<
From version < 123.9 >
edited by Xiaoling
on 2025/04/01 17:02
To version < 118.1 >
edited by Mengting Qiu
on 2025/04/01 10:21
>
Change comment: Uploaded new attachment "image-20250401102131-1.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.ting
Content
... ... @@ -148,7 +148,7 @@
148 148  
149 149  === 1.4.3 Wireless Differential Air Pressure Sensor ===
150 150  
151 -[[image:image-20240511174954-1.png||height="215" width="215"]]
151 +[[image:image-20240511174954-1.png]]
152 152  
153 153  * Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
154 154  * Accuracy: 0.5% F.S, resolution is 0.05%.
... ... @@ -163,7 +163,7 @@
163 163  === 1.5.1 Thread Installation Type ===
164 164  
165 165  
166 -Application:
166 +(% style="color:blue" %)**Application:**
167 167  
168 168  * Hydraulic Pressure
169 169  * Petrochemical Industry
... ... @@ -181,7 +181,7 @@
181 181  === 1.5.2 Immersion Type ===
182 182  
183 183  
184 -Application:
184 +(% style="color:blue" %)**Application:**
185 185  
186 186  Liquid & Water Pressure / Level detect.
187 187  
... ... @@ -200,15 +200,12 @@
200 200  
201 201  [[image:1675071776102-240.png]]
202 202  
203 -Size of immersion type water depth sensor:
204 204  
205 -[[image:image-20250401102131-1.png||height="268" width="707"]]
206 206  
207 -
208 208  === 1.5.3 Wireless Differential Air Pressure Sensor ===
209 209  
210 210  
211 -Application:
208 +(% style="color:blue" %)**Application:**
212 212  
213 213  Indoor Air Control & Filter clogging Detect.
214 214  
... ... @@ -232,32 +232,28 @@
232 232  == 1.6 Sleep mode and working mode ==
233 233  
234 234  
235 -Deep Sleep Mode: Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
232 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
236 236  
237 -Working Mode: In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
234 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
238 238  
239 239  
240 240  == 1.7 Button & LEDs ==
241 241  
242 242  
243 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
240 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]](% style="display:none" %)
244 244  
245 245  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
246 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action
243 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
247 247  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
248 -
249 -
250 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once.
245 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
251 251  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
252 252  )))
253 253  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
254 -
255 -
256 -Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network.
257 -Green led will solidly turn on for 5 seconds after joined in network.
249 +(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
250 +(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
258 258  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
259 259  )))
260 -|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
253 +|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
261 261  
262 262  == 1.8 Pin Mapping ==
263 263  
... ... @@ -285,13 +285,13 @@
285 285  === 1.10.1 for LB version ===
286 286  
287 287  
288 -[[image:image-20250401163530-1.jpeg]]
281 +[[image:image-20240109160800-6.png]]
289 289  
290 290  
291 291  === 1.10.2 for LS version ===
292 292  
293 293  
294 -[[image:image-20250401163539-2.jpeg]]
287 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/WebHome/image-20231231203439-3.png?width=886&height=385&rev=1.1||alt="image-20231231203439-3.png"]]
295 295  
296 296  
297 297  = 2. Configure PS-LB/LS to connect to LoRaWAN network =
... ... @@ -299,7 +299,7 @@
299 299  == 2.1 How it works ==
300 300  
301 301  
302 -The PS-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
295 +The PS-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
303 303  
304 304  
305 305  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -313,7 +313,7 @@
313 313  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
314 314  
315 315  
316 -Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.
309 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB/LS.
317 317  
318 318  Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
319 319  
... ... @@ -323,32 +323,32 @@
323 323  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
324 324  
325 325  
326 -Register the device
319 +(% style="color:blue" %)**Register the device**
327 327  
328 328  [[image:1675144099263-405.png]]
329 329  
330 330  
331 -Add APP EUI and DEV EUI
324 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
332 332  
333 333  [[image:1675144117571-832.png]]
334 334  
335 335  
336 -Add APP EUI in the application
329 +(% style="color:blue" %)**Add APP EUI in the application**
337 337  
338 338  
339 339  [[image:1675144143021-195.png]]
340 340  
341 341  
342 -Add APP KEY
335 +(% style="color:blue" %)**Add APP KEY**
343 343  
344 344  [[image:1675144157838-392.png]]
345 345  
346 -Step 2: Activate on PS-LB/LS
339 +(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB/LS
347 347  
348 348  
349 349  Press the button for 5 seconds to activate the PS-LB/LS.
350 350  
351 -Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network.
344 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
352 352  
353 353  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
354 354  
... ... @@ -363,9 +363,9 @@
363 363  Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
364 364  
365 365  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
366 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)Device Status (FPORT=5)
367 -|(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2
368 -|(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
359 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
360 +|(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
361 +|(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
369 369  
370 370  Example parse in TTNv3
371 371  
... ... @@ -372,11 +372,11 @@
372 372  [[image:1675144504430-490.png]]
373 373  
374 374  
375 -Sensor Model: For PS-LB/LS, this value is 0x16
368 +(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB/LS, this value is 0x16
376 376  
377 -Firmware Version: 0x0100, Means: v1.0.0 version
370 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
378 378  
379 -Frequency Band:
372 +(% style="color:#037691" %)**Frequency Band**:
380 380  
381 381  *0x01: EU868
382 382  
... ... @@ -407,7 +407,7 @@
407 407  *0x0e: MA869
408 408  
409 409  
410 -Sub-Band:
403 +(% style="color:#037691" %)**Sub-Band**:
411 411  
412 412  AU915 and US915:value 0x00 ~~ 0x08
413 413  
... ... @@ -416,7 +416,7 @@
416 416  Other Bands: Always 0x00
417 417  
418 418  
419 -Battery Info:
412 +(% style="color:#037691" %)**Battery Info**:
420 420  
421 421  Check the battery voltage.
