
670 -|(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte
635 +|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)**Downlink Command to poll Open/Close status (0x31)**
636 +|(% style="background-color:#f2f2f2; width:67px" %)**1byte**|(% style="background-color:#f2f2f2; width:145px" %)**4bytes**|(% style="background-color:#f2f2f2; width:133px" %)**4bytes**|(% style="background-color:#f2f2f2; width:163px" %)**1byte**
671 671  |(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)(((
672 672  Timestamp end
673 673  )))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval
... ... @@ -686,30 +686,36 @@
686 686  
687 687  The Datalog uplinks will use below payload format.
688 688  
689 -Retrieval data payload:
655 +**Retrieval data payload:**
690 690  
691 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
657 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
692 692  |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
693 -Size(bytes)
694 -)))|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)2|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)4
659 +**Size(bytes)**
660 +)))|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**2**|=(% style="width: 55px; background-color:#4F81BD;color:white" %)**2**|=(% style="width: 83px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 201px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4**
695 695  |(% style="width:103px" %)Value|(% style="width:68px" %)(((
696 -Probe_mod
662 +Probe
663 +
664 +_mod
697 697  )))|(% style="width:104px" %)(((
698 -VDC_intput_V
666 +VDC
667 +
668 +_intput_V
699 699  )))|(% style="width:83px" %)(((
700 -IDC_intput_mA
670 +IDC
671 +
672 +_intput_mA
701 701  )))|(% style="width:201px" %)(((
702 702  IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status
703 703  )))|(% style="width:86px" %)Unix Time Stamp
704 704  
705 -IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:
677 +**IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:**
706 706  
707 707  [[image:image-20250117104847-4.png]]
708 708  
709 709  
710 -No ACK Message:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
682 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
711 711  
712 -Poll Message Flag: 1: This message is a poll message reply.
684 +**Poll Message Flag**: 1: This message is a poll message reply.
713 713  
714 714  * Poll Message Flag is set to 1.
715 715  
... ... @@ -717,17 +717,17 @@
717 717  
718 718  For example, in US915 band, the max payload for different DR is:
719 719  
720 -a) DR0: max is 11 bytes so one entry of data
692 +**a) DR0:** max is 11 bytes so one entry of data
721 721  
722 -b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
694 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
723 723  
724 -c) DR2: total payload includes 11 entries of data
696 +**c) DR2:** total payload includes 11 entries of data
725 725  
726 -d) DR3: total payload includes 22 entries of data.
698 +**d) DR3: **total payload includes 22 entries of data.
727 727  
728 728  If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
729 729  
730 -Example:
702 +**Example:**
731 731  
732 732  If PS-LB-NA has below data inside Flash:
733 733  
... ... @@ -741,46 +741,53 @@
741 741   Stop time: 6788DB63 = time 25/1/16 10:11:47
742 742  
743 743  
744 -PA-LB-NA will uplink this payload.
716 +**PA-LB-NA will uplink this payload.**
745 745  
746 746  [[image:image-20250117104827-2.png]]
747 747  
748 -
720 +(((
749 749  00001B620000406788D9BF  00000D130000406788D9FB  00000D120000406788DA37  00000D110000406788DA73  00000D100000406788DAAF  00000D100000406788DAEB  00000D0F0000406788DB27  00000D100000406788DB63
722 +)))
750 750  
751 -
724 +(((
752 752  Where the first 11 bytes is for the first entry :
726 +)))
753 753  
754 -
728 +(((
755 755  0000  0D10  0000  40  6788DB63
730 +)))
756 756  
732 +(((
733 +**Probe_mod **= 0x0000 = 0000
734 +)))
757 757  
758 -Probe_mod = 0x0000 = 0000
736 +(((
737 +**VDC_intput_V **= 0x0D10/1000=3.344V
759 759  
739 +**IDC_intput_mA **= 0x0000/1000=0mA
740 +)))
760 760  
761 -VDC_intput_V = 0x0D10/1000=3.344V
742 +(((
743 +**IN1_pin_level **= (0x40& 0x08)? "High":"Low" = 0(Low)
762 762  
763 -IDC_intput_mA = 0x0000/1000=0mA
745 +**IN2_pin_level = (**0x40& 0x04)? "High":"Low" = 0(Low)
764 764  
747 +**Exti_pin_level = (**0x40& 0x02)? "High":"Low" = 0(Low)
765 765  
766 -IN1_pin_level = (0x40& 0x08)? "High":"Low" = 0(Low)
749 +**Exti_status = (**0x40& 0x01)? "True":"False" = 0(False)
750 +)))
767 767  
768 -IN2_pin_level = (0x40& 0x04)? "High":"Low" = 0(Low)
752 +(((
753 +**Unix time** is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
754 +)))
769 769  
770 -Exti_pin_level = (0x40& 0x02)? "High":"Low" = 0(Low)
756 +**Its data format is:**
771 771  
772 -Exti_status = (0x40& 0x01)? "True":"False" = 0(False)
758 +[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level**, **IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level**, **IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
773 773  
760 +(% style="color:red" %)**Note: water_deep in the data needs to be converted using decoding to get it.**
774 774  
775 -Unix time is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
776 776  
777 -Its data format is:
778 -
779 -[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
780 -
781 -Note: water_deep in the data needs to be converted using decoding to get it.