422 422  
... ... @@ -431,12 +431,10 @@
431 431  Uplink payload includes in total 9 bytes.
432 432  
433 433  
434 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
427 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
435 435  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
436 -
437 -
438 -Size(bytes)
439 -)))|(% style="background-color:#4f81bd; color:white; width:50px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
429 +**Size(bytes)**
430 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
440 440  |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
441 441  
442 442  [[image:1675144608950-310.png]]
... ... @@ -458,10 +458,10 @@
458 458  PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
459 459  
460 460  
461 -For example.
452 +**For example.**
462 462  
463 463  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
464 -|(% style="background-color:#4f81bd; color:white" %)Part Number|(% style="background-color:#4f81bd; color:white" %)Probe Used|(% style="background-color:#4f81bd; color:white" %)4~~20mA scale|(% style="background-color:#4f81bd; color:white" %)Example: 12mA meaning
455 +|(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
465 465  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
466 466  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
467 467  |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
... ... @@ -472,9 +472,9 @@
472 472  === 2.3.5 0~~20mA value (IDC_IN) ===
473 473  
474 474  
475 -The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
466 +The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
476 476  
477 -Example:
468 +(% style="color:#037691" %)**Example**:
478 478  
479 479  27AE(H) = 10158 (D)/1000 = 10.158mA.
480 480  
... ... @@ -489,7 +489,7 @@
489 489  
490 490  Measure the voltage value. The range is 0 to 30V.
491 491  
492 -Example:
483 +(% style="color:#037691" %)**Example**:
493 493  
494 494  138E(H) = 5006(D)/1000= 5.006V
495 495  
... ... @@ -499,7 +499,7 @@
499 499  
500 500  IN1 and IN2 are used as digital input pins.
501 501  
502 -Example:
493 +(% style="color:#037691" %)**Example**:
503 503  
504 504  09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
505 505  
... ... @@ -506,9 +506,9 @@
506 506  09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
507 507  
508 508  
509 -This data field shows if this packet is generated by Interrupt Pin or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
500 +This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
510 510  
511 -Example:
502 +(% style="color:#037691" %)**Example:**
512 512  
513 513  09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
514 514  
... ... @@ -522,13 +522,9 @@
522 522  
523 523  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
524 524  |(% style="background-color:#4f81bd; color:white; width:65px" %)(((
525 -
526 -
527 -Size(bytes)
528 -)))|(% style="background-color:#4f81bd; color:white; width:35px" %)2|(% style="background-color:#4f81bd; color:white; width:400px" %)n
516 +**Size(bytes)**
517 +)))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
529 529  |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
530 -
531 -
532 532  Voltage value, each 2 bytes is a set of voltage values.
533 533  )))
534 534  
... ... @@ -561,9 +561,9 @@
561 561  
562 562  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
563 563  
564 -Step 1: Be sure that your device is programmed and properly connected to the network at this time.
551 +(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
565 565  
566 -Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
553 +(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
567 567  
568 568  [[image:1675144951092-237.png]]
569 569  
... ... @@ -571,9 +571,9 @@
571 571  [[image:1675144960452-126.png]]
572 572  
573 573  
574 -Step 3: Create an account or log in Datacake.
561 +(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
575 575  
576 -Step 4: Create PS-LB/LS product.
563 +(% style="color:blue" %)**Step 4:** (%%)Create PS-LB/LS product.
577 577  
578 578  [[image:1675145004465-869.png]]
579 579  
... ... @@ -584,7 +584,7 @@
584 584  [[image:1675145029119-717.png]]
585 585  
586 586  
587 -Step 5: add payload decode
574 +(% style="color:blue" %)**Step 5: **(%%)add payload decode
588 588  
589 589  [[image:1675145051360-659.png]]
590 590  
... ... @@ -608,13 +608,13 @@
608 608  
609 609  PS-LB uses Unix TimeStamp format based on
610 610  
611 -[[image:image-20250401163826-3.jpeg]]
598 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861618065-927.png?width=705&height=109&rev=1.1||alt="1652861618065-927.png" height="109" width="705"]]
612 612  
613 613  Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
614 614  
615 615  Below is the converter example:
616 616  
617 -[[image:image-20250401163906-4.jpeg]]
604 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861637105-371.png?width=732&height=428&rev=1.1||alt="1652861637105-371.png"]]
618 618  
619 619  
620 620  === 2.6.2 Set Device Time ===
... ... @@ -623,16 +623,16 @@
623 623  There are two ways to set the device's time:
624 624  
625 625  
626 -~1. Through LoRaWAN MAC Command (Default settings)
613 +(% style="color:blue" %)**1. Through LoRaWAN MAC Command (Default settings)**
627 627  
628 628  Users need to set SYNCMOD=1 to enable sync time via the MAC command.
629 629  
630 630  Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
631 631  
632 -Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.
619 +(% style="color:red" %)**Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.**
633 633  
634 634  
635 - 2. Manually Set Time
622 +(% style="color:blue" %)** 2. Manually Set Time**
636 636  
637 637  Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
638 638  
... ... @@ -642,8 +642,8 @@
642 642  Users can poll sensor values based on timestamps. Below is the downlink command.
643 643  
644 644  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
645 -|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31)
646 -|(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte
632 +|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)**Downlink Command to poll Open/Close status (0x31)**
633 +|(% style="background-color:#f2f2f2; width:67px" %)**1byte**|(% style="background-color:#f2f2f2; width:145px" %)**4bytes**|(% style="background-color:#f2f2f2; width:133px" %)**4bytes**|(% style="background-color:#f2f2f2; width:163px" %)**1byte**
647 647  |(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)(((
648 648  Timestamp end
649 649  )))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval
... ... @@ -662,32 +662,36 @@
662 662  
663 663  The Datalog uplinks will use below payload format.
664 664  
665 -Retrieval data payload:
652 +**Retrieval data payload:**
666 666  
667 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
654 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
668 668  |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
669 -Size(bytes)
670 -)))|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)2|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)4
656 +**Size(bytes)**
657 +)))|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**2**|=(% style="width: 55px; background-color:#4F81BD;color:white" %)**2**|=(% style="width: 83px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 201px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4**
671 671  |(% style="width:103px" %)Value|(% style="width:68px" %)(((
672 -Probe_mod
659 +Probe
660 +
661 +_mod
673 673  )))|(% style="width:104px" %)(((
674 -VDC_intput_V
663 +VDC
664 +
665 +_intput_V
675 675  )))|(% style="width:83px" %)(((
676 -IDC_intput_mA
667 +IDC
668 +
669 +_intput_mA
677 677  )))|(% style="width:201px" %)(((
678 678  IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status
679 679  )))|(% style="width:86px" %)Unix Time Stamp
680 680  
674 +**IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:**
681 681  
682 -
683 -IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:
684 -
685 685  [[image:image-20250117104847-4.png]]
686 686  
687 687  
688 -No ACK Message:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
679 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
689 689  
690 -Poll Message Flag: 1: This message is a poll message reply.
681 +**Poll Message Flag**: 1: This message is a poll message reply.
691 691  
692 692  * Poll Message Flag is set to 1.
693 693  
... ... @@ -695,17 +695,17 @@
695 695  
696 696  For example, in US915 band, the max payload for different DR is:
697 697  
698 -a) DR0: max is 11 bytes so one entry of data
689 +**a) DR0:** max is 11 bytes so one entry of data
699 699  
700 -b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
691 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
701 701  
702 -c) DR2: total payload includes 11 entries of data
693 +**c) DR2:** total payload includes 11 entries of data
703 703  
704 -d) DR3: total payload includes 22 entries of data.
695 +**d) DR3: **total payload includes 22 entries of data.
705 705  
706 706  If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
707 707  
708 -Example:
699 +**Example:**
709 709  
710 710  If PS-LB-NA has below data inside Flash:
711 711  
... ... @@ -719,46 +719,53 @@
719 719   Stop time: 6788DB63 = time 25/1/16 10:11:47
720 720  
721 721  
722 -PA-LB-NA will uplink this payload.
713 +**PA-LB-NA will uplink this payload.**
723 723  
724 724  [[image:image-20250117104827-2.png]]
725 725  
726 -
717 +(((
727 727  00001B620000406788D9BF  00000D130000406788D9FB  00000D120000406788DA37  00000D110000406788DA73  00000D100000406788DAAF  00000D100000406788DAEB  00000D0F0000406788DB27  00000D100000406788DB63
719 +)))
728 728  
729 -
721 +(((
730 730  Where the first 11 bytes is for the first entry :
723 +)))
731 731  
732 -
725 +(((
733 733  0000  0D10  0000  40  6788DB63
727 +)))
734 734  
729 +(((
730 +**Probe_mod **= 0x0000 = 0000
731 +)))
735 735  
736 -Probe_mod = 0x0000 = 0000
733 +(((
734 +**VDC_intput_V **= 0x0D10/1000=3.344V
737 737  
736 +**IDC_intput_mA **= 0x0000/1000=0mA
737 +)))
738 738  
739 -VDC_intput_V = 0x0D10/1000=3.344V
739 +(((
740 +**IN1_pin_level **= (0x40& 0x08)? "High":"Low" = 0(Low)
740 740  
741 -IDC_intput_mA = 0x0000/1000=0mA
742 +**IN2_pin_level = (**0x40& 0x04)? "High":"Low" = 0(Low)
742 742  
744 +**Exti_pin_level = (**0x40& 0x02)? "High":"Low" = 0(Low)
743 743  
744 -IN1_pin_level = (0x40& 0x08)? "High":"Low" = 0(Low)
746 +**Exti_status = (**0x40& 0x01)? "True":"False" = 0(False)
747 +)))
745 745  
746 -IN2_pin_level = (0x40& 0x04)? "High":"Low" = 0(Low)
749 +(((
750 +**Unix time** is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
751 +)))
747 747  
748 -Exti_pin_level = (0x40& 0x02)? "High":"Low" = 0(Low)
753 +**Its data format is:**
749 749  
750 -Exti_status = (0x40& 0x01)? "True":"False" = 0(False)
755 +[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level**, **IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level**, **IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
751 751  
757 +(% style="color:red" %)**Note: water_deep in the data needs to be converted using decoding to get it.**
752 752  
753 -Unix time is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
754 754  
755 -Its data format is:
756 -
757 -[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
758 -
759 -Note: water_deep in the data needs to be converted using decoding to get it.