782 -
783 -
784 784  === 2.6.5 Decoder in TTN V3 ===
785 785  
786 786  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
... ... @@ -807,47 +807,47 @@
807 807  
808 808  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
809 809  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
810 -Size(bytes)
811 -)))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
812 -|(% style="width:98px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
789 +**Size(bytes)**
790 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
791 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
813 813  [[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag
814 814  )))
815 815  
816 -IN1 &IN2 , Interrupt  flag , ROC_flag:
795 +(% style="color:blue" %)**IN1 &IN2 , Interrupt  flag , ROC_flag:**
817 817  
818 818  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
819 -|(% style="background-color:#4f81bd; color:white; width:50px" %)Size(bit)|(% style="background-color:#4f81bd; color:white; width:60px" %)bit7|(% style="background-color:#4f81bd; color:white; width:62px" %)bit6|(% style="background-color:#4f81bd; color:white; width:62px" %)bit5|(% style="background-color:#4f81bd; color:white; width:65px" %)bit4|(% style="background-color:#4f81bd; color:white; width:56px" %)bit3|(% style="background-color:#4f81bd; color:white; width:55px" %)bit2|(% style="background-color:#4f81bd; color:white; width:55px" %)bit1|(% style="background-color:#4f81bd; color:white; width:50px" %)bit0
798 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bit)**|(% style="background-color:#4f81bd; color:white; width:60px" %)**bit7**|(% style="background-color:#4f81bd; color:white; width:62px" %)**bit6**|(% style="background-color:#4f81bd; color:white; width:62px" %)**bit5**|(% style="background-color:#4f81bd; color:white; width:65px" %)**bit4**|(% style="background-color:#4f81bd; color:white; width:56px" %)**bit3**|(% style="background-color:#4f81bd; color:white; width:55px" %)**bit2**|(% style="background-color:#4f81bd; color:white; width:55px" %)**bit1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**bit0**
820 820  |(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status
821 821  
822 -* IDC_Roc_flagL
801 +* (% style="color:#037691" %)**IDC_Roc_flagL**
823 823  
824 -80 (H): (0x80&0x80)=80(H)=1000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
803 +80 (H): (0x80&0x80)=80(H)=**1**000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
825 825  
826 826  60 (H): (0x60&0x80)=0  bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
827 827  
828 828  
829 -* IDC_Roc_flagH
808 +* (% style="color:#037691" %)**IDC_Roc_flagH**
830 830  
831 -60 (H): (0x60&0x40)=60(H)=01000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
810 +60 (H): (0x60&0x40)=60(H)=0**1**000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
832 832  
833 833  80 (H): (0x80&0x40)=0  bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
834 834  
835 835  
836 -* VDC_Roc_flagL
815 +* (% style="color:#037691" %)**VDC_Roc_flagL**
837 837  
838 -20 (H): (0x20&0x20)=20(H)=0010 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
817 +20 (H): (0x20&0x20)=20(H)=00**1**0 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
839 839  
840 840  90 (H): (0x90&0x20)=0  bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
841 841  
842 842  
843 -* VDC_Roc_flagH
822 +* (% style="color:#037691" %)**VDC_Roc_flagH**
844 844  
845 -90 (H): (0x90&0x10)=10(H)=0001 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
824 +90 (H): (0x90&0x10)=10(H)=000**1** 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
846 846  
847 847  20 (H): (0x20&0x10)=0  bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
848 848  
849 849  
850 -* IN1_pin_level & IN2_pin_level
829 +* (% style="color:#037691" %)**IN1_pin_level & IN2_pin_level**
851 851  
852 852  IN1 and IN2 are used as digital input pins.
853 853  
... ... @@ -856,15 +856,15 @@
856 856  80 (H): (0x09&0x04)=0    IN2 pin is low level.
857 857  
858 858  
859 -* Exti_pin_level &Exti_status
838 +* (% style="color:#037691" %)**Exti_pin_level &Exti_status**
860 860  
861 861  This data field shows whether the packet is generated by an interrupt pin.
862 862  
863 -Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the GPIO_EXTI pin.
842 +Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the **GPIO_EXTI** pin.
864 864  
865 -Exti_pin_level:  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
844 +**Exti_pin_level:**  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
866 866  
867 -Exti_status: 80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
846 +**Exti_status: **80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
868 868  
869 869  
870 870  === 2.8.2 Set the Report on Change ===
... ... @@ -875,61 +875,71 @@
875 875  
876 876  ==== 2.8.2.1 Wave alarm mode ====
877 877  
878 -
879 879  Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed.
880 880  
881 -* Change value: The amount by which the next detection value increases/decreases relative to the previous detection value.
882 -* Comparison value: A parameter to compare with the latest ROC test.
859 +* (% style="color:#037691" %)**Change value: **(%%)The amount by which the next detection value increases/decreases relative to the previous detection value.
860 +* (% style="color:#037691" %)**Comparison value:**(%%) A parameter to compare with the latest ROC test.
883 883  
884 -AT Command: AT+ROC
862 +(% style="color:blue" %)**AT Command: AT+ROC**
885 885  
886 886  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
887 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 193px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
865 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)**Parameters**|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation**
888 888  |(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
889 889  0,0,0,0(default)
890 890  OK
891 891  )))
892 892  |(% colspan="1" rowspan="4" style="width:143px" %)(((
871 +
872 +
873 +
874 +
893 893  AT+ROC=a,b,c,d
894 894  )))|(% style="width:154px" %)(((
895 -**a:** Enable or disable the ROC
877 +
878 +
879 +
880 +
881 +
882 +
883 +**a**: Enable or disable the ROC
896 896  )))|(% style="width:197px" %)(((
897 897  **0:** off
898 898  **1:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
899 -**2:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
887 +
888 +**2: **Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
900 900  )))
901 -|(% style="width:154px" %)**b:** Set the detection interval|(% style="width:197px" %)(((
890 +|(% style="width:154px" %)**b**: Set the detection interval|(% style="width:197px" %)(((
902 902  Range:  0~~65535s
903 903  )))
904 -|(% style="width:154px" %)**c:** Setting the IDC change value|(% style="width:197px" %)Unit: uA
905 -|(% style="width:154px" %)**d:** Setting the VDC change value|(% style="width:197px" %)Unit: mV
893 +|(% style="width:154px" %)**c**: Setting the IDC change value|(% style="width:197px" %)Unit: uA
894 +|(% style="width:154px" %)**d**: Setting the VDC change value|(% style="width:197px" %)Unit: mV
906 906  
907 -Example:
896 +**Example:**
908 908  
909 -* AT+ROC=0,0,0,0  ~/~/ The ROC function is not used.
898 +* AT+ROC=0,0,0,0  ~/~/The ROC function is not used.
910 910  * AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed.
911 911  * AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage.
912 912  * AT+ROC=2,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed.
913 913  
914 -Downlink Command: 0x09 aa bb cc dd
903 +(% style="color:blue" %)**Downlink Command: 0x09 aa bb cc dd**
915 915  
916 916  Format: Function code (0x09) followed by 4 bytes.
917 917  
918 -aa: 1 byte; Set the wave alarm mode.
907 +(% style="color:blue" %)**aa: **(% style="color:#037691" %)**1 byte;**(%%) Set the wave alarm mode.
919 919  
920 -bb: 2 bytes; Set the detection interval. (second)
909 +(% style="color:blue" %)**bb: **(% style="color:#037691" %)**2 bytes;**(%%) Set the detection interval. (second)
921 921  
922 -cc: 2 bytes; Setting the IDC change threshold. (uA)
911 +(% style="color:blue" %)**cc: **(% style="color:#037691" %)**2 bytes;**(%%) Setting the IDC change threshold. (uA)
923 923  
924 -dd: 2 bytes; Setting the VDC change threshold. (mV)
913 +(% style="color:blue" %)**dd: **(% style="color:#037691" %)**2 bytes;**(%%) Setting the VDC change threshold. (mV)
925 925  
926 -Example:
915 +**Example:**
927 927  
928 -* Downlink Payload: 09 01 00 3C 0B B8 01 F4  ~/~/ Equal to AT+ROC=1,60,3000, 500
929 -* Downlink Payload: 09 01 00 3C 0B B8 00 00  ~/~/ Equal to AT+ROC=1,60,3000,0
930 -* Downlink Payload: 09 02 00 3C 0B B8 00 00  ~/~/ Equal to AT+ROC=2,60,3000,0
917 +* Downlink Payload: **09 01 00 3C 0B B8 01 F4 ** ~/~/Equal to AT+ROC=1,60,3000, 500
918 +* Downlink Payload: **09 01 00 3C 0B B8 00 00 ** ~/~/Equal to AT+ROC=1,60,3000,0
919 +* Downlink Payload: **09 02 00 3C 0B B8 00 00 ** ~/~/Equal to AT+ROC=2,60,3000,0
931 931  
932 -Screenshot of parsing example in TTN:
921 +(% style="color:blue" %)**Screenshot of parsing example in TTN:**
933 933  
934 934  * AT+ROC=1,60,3000, 500.