760 -
761 -
762 762  === 2.6.5 Decoder in TTN V3 ===
763 763  
764 764  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
... ... @@ -785,47 +785,47 @@
785 785  
786 786  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
787 787  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
788 -Size(bytes)
789 -)))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
790 -|(% style="width:98px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
786 +**Size(bytes)**
787 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
788 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
791 791  [[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag
792 792  )))
793 793  
794 -IN1 &IN2 , Interrupt  flag , ROC_flag:
792 +(% style="color:blue" %)**IN1 &IN2 , Interrupt  flag , ROC_flag:**
795 795  
796 796  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
797 -|(% style="background-color:#4f81bd; color:white; width:50px" %)Size(bit)|(% style="background-color:#4f81bd; color:white; width:60px" %)bit7|(% style="background-color:#4f81bd; color:white; width:62px" %)bit6|(% style="background-color:#4f81bd; color:white; width:62px" %)bit5|(% style="background-color:#4f81bd; color:white; width:65px" %)bit4|(% style="background-color:#4f81bd; color:white; width:56px" %)bit3|(% style="background-color:#4f81bd; color:white; width:55px" %)bit2|(% style="background-color:#4f81bd; color:white; width:55px" %)bit1|(% style="background-color:#4f81bd; color:white; width:50px" %)bit0
795 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bit)**|(% style="background-color:#4f81bd; color:white; width:60px" %)**bit7**|(% style="background-color:#4f81bd; color:white; width:62px" %)**bit6**|(% style="background-color:#4f81bd; color:white; width:62px" %)**bit5**|(% style="background-color:#4f81bd; color:white; width:65px" %)**bit4**|(% style="background-color:#4f81bd; color:white; width:56px" %)**bit3**|(% style="background-color:#4f81bd; color:white; width:55px" %)**bit2**|(% style="background-color:#4f81bd; color:white; width:55px" %)**bit1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**bit0**
798 798  |(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status
799 799  
800 -* IDC_Roc_flagL
798 +* (% style="color:#037691" %)**IDC_Roc_flagL**
801 801  
802 -80 (H): (0x80&0x80)=80(H)=1000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
800 +80 (H): (0x80&0x80)=80(H)=**1**000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
803 803  
804 804  60 (H): (0x60&0x80)=0  bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
805 805  
806 806  
807 -* IDC_Roc_flagH
805 +* (% style="color:#037691" %)**IDC_Roc_flagH**
808 808  
809 -60 (H): (0x60&0x40)=60(H)=01000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
807 +60 (H): (0x60&0x40)=60(H)=0**1**000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
810 810  
811 811  80 (H): (0x80&0x40)=0  bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
812 812  
813 813  
814 -* VDC_Roc_flagL
812 +* (% style="color:#037691" %)**VDC_Roc_flagL**
815 815  
816 -20 (H): (0x20&0x20)=20(H)=0010 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
814 +20 (H): (0x20&0x20)=20(H)=00**1**0 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
817 817  
818 818  90 (H): (0x90&0x20)=0  bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
819 819  
820 820  
821 -* VDC_Roc_flagH
819 +* (% style="color:#037691" %)**VDC_Roc_flagH**
822 822  
823 -90 (H): (0x90&0x10)=10(H)=0001 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
821 +90 (H): (0x90&0x10)=10(H)=000**1** 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
824 824  
825 825  20 (H): (0x20&0x10)=0  bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
826 826  
827 827  
828 -* IN1_pin_level & IN2_pin_level
826 +* (% style="color:#037691" %)**IN1_pin_level & IN2_pin_level**
829 829  
830 830  IN1 and IN2 are used as digital input pins.
831 831  
... ... @@ -834,15 +834,15 @@
834 834  80 (H): (0x09&0x04)=0    IN2 pin is low level.
835 835  
836 836  
837 -* Exti_pin_level &Exti_status
835 +* (% style="color:#037691" %)**Exti_pin_level &Exti_status**
838 838  
839 839  This data field shows whether the packet is generated by an interrupt pin.
840 840  
841 -Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the GPIO_EXTI pin.
839 +Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the **GPIO_EXTI** pin.
842 842  
843 -Exti_pin_level:  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
841 +**Exti_pin_level:**  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
844 844  
845 -Exti_status: 80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
843 +**Exti_status: **80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
846 846  
847 847  
848 848  === 2.8.2 Set the Report on Change ===
... ... @@ -855,34 +855,44 @@
855 855  
856 856  Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed.
857 857  
858 -* Change value: The amount by which the next detection value increases/decreases relative to the previous detection value.