935 935  
... ... @@ -938,67 +938,72 @@
938 938  
939 939  ==== 2.8.2.2 Over-threshold alarm mode ====
940 940  
941 -
942 942  Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded.
943 943  
944 -AT Command: AT+ROC=3,a,b,c,d,e
932 +(% style="color:blue" %)**AT Command: AT+ROC=3,a,b,c,d,e**
945 945  
946 946  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
947 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 187px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
935 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)**Parameters**|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation**
948 948  |(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
949 949  0,0,0,0(default)
950 950  OK
951 951  )))
952 952  |(% colspan="1" rowspan="5" style="width:143px" %)(((
953 -AT+ROC=3,a,b,c,d,e
941 +
942 +
943 +
944 +
945 +AT+ROC=(% style="color:blue" %)**3**(%%),a,b,c,d,e
954 954  )))|(% style="width:160px" %)(((
955 -**a:** Set the detection interval
947 +**a: **Set the detection interval
956 956  )))|(% style="width:185px" %)(((
957 957  Range:  0~~65535s
958 958  )))
959 -|(% style="width:160px" %)**b:** Set the IDC alarm trigger condition|(% style="width:185px" %)(((
951 +|(% style="width:160px" %)**b**: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
960 960  **0:** Less than the set IDC threshold, Alarm
953 +
961 961  **1:** Greater than the set IDC threshold, Alarm
962 962  )))
963 963  |(% style="width:160px" %)(((
964 -**c: ** IDC alarm threshold
957 +**c**:  IDC alarm threshold
965 965  )))|(% style="width:185px" %)(((
966 966  Unit: uA
967 967  )))
968 -|(% style="width:160px" %)**d:** Set the VDC alarm trigger condition|(% style="width:185px" %)(((
961 +|(% style="width:160px" %)**d**: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
969 969  **0:** Less than the set VDC threshold, Alarm
963 +
970 970  **1:** Greater than the set VDC threshold, Alarm
971 971  )))
972 972  |(% style="width:160px" %)**e:** VDC alarm threshold|(% style="width:185px" %)Unit: mV
973 973  
974 -Example:
968 +**Example:**
975 975  
976 -* AT+ROC=3,60,0,3000,0,5000  ~/~/ The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
977 -* AT+ROC=3,180,1,3000,1,5000  ~/~/ The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
978 -* AT+ROC=3,300,0,3000,1,5000  ~/~/ The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
970 +* AT+ROC=3,60,0,3000,0,5000  ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
971 +* AT+ROC=3,180,1,3000,1,5000  ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
972 +* AT+ROC=3,300,0,3000,1,5000  ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
979 979  
980 -Downlink Command: 0x09 03 aa bb cc dd ee
974 +(% style="color:blue" %)**Downlink Command: 0x09 03 aa bb cc dd ee**
981 981  
982 982  Format: Function code (0x09) followed by 03 and the remaining 5 bytes.
983 983  
984 -aa: 2 bytes; Set the detection interval.(second)
978 +(% style="color:blue" %)**aa: **(% style="color:#037691" %)**2 bytes;**(%%) Set the detection interval.(second)
985 985  
986 -bb: 1 byte; Set the IDC alarm trigger condition.
980 +(% style="color:blue" %)**bb: **(% style="color:#037691" %)**1 byte; **(%%)Set the IDC alarm trigger condition.
987 987  
988 -cc: 2 bytes; IDC alarm threshold.(uA)
982 +(% style="color:blue" %)**cc: **(% style="color:#037691" %)**2 bytes;**(%%) IDC alarm threshold.(uA)
989 989  
990 990  
991 -dd: 1 byte; Set the VDC alarm trigger condition.
985 +(% style="color:blue" %)**dd: **(% style="color:#037691" %)**1 byte;**(%%) Set the VDC alarm trigger condition.
992 992  
993 -ee: 2 bytes; VDC alarm threshold.(mV)
987 +(% style="color:blue" %)**ee: **(% style="color:#037691" %)**2 bytes; **(%%)VDC alarm threshold.(mV)
994 994  
995 -Example:
989 +**Example:**
996 996  
997 -* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/ Equal to AT+ROC=3,60,0,3000,0,5000
998 -* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38  ~/~/ Equal to AT+ROC=3,60,1,3000,1,5000
999 -* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38  ~/~/ Equal to AT+ROC=3,60,0,3000,1,5000
991 +* Downlink Payload: **09 03 00 3C 00 0B B8 00 13 38** ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
992 +* Downlink Payload: **09 03 00 b4 01 0B B8 01 13 38**  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
993 +* Downlink Payload: **09 03 01 2C 00 0B B8 01 13 38**  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
1000 1000  
1001 -Screenshot of parsing example in TTN:
995 +(% style="color:blue" %)**Screenshot of parsing example in TTN:**
1002 1002  
1003 1003  * AT+ROC=3,60,0,3000,0,5000
1004 1004  
... ... @@ -1008,7 +1008,7 @@
1008 1008  == 2.9 ​Firmware Change Log ==
1009 1009  
1010 1010  
1011 -Firmware download link:
1005 +**Firmware download link:**
1012 1012  
1013 1013  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
1014 1014  
... ... @@ -1020,7 +1020,7 @@
1020 1020  
1021 1021  PS-LB/LS supports below configure method:
1022 1022  
1023 -* AT Command via Bluetooth Connection (Recommand Way): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1017 +* AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1024 1024  * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
1025 1025  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
1026 1026  
... ... @@ -1048,10 +1048,10 @@
1048 1048  
1049 1049  Feature: Change LoRaWAN End Node Transmit Interval.
1050 1050  
1051 -AT Command: AT+TDC
1045 +(% style="color:blue" %)**AT Command: AT+TDC**
1052 1052  
1053 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1054 -|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response
1047 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1048 +|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Response**
1055 1055  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
1056 1056  30000
1057 1057  OK
... ... @@ -1062,7 +1062,7 @@
1062 1062  Set transmit interval to 60000ms = 60 seconds
1063 1063  )))
1064 1064  
1065 -Downlink Command: 0x01
1059 +(% style="color:blue" %)**Downlink Command: 0x01**
1066 1066  
1067 1067  Format: Command Code (0x01) followed by 3 bytes time value.
1068 1068  
... ... @@ -1076,10 +1076,10 @@
1076 1076  
1077 1077  Feature, Set Interrupt mode for GPIO_EXIT.
1078 1078  
1079 -AT Command: AT+INTMOD
1073 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1080 1080  
1081 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1082 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response
1075 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1076 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Response**
1083 1083  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
1084 1084  0
1085 1085  OK
... ... @@ -1093,7 +1093,7 @@
1093 1093  3. (Trigger by rising edge)
1094 1094  )))|(% style="background-color:#f2f2f2; width:157px" %)OK
1095 1095  
1096 -Downlink Command: 0x06
1090 +(% style="color:blue" %)**Downlink Command: 0x06**
1097 1097  
1098 1098  Format: Command Code (0x06) followed by 3 bytes.
1099 1099  
... ... @@ -1107,10 +1107,10 @@
1107 1107  
1108 1108  Feature, Control the output 3V3 , 5V or 12V.
1109 1109  
1110 -AT Command: AT+3V3T
1104 +(% style="color:blue" %)**AT Command: AT+3V3T**
1111 1111  
1112 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:474px" %)
1113 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1106 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
1107 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 201px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1114 1114  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
1115 1115  0
1116 1116  OK
... ... @@ -1126,10 +1126,10 @@
1126 1126  OK
1127 1127  )))
1128 1128  
1129 -AT Command: AT+5VT
1123 +(% style="color:blue" %)**AT Command: AT+5VT**
1130 1130  
1131 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
1132 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1125 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
1126 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1133 1133  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1134 1134  0
1135 1135  OK
... ... @@ -1145,10 +1145,10 @@
1145 1145  OK
1146 1146  )))
1147 1147  
1148 -AT Command: AT+12VT
1142 +(% style="color:blue" %)**AT Command: AT+12VT**
1149 1149  
1150 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:443px" %)
1151 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response
1144 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
1145 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 199px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1152 1152  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1153 1153  0
1154 1154  OK
... ... @@ -1158,28 +1158,28 @@
1158 1158  OK
1159 1159  )))
1160 1160  
1161 -Downlink Command: 0x07
1155 +(% style="color:blue" %)**Downlink Command: 0x07**
1162 1162  
1163 1163  Format: Command Code (0x07) followed by 3 bytes.