859 -* Comparison value: A parameter to compare with the latest ROC test.
856 +* (% style="color:#037691" %)**Change value: **(%%)The amount by which the next detection value increases/decreases relative to the previous detection value.
857 +* (% style="color:#037691" %)**Comparison value:**(%%) A parameter to compare with the latest ROC test.
860 860  
861 -AT Command: AT+ROC
859 +(% style="color:blue" %)**AT Command: AT+ROC**
862 862  
863 863  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
864 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
862 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)**Parameters**|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation**
865 865  |(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
866 866  0,0,0,0(default)
867 867  OK
868 868  )))
869 869  |(% colspan="1" rowspan="4" style="width:143px" %)(((
868 +
869 +
870 +
871 +
870 870  AT+ROC=a,b,c,d
871 871  )))|(% style="width:154px" %)(((
872 -a: Enable or disable the ROC
874 +
875 +
876 +
877 +
878 +
879 +
880 +**a**: Enable or disable the ROC
873 873  )))|(% style="width:197px" %)(((
874 -0: off
875 -1: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
882 +**0:** off
883 +**1:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
876 876  
877 -2: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
885 +**2: **Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
878 878  )))
879 -|(% style="width:154px" %)b: Set the detection interval|(% style="width:197px" %)(((
887 +|(% style="width:154px" %)**b**: Set the detection interval|(% style="width:197px" %)(((
880 880  Range:  0~~65535s
881 881  )))
882 -|(% style="width:154px" %)c: Setting the IDC change value|(% style="width:197px" %)Unit: uA
883 -|(% style="width:154px" %)d: Setting the VDC change value|(% style="width:197px" %)Unit: mV
890 +|(% style="width:154px" %)**c**: Setting the IDC change value|(% style="width:197px" %)Unit: uA
891 +|(% style="width:154px" %)**d**: Setting the VDC change value|(% style="width:197px" %)Unit: mV
884 884  
885 -Example:
893 +**Example:**
886 886  
887 887  * AT+ROC=0,0,0,0  ~/~/The ROC function is not used.
888 888  * AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed.
... ... @@ -889,25 +889,25 @@
889 889  * AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage.
890 890  * AT+ROC=2,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed.
891 891  
892 -Downlink Command: 0x09 aa bb cc dd
900 +(% style="color:blue" %)**Downlink Command: 0x09 aa bb cc dd**
893 893  
894 894  Format: Function code (0x09) followed by 4 bytes.
895 895  
896 -aa: 1 byte; Set the wave alarm mode.
904 +(% style="color:blue" %)**aa: **(% style="color:#037691" %)**1 byte;**(%%) Set the wave alarm mode.
897 897  
898 -bb: 2 bytes; Set the detection interval. (second)
906 +(% style="color:blue" %)**bb: **(% style="color:#037691" %)**2 bytes;**(%%) Set the detection interval. (second)
899 899  
900 -cc: 2 bytes; Setting the IDC change threshold. (uA)
908 +(% style="color:blue" %)**cc: **(% style="color:#037691" %)**2 bytes;**(%%) Setting the IDC change threshold. (uA)
901 901  
902 -dd: 2 bytes; Setting the VDC change threshold. (mV)
910 +(% style="color:blue" %)**dd: **(% style="color:#037691" %)**2 bytes;**(%%) Setting the VDC change threshold. (mV)
903 903  
904 -Example:
912 +**Example:**
905 905  
906 -* Downlink Payload: 09 01 00 3C 0B B8 01 F4  ~/~/Equal to AT+ROC=1,60,3000, 500
907 -* Downlink Payload: 09 01 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=1,60,3000,0
908 -* Downlink Payload: 09 02 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=2,60,3000,0
914 +* Downlink Payload: **09 01 00 3C 0B B8 01 F4 ** ~/~/Equal to AT+ROC=1,60,3000, 500
915 +* Downlink Payload: **09 01 00 3C 0B B8 00 00 ** ~/~/Equal to AT+ROC=1,60,3000,0
916 +* Downlink Payload: **09 02 00 3C 0B B8 00 00 ** ~/~/Equal to AT+ROC=2,60,3000,0
909 909  
910 -Screenshot of parsing example in TTN:
918 +(% style="color:blue" %)**Screenshot of parsing example in TTN:**
911 911  
912 912  * AT+ROC=1,60,3000, 500.
913 913  
... ... @@ -918,13 +918,11 @@
918 918  
919 919  Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded.
920 920  
921 -AT Command: AT+ROC=3,a,b,c,d,e
929 +(% style="color:blue" %)**AT Command: AT+ROC=3,a,b,c,d,e**
922 922  
923 923  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
924 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
932 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)**Parameters**|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation**
925 925  |(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
926 -
927 -
928 928  0,0,0,0(default)
929 929  OK
930 930  )))
... ... @@ -933,70 +933,57 @@
933 933  
934 934  
935 935  
936 -
937 -AT+ROC=3,a,b,c,d,e
942 +AT+ROC=(% style="color:blue" %)**3**(%%),a,b,c,d,e
938 938  )))|(% style="width:160px" %)(((
939 -
940 -
941 -a: Set the detection interval
944 +**a: **Set the detection interval
942 942  )))|(% style="width:185px" %)(((
943 -
944 -
945 945  Range:  0~~65535s
946 946  )))
947 -|(% style="width:160px" %)b: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
948 -
948 +|(% style="width:160px" %)**b**: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
949 +**0:** Less than the set IDC threshold, Alarm
949 949  
950 -0: Less than the set IDC threshold, Alarm
951 -
952 -1: Greater than the set IDC threshold, Alarm
951 +**1:** Greater than the set IDC threshold, Alarm
953 953  )))
954 954  |(% style="width:160px" %)(((
955 -
956 -
957 -c:  IDC alarm threshold
954 +**c**:  IDC alarm threshold
958 958  )))|(% style="width:185px" %)(((
959 -
960 -
961 961  Unit: uA
962 962  )))
963 -|(% style="width:160px" %)d: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
964 -
958 +|(% style="width:160px" %)**d**: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
959 +**0:** Less than the set VDC threshold, Alarm
965 965  
966 -0: Less than the set VDC threshold, Alarm
967 -
968 -1: Greater than the set VDC threshold, Alarm
961 +**1:** Greater than the set VDC threshold, Alarm
969 969  )))
970 -|(% style="width:160px" %)e: VDC alarm threshold|(% style="width:185px" %)Unit: mV
963 +|(% style="width:160px" %)**e:** VDC alarm threshold|(% style="width:185px" %)Unit: mV
971 971  
972 -Example:
965 +**Example:**
973 973  
974 974  * AT+ROC=3,60,0,3000,0,5000  ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
975 975  * AT+ROC=3,180,1,3000,1,5000  ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
976 976  * AT+ROC=3,300,0,3000,1,5000  ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
977 977  
978 -Downlink Command: 0x09 03 aa bb cc dd ee
971 +(% style="color:blue" %)**Downlink Command: 0x09 03 aa bb cc dd ee**
979 979  
980 980  Format: Function code (0x09) followed by 03 and the remaining 5 bytes.
981 981  
982 -aa: 2 bytes; Set the detection interval.(second)
975 +(% style="color:blue" %)**aa: **(% style="color:#037691" %)**2 bytes;**(%%) Set the detection interval.(second)
983 983  
984 -bb: 1 byte; Set the IDC alarm trigger condition.
977 +(% style="color:blue" %)**bb: **(% style="color:#037691" %)**1 byte; **(%%)Set the IDC alarm trigger condition.
985 985  
986 -cc: 2 bytes; IDC alarm threshold.(uA)
979 +(% style="color:blue" %)**cc: **(% style="color:#037691" %)**2 bytes;**(%%) IDC alarm threshold.(uA)
987 987  
988 988  
989 -dd: 1 byte; Set the VDC alarm trigger condition.
982 +(% style="color:blue" %)**dd: **(% style="color:#037691" %)**1 byte;**(%%) Set the VDC alarm trigger condition.
990 990  
991 -ee: 2 bytes; VDC alarm threshold.(mV)
984 +(% style="color:blue" %)**ee: **(% style="color:#037691" %)**2 bytes; **(%%)VDC alarm threshold.(mV)
992 992  
993 -Example:
986 +**Example:**
994 994  
995 -* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
996 -* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
997 -* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
988 +* Downlink Payload: **09 03 00 3C 00 0B B8 00 13 38** ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
989 +* Downlink Payload: **09 03 00 b4 01 0B B8 01 13 38**  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
990 +* Downlink Payload: **09 03 01 2C 00 0B B8 01 13 38**  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
998 998  
999 -Screenshot of parsing example in TTN:
992 +(% style="color:blue" %)**Screenshot of parsing example in TTN:**
1000 1000  
1001 1001  * AT+ROC=3,60,0,3000,0,5000
1002 1002  
... ... @@ -1006,7 +1006,7 @@
1006 1006  == 2.9 ​Firmware Change Log ==
1007 1007  
1008 1008  
1009 -Firmware download link:
1002 +**Firmware download link:**
1010 1010  
1011 1011  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
1012 1012  
... ... @@ -1018,7 +1018,7 @@
1018 1018  
1019 1019  PS-LB/LS supports below configure method:
1020 1020  
1021 -* AT Command via Bluetooth Connection (Recommand Way): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1014 +* AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1022 1022  * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
1023 1023  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
1024 1024  
... ... @@ -1046,25 +1046,21 @@
1046 1046  
1047 1047  Feature: Change LoRaWAN End Node Transmit Interval.
1048 1048  
1049 -AT Command: AT+TDC
1042 +(% style="color:blue" %)**AT Command: AT+TDC**
1050 1050  
1051 1051  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1052 -|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response
1045 +|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Response**
1053 1053  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
1054 -
1055 -
1056 1056  30000
1057 1057  OK
1058 1058  the interval is 30000ms = 30s
1059 1059  )))
1060 1060  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
1061 -
1062 -
1063 1063  OK
1064 1064  Set transmit interval to 60000ms = 60 seconds
1065 1065  )))
1066 1066  
1067 -Downlink Command: 0x01
1056 +(% style="color:blue" %)**Downlink Command: 0x01**
1068 1068  
1069 1069  Format: Command Code (0x01) followed by 3 bytes time value.