1164 1164  
1165 1165  The first byte is which power, the second and third bytes are the time to turn on.
1166 1166  
1167 -* Example 1: Downlink Payload: 070101F4  ~-~-->  AT+3V3T=500
1168 -* Example 2: Downlink Payload: 0701FFFF   ~-~-->  AT+3V3T=65535
1169 -* Example 3: Downlink Payload: 070203E8  ~-~-->  AT+5VT=1000
1170 -* Example 4: Downlink Payload: 07020000  ~-~-->  AT+5VT=0
1171 -* Example 5: Downlink Payload: 070301F4  ~-~-->  AT+12VT=500
1172 -* Example 6: Downlink Payload: 07030000  ~-~-->  AT+12VT=0
1161 +* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
1162 +* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
1163 +* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
1164 +* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
1165 +* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
1166 +* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
1173 1173  
1174 -Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.
1168 +(% style="color:red" %)**Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.**
1175 1175  
1176 -Therefore, the corresponding downlink command is increased by one byte to five bytes.
1170 +(% style="color:red" %)**Therefore, the corresponding downlink command is increased by one byte to five bytes.**
1177 1177  
1178 -Example:
1172 +**Example: **
1179 1179  
1180 -* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 01 01 D4 C0  ~-~-->  AT+3V3T=120000
1181 -* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 02 01 86 A0  ~-~-->  AT+5VT=100000
1182 -* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 03 01 38 80  ~-~-->  AT+12VT=80000
1174 +* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 **01** 01 D4 C0  **~-~-->**  AT+3V3T=120000
1175 +* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 **02** 01 86 A0  **~-~-->**  AT+5VT=100000
1176 +* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 **03** 01 38 80  **~-~-->**  AT+12VT=80000
1183 1183  
1184 1184  === 3.3.4 Set the Probe Model ===
1185 1185  
... ... @@ -1186,7 +1186,7 @@
1186 1186  
1187 1187  Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
1188 1188  
1189 -AT Command: AT +PROBE
1183 +(% style="color:blue" %)**AT Command: AT** **+PROBE**
1190 1190  
1191 1191  AT+PROBE=aabb
1192 1192  
... ... @@ -1205,7 +1205,7 @@
1205 1205  (0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C)
1206 1206  
1207 1207  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1208 -|(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1202 +|(% style="background-color:#4f81bd; color:white; width:154px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:269px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1209 1209  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
1210 1210  OK
1211 1211  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
... ... @@ -1216,12 +1216,12 @@
1216 1216  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
1217 1217  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
1218 1218  
1219 -Downlink Command: 0x08
1213 +(% style="color:blue" %)**Downlink Command: 0x08**
1220 1220  
1221 1221  Format: Command Code (0x08) followed by 2 bytes.
1222 1222  
1223 -* Example 1: Downlink Payload: 080003  ~-~-->  AT+PROBE=0003
1224 -* Example 2: Downlink Payload: 080101  ~-~-->  AT+PROBE=0101
1217 +* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
1218 +* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
1225 1225  
1226 1226  === 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
1227 1227  
... ... @@ -1228,155 +1228,48 @@
1228 1228  
1229 1229  Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time.
1230 1230  
1231 -AT Command: AT +STDC
1225 +(% style="color:blue" %)**AT Command: AT** **+STDC**
1232 1232  
1233 -AT+STDC=aa,bb,cc
1227 +AT+STDC=aa,bb,bb
1234 1234  
1235 -aa:
1236 -0: means disable this function and use TDC to send packets.
1237 -1: means that the function is enabled to send packets by collecting VDC data for multiple times.
1238 -2: means that the function is enabled to send packets by collecting IDC data for multiple times.
1239 -bb: Each collection interval (s), the value is 1~~65535
1240 -cc: the number of collection times, the value is 1~~120
1229 +(% style="color:#037691" %)**aa:**(%%)
1230 +**0:** means disable this function and use TDC to send packets.
1231 +**1:** means that the function is enabled to send packets by collecting VDC data for multiple times.
1232 +**2:** means that the function is enabled to send packets by collecting IDC data for multiple times.
1233 +(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
1234 +(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
1241 1241  
1242 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1243 -|(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1236 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1237 +|(% style="background-color:#4f81bd; color:white; width:160px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:215px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1244 1244  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
1245 1245  OK
1246 1246  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1247 1247  Attention:Take effect after ATZ
1242 +
1248 1248  OK
1249 1249  )))
1250 1250  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
1251 -
1252 -
1253 1253  Use the TDC interval to send packets.(default)
1254 1254  
1255 1255  
1256 1256  )))|(% style="background-color:#f2f2f2" %)(((
1257 1257  Attention:Take effect after ATZ
1251 +
1258 1258  OK
1259 1259  )))
1260 1260  
1261 -Downlink Command: 0xAE
1255 +(% style="color:blue" %)**Downlink Command: 0xAE**
1262 1262  
1263 1263  Format: Command Code (0xAE) followed by 4 bytes.