1070 1070  
... ... @@ -1078,20 +1078,16 @@
1078 1078  
1079 1079  Feature, Set Interrupt mode for GPIO_EXIT.
1080 1080  
1081 -AT Command: AT+INTMOD
1070 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1082 1082  
1083 1083  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1084 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response
1073 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Response**
1085 1085  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
1086 -
1087 -
1088 1088  0
1089 1089  OK
1090 1090  the mode is 0 =Disable Interrupt
1091 1091  )))
1092 1092  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
1093 -
1094 -
1095 1095  Set Transmit Interval
1096 1096  0. (Disable Interrupt),
1097 1097  ~1. (Trigger by rising and falling edge)
... ... @@ -1099,7 +1099,7 @@
1099 1099  3. (Trigger by rising edge)
1100 1100  )))|(% style="background-color:#f2f2f2; width:157px" %)OK
1101 1101  
1102 -Downlink Command: 0x06
1087 +(% style="color:blue" %)**Downlink Command: 0x06**
1103 1103  
1104 1104  Format: Command Code (0x06) followed by 3 bytes.
1105 1105  
... ... @@ -1113,99 +1113,79 @@
1113 1113  
1114 1114  Feature, Control the output 3V3 , 5V or 12V.
1115 1115  
1116 -AT Command: AT+3V3T
1101 +(% style="color:blue" %)**AT Command: AT+3V3T**
1117 1117  
1118 1118  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
1119 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1104 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 201px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1120 1120  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
1121 -
1122 -
1123 1123  0
1124 1124  OK
1125 1125  )))
1126 1126  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1127 -
1128 -
1129 1129  OK
1130 1130  default setting
1131 1131  )))
1132 1132  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
1133 -
1134 -
1135 1135  OK
1136 1136  )))
1137 1137  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1138 -
1139 -
1140 1140  OK
1141 1141  )))
1142 1142  
1143 -AT Command: AT+5VT
1120 +(% style="color:blue" %)**AT Command: AT+5VT**
1144 1144  
1145 1145  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
1146 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1123 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1147 1147  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1148 -
1149 -
1150 1150  0
1151 1151  OK
1152 1152  )))
1153 1153  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1154 -
1155 -
1156 1156  OK
1157 1157  default setting
1158 1158  )))
1159 1159  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
1160 -
1161 -
1162 1162  OK
1163 1163  )))
1164 1164  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1165 -
1166 -
1167 1167  OK
1168 1168  )))
1169 1169  
1170 -AT Command: AT+12VT
1139 +(% style="color:blue" %)**AT Command: AT+12VT**
1171 1171  
1172 1172  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
1173 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response
1142 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 199px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1174 1174  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1175 -
1176 -
1177 1177  0
1178 1178  OK
1179 1179  )))
1180 1180  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
1181 1181  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
1182 -
1183 -
1184 1184  OK
1185 1185  )))
1186 1186  
1187 -Downlink Command: 0x07
1152 +(% style="color:blue" %)**Downlink Command: 0x07**
1188 1188  
1189 1189  Format: Command Code (0x07) followed by 3 bytes.
1190 1190  
1191 1191  The first byte is which power, the second and third bytes are the time to turn on.
1192 1192  
1193 -* Example 1: Downlink Payload: 070101F4  ~-~-->  AT+3V3T=500
1194 -* Example 2: Downlink Payload: 0701FFFF   ~-~-->  AT+3V3T=65535
1195 -* Example 3: Downlink Payload: 070203E8  ~-~-->  AT+5VT=1000
1196 -* Example 4: Downlink Payload: 07020000  ~-~-->  AT+5VT=0
1197 -* Example 5: Downlink Payload: 070301F4  ~-~-->  AT+12VT=500
1198 -* Example 6: Downlink Payload: 07030000  ~-~-->  AT+12VT=0
1158 +* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
1159 +* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
1160 +* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
1161 +* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
1162 +* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
1163 +* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
1199 1199  
1200 -Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.
1165 +(% style="color:red" %)**Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.**
1201 1201  
1202 -Therefore, the corresponding downlink command is increased by one byte to five bytes.
1167 +(% style="color:red" %)**Therefore, the corresponding downlink command is increased by one byte to five bytes.**
1203 1203  
1204 -Example:
1169 +**Example: **
1205 1205  
1206 -* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 01 01 D4 C0  ~-~-->  AT+3V3T=120000
1207 -* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 02 01 86 A0  ~-~-->  AT+5VT=100000
1208 -* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 03 01 38 80  ~-~-->  AT+12VT=80000
1171 +* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 **01** 01 D4 C0  **~-~-->**  AT+3V3T=120000
1172 +* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 **02** 01 86 A0  **~-~-->**  AT+5VT=100000
1173 +* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 **03** 01 38 80  **~-~-->**  AT+12VT=80000
1209 1209  
1210 1210  === 3.3.4 Set the Probe Model ===
1211 1211  
... ... @@ -1212,7 +1212,7 @@
1212 1212  
1213 1213  Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
1214 1214  
1215 -AT Command: AT +PROBE
1180 +(% style="color:blue" %)**AT Command: AT** **+PROBE**
1216 1216  
1217 1217  AT+PROBE=aabb
1218 1218  
... ... @@ -1231,13 +1231,11 @@
1231 1231  (0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C)
1232 1232  
1233 1233  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1234 -|(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1199 +|(% style="background-color:#4f81bd; color:white; width:154px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:269px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1235 1235  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
1236 1236  OK
1237 1237  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
1238 1238  |(% style="background-color:#f2f2f2; width:154px" %)(((
1239 -
1240 -
1241 1241  AT+PROBE=000A
1242 1242  )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
1243 1243  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
... ... @@ -1244,12 +1244,12 @@
1244 1244  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
1245 1245  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
1246 1246  
1247 -Downlink Command: 0x08
1210 +(% style="color:blue" %)**Downlink Command: 0x08**
1248 1248  
1249 1249  Format: Command Code (0x08) followed by 2 bytes.
1250 1250  
1251 -* Example 1: Downlink Payload: 080003  ~-~-->  AT+PROBE=0003
1252 -* Example 2: Downlink Payload: 080101  ~-~-->  AT+PROBE=0101
1214 +* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
1215 +* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
1253 1253  
1254 1254  === 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
1255 1255  
... ... @@ -1256,47 +1256,41 @@
1256 1256  
1257 1257  Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time.
1258 1258  
1259 -AT Command: AT +STDC
1222 +(% style="color:blue" %)**AT Command: AT** **+STDC**
1260 1260  
1261 1261  AT+STDC=aa,bb,bb
1262 1262  
1263 -aa:
1264 -0: means disable this function and use TDC to send packets.
1265 -1: means that the function is enabled to send packets by collecting VDC data for multiple times.
1266 -2: means that the function is enabled to send packets by collecting IDC data for multiple times.
1267 -bb: Each collection interval (s), the value is 1~~65535
1268 -cc: the number of collection times, the value is 1~~120
1226 +(% style="color:#037691" %)**aa:**(%%)
1227 +**0:** means disable this function and use TDC to send packets.
1228 +**1:** means that the function is enabled to send packets by collecting VDC data for multiple times.
1229 +**2:** means that the function is enabled to send packets by collecting IDC data for multiple times.
1230 +(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
1231 +(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
1269 1269  
1270 1270  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1271 -|(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1234 +|(% style="background-color:#4f81bd; color:white; width:160px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:215px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1272 1272  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
1273 1273  OK
1274 1274  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1275 -
1276 -
1277 1277  Attention:Take effect after ATZ
1278 1278  
1279 1279  OK
1280 1280  )))
1281 1281  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
1282 -
1283 -
1284 1284  Use the TDC interval to send packets.(default)
1285 1285  
1286 1286  
1287 1287  )))|(% style="background-color:#f2f2f2" %)(((
1288 -
1289 -
1290 1290  Attention:Take effect after ATZ
1291 1291  
1292 1292  OK
1293 1293  )))
1294 1294  
1295 -Downlink Command: 0xAE
1252 +(% style="color:blue" %)**Downlink Command: 0xAE**
1296 1296  
1297 1297  Format: Command Code (0xAE) followed by 4 bytes.
1298 1298  
1299 -* Example 1: Downlink Payload: AE 01 02 58 12 ~-~-->  AT+STDC=1,600,18
1256 +* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
1300 1300  
1301 1301  = 4. Battery & Power Consumption =
1302 1302  
... ... @@ -1303,7 +1303,7 @@
1303 1303  
1304 1304  PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1305 1305  
1306 -[[Battery Info & Power Consumption Analyze>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1263 +[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1307 1307  
1308 1308  
1309 1309  = 5. OTA firmware update =
... ... @@ -1339,22 +1339,22 @@
1339 1339  Test the current values at the depth of different liquids and convert them to a linear scale.
1340 1340  Replace its ratio with the ratio of water to current in the decoder.
1341 1341  
1342 -Example:
1299 +**Example:**
1343 1343  
1344 1344  Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
1345 1345  
1346 -Calculate scale factor:
1303 +**Calculate scale factor:**
1347 1347  Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
1348 1348  
1349 -Calculation formula:
1306 +**Calculation formula:**
1350 1350  
1351 1351  Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
1352 1352  
1353 -Actual calculations:
1310 +**Actual calculations:**
1354 1354  
1355 1355  Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
1356 1356  
1357 -Error:
1314 +**Error:**
1358 1358  
1359 1359  0.009810726
1360 1360  
... ... @@ -1378,6 +1378,7 @@
1378 1378  = 8. Order Info =
1379 1379  
1380 1380  
1338 +(% style="display:none" %)
1381 1381  
1382 1382  [[image:image-20241021093209-1.png]]
1383 1383  
... ... @@ -1384,11 +1384,11 @@
1384 1384  = 9. ​Packing Info =
1385 1385  
1386 1386  
1387 -Package Includes:
1345 +(% style="color:#037691" %)**Package Includes**:
1388 1388  
1389 1389  * PS-LB or PS-LS LoRaWAN Pressure Sensor
1390 1390  
1391 -Dimension and weight:
1349 +(% style="color:#037691" %)**Dimension and weight**:
1392 1392  
1393 1393  * Device Size: cm
1394 1394  * Device Weight: g
image-20250401163530-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -44.9 KB
Content
image-20250401163539-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content
image-20250401163826-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -18.9 KB
Content
image-20250401163906-4.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -181.6 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0