1264 1264  
1265 -* Example 1: Downlink Payload: AE 01 02 58 12 ~-~-->  AT+STDC=1,600,18
1259 +* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
1266 1266  
1267 -== 3.4 Print data entries base on page(Since v1.1.0) ==
1268 -
1269 -
1270 -Feature: Print the sector data from start page to stop page (max is 416 pages).
1271 -
1272 -(% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1273 -
1274 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1275 -|(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1276 -|(% style="width:156px" %)(((
1277 - AT+PDTA=1,1
1278 -Print page 1 to 1
1279 -)))|(% style="width:311px" %)(((
1280 -Stop Tx events when read sensor data
1281 -
1282 -8031000 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1283 -
1284 -8031010 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1285 -
1286 -8031020 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1287 -
1288 -8031030 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1289 -
1290 -8031040 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1291 -
1292 -8031050 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1293 -
1294 -8031060 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1295 -
1296 -8031070 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1297 -
1298 -Start Tx events
1299 -
1300 -
1301 -OK
1302 -)))
1303 -
1304 -(% style="color:#4f81bd" %)**Downlink Command:**
1305 -
1306 -No downlink commands for feature
1307 -
1308 -
1309 -== 3.5 Print last few data entries(Since v1.1.0) ==
1310 -
1311 -
1312 -Feature: Print the last few data entries
1313 -
1314 -
1315 -(% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1316 -
1317 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1318 -|(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1319 -|(% style="width:156px" %)(((
1320 -AT+PLDTA=10
1321 -Print last 10 entries
1322 -)))|(% style="width:311px" %)(((
1323 -Stop Tx events when read sensor data
1324 -
1325 -0001 2025/5/19 06:16:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1326 -
1327 -0002 2025/5/19 06:17:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1328 -
1329 -0003 2025/5/19 06:18:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1330 -
1331 -0004 2025/5/19 06:19:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1332 -
1333 -0005 2025/5/19 06:20:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1334 -
1335 -0006 2025/5/19 06:21:50 3246 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1336 -
1337 -0007 2025/5/19 06:22:50 3240 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1338 -
1339 -0008 2025/5/19 06:26:44 3276 in1:low in2:low exti:low status:false vdc:3.385 idc:0.000 proble:0000 water_deep:0.000
1340 -
1341 -0009 2025/5/19 06:27:36 3246 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1342 -
1343 -0010 2025/5/19 06:28:36 3240 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1344 -
1345 -Start Tx events
1346 -
1347 -OK
1348 -)))
1349 -
1350 -(% style="color:#4f81bd" %)**Downlink Command:**
1351 -
1352 -No downlink commands for feature
1353 -
1354 -
1355 -== 3.6 Clear Flash Record(Since v1.1.0) ==
1356 -
1357 -
1358 -Feature: Clear flash storage for data log feature.
1359 -
1360 -(% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1361 -
1362 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1363 -|(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1364 -|(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1365 -Clear all stored sensor data…
1366 -
1367 -OK
1368 -)))
1369 -
1370 -(% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1371 -
1372 -* Example: 0xA301  ~/~/  Same as AT+CLRDTA
1373 -
1374 1374  = 4. Battery & Power Consumption =
1375 1375  
1376 1376  
1377 1377  PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1378 1378  
1379 -[[Battery Info & Power Consumption Analyze>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1266 +[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1380 1380  
1381 1381  
1382 1382  = 5. OTA firmware update =
... ... @@ -1412,22 +1412,22 @@
1412 1412  Test the current values at the depth of different liquids and convert them to a linear scale.
1413 1413  Replace its ratio with the ratio of water to current in the decoder.
1414 1414  
1415 -Example:
1302 +**Example:**
1416 1416  
1417 1417  Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
1418 1418  
1419 -Calculate scale factor:
1306 +**Calculate scale factor:**
1420 1420  Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
1421 1421  
1422 -Calculation formula:
1309 +**Calculation formula:**
1423 1423  
1424 1424  Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
1425 1425  
1426 -Actual calculations:
1313 +**Actual calculations:**
1427 1427  
1428 1428  Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
1429 1429  
1430 -Error:
1317 +**Error:**
1431 1431  
1432 1432  0.009810726
1433 1433  
... ... @@ -1434,31 +1434,6 @@
1434 1434  
1435 1435  [[image:image-20240329175044-1.png]]
1436 1436  
1437 -
1438 -== 6.5 Cable & Probe Material Compatibility(Immersion type) ==
1439 -
1440 -
1441 -Since the installation method of immersion sensors requires immersion in a liquid environment, the discussion of liquids that can be safely installed is very important.
1442 -
1443 -(% style="color:blue" %)**The material of the immersed part of the immersion sensor:**
1444 -
1445 -* **Cable Jacket**: Black polyurethane (PU) – Resistant to water, oils, and mild chemicals.
1446 -* **Probe Material**: 316 stainless steel – Corrosion-resistant in most industrial/marine environments.
1447 -
1448 -(% style="color:blue" %)**Chemical Compatibility:**
1449 -
1450 -* **Polyurethane (PU) Cable:** Resists water, oils, fuels, and mild chemicals but may degrade with prolonged exposure to strong acids, bases, or solvents (e.g., acetone, chlorinated hydrocarbons).
1451 -* 3**16 Stainless Steel Probe:** Suitable for water, seawater, mild acids/alkalis, and industrial fluids. Avoid highly concentrated acids (e.g., hydrochloric acid) or chlorides at high temperatures.
1452 -
1453 -**Chemical Resistance Chart for Polyurethane (PU) Cable**
1454 -
1455 -[[image:image-20250603171424-1.png||height="429" width="625"]]
1456 -
1457 -**Chemical Resistance Chart for 316 Stainless Steel Probe**
1458 -
1459 -[[image:image-20250603171503-2.png||height="350" width="616"]]
1460 -
1461 -
1462 1462  = 7. Troubleshooting =
1463 1463  
1464 1464  == 7.1 Water Depth Always shows 0 in payload ==
... ... @@ -1475,42 +1475,19 @@
1475 1475  
1476 1476  = 8. Order Info =
1477 1477  
1478 -== 8.1 Thread Installation Type & Immersion Type Pressure Sensor ==
1479 1479  
1341 +(% style="display:none" %)
1480 1480  
1481 -Part Number: (% style="color:blue" %)**PS-NB/NS-Txx-YY  or  PS-NB/NS-Ixx-YY**
1482 -
1483 -(% style="color:blue" %)**XX:**(%%)** Pressure Range and Thread Type **
1484 -
1485 -(% style="color:blue" %)**YY:**(%%)** The default frequency band**
1486 -
1487 -* YY: Frequency Bands, options: EU433,CN470,EU868,IN865,KR920,AS923,AU915,US915
1488 -
1489 1489  [[image:image-20241021093209-1.png]]
1490 1490  
1491 -
1492 -== 8.2 Wireless Differential Air Pressure Sensor ==
1493 -
1494 -
1495 -Part Number: (% style="color:blue" %)**PS-LB-Dxx-YY  or  PS-LS-Dxx-YY **
1496 -
1497 -(% style="color:blue" %)**XX:**(%%)** Differential Pressure Range**
1498 -
1499 -(% style="color:blue" %)**YY:**(%%)** The default frequency band**
1500 -
1501 -* YY: Frequency Bands, options: EU433,CN470,EU868,IN865,KR920,AS923,AU915,US915
1502 -
1503 -[[image:image-20250401174215-1.png||height="486" width="656"]]
1504 -
1505 -
1506 1506  = 9. ​Packing Info =
1507 1507  
1508 1508  
1509 -Package Includes:
1348 +(% style="color:#037691" %)**Package Includes**:
1510 1510  
1511 -* PS-LB/LS-Txx/Ixx, PS-LB/LS-Dxx   LoRaWAN Pressure Sensor
1350 +* PS-LB or PS-LS LoRaWAN Pressure Sensor
1512 1512  
1513 -Dimension and weight:
1352 +(% style="color:#037691" %)**Dimension and weight**:
1514 1514  
1515 1515  * Device Size: cm
1516 1516  * Device Weight: g
1749540397649-875.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.4 KB
Content
1749540420016-961.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 KB
Content
1749540423574-437.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 KB
Content
image-20250401163530-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -44.9 KB
Content
image-20250401163539-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content
image-20250401163826-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -18.9 KB
Content
image-20250401163906-4.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -181.6 KB
Content
image-20250401174215-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.3 KB
Content
image-20250419092225-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -47.6 KB
Content
image-20250419162538-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -90.3 KB
Content
image-20250512144042-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -471.4 KB
Content
image-20250512144122-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -572.9 KB
Content
image-20250603171424-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -38.7 KB
Content
image-20250603171503-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -33.7 KB
Content