<
From version < 123.4 >
edited by Xiaoling
on 2025/04/01 16:51
To version < 121.1 >
edited by Xiaoling
on 2025/04/01 16:35
>
Change comment: Uploaded new attachment "image-20250401163539-2.jpeg", version {1}

Summary

Details

Page properties
Content
... ... @@ -148,7 +148,7 @@
148 148  
149 149  === 1.4.3 Wireless Differential Air Pressure Sensor ===
150 150  
151 -[[image:image-20240511174954-1.png||height="215" width="215"]]
151 +[[image:image-20240511174954-1.png]]
152 152  
153 153  * Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
154 154  * Accuracy: 0.5% F.S, resolution is 0.05%.
... ... @@ -163,7 +163,7 @@
163 163  === 1.5.1 Thread Installation Type ===
164 164  
165 165  
166 -Application:
166 +(% style="color:blue" %)**Application:**
167 167  
168 168  * Hydraulic Pressure
169 169  * Petrochemical Industry
... ... @@ -181,7 +181,7 @@
181 181  === 1.5.2 Immersion Type ===
182 182  
183 183  
184 -Application:
184 +(% style="color:blue" %)**Application:**
185 185  
186 186  Liquid & Water Pressure / Level detect.
187 187  
... ... @@ -208,7 +208,7 @@
208 208  === 1.5.3 Wireless Differential Air Pressure Sensor ===
209 209  
210 210  
211 -Application:
211 +(% style="color:blue" %)**Application:**
212 212  
213 213  Indoor Air Control & Filter clogging Detect.
214 214  
... ... @@ -232,32 +232,28 @@
232 232  == 1.6 Sleep mode and working mode ==
233 233  
234 234  
235 -Deep Sleep Mode: Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
235 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
236 236  
237 -Working Mode: In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
237 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
238 238  
239 239  
240 240  == 1.7 Button & LEDs ==
241 241  
242 242  
243 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
243 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]](% style="display:none" %)
244 244  
245 245  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
246 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action
246 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
247 247  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
248 -
249 -
250 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once.
248 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
251 251  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
252 252  )))
253 253  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
254 -
255 -
256 -Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network.
257 -Green led will solidly turn on for 5 seconds after joined in network.
252 +(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
253 +(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
258 258  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
259 259  )))
260 -|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
256 +|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
261 261  
262 262  == 1.8 Pin Mapping ==
263 263  
... ... @@ -285,13 +285,13 @@
285 285  === 1.10.1 for LB version ===
286 286  
287 287  
288 -[[image:image-20250401163530-1.jpeg]]
284 +[[image:image-20240109160800-6.png]]
289 289  
290 290  
291 291  === 1.10.2 for LS version ===
292 292  
293 293  
294 -[[image:image-20250401163539-2.jpeg]]
290 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/WebHome/image-20231231203439-3.png?width=886&height=385&rev=1.1||alt="image-20231231203439-3.png"]]
295 295  
296 296  
297 297  = 2. Configure PS-LB/LS to connect to LoRaWAN network =
... ... @@ -299,7 +299,7 @@
299 299  == 2.1 How it works ==
300 300  
301 301  
302 -The PS-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
298 +The PS-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
303 303  
304 304  
305 305  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -313,7 +313,7 @@
313 313  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
314 314  
315 315  
316 -Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.
312 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB/LS.
317 317  
318 318  Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
319 319  
... ... @@ -323,32 +323,32 @@
323 323  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
324 324  
325 325  
326 -Register the device
322 +(% style="color:blue" %)**Register the device**
327 327  
328 328  [[image:1675144099263-405.png]]
329 329  
330 330  
331 -Add APP EUI and DEV EUI
327 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
332 332  
333 333  [[image:1675144117571-832.png]]
334 334  
335 335  
336 -Add APP EUI in the application
332 +(% style="color:blue" %)**Add APP EUI in the application**
337 337  
338 338  
339 339  [[image:1675144143021-195.png]]
340 340  
341 341  
342 -Add APP KEY
338 +(% style="color:blue" %)**Add APP KEY**
343 343  
344 344  [[image:1675144157838-392.png]]
345 345  
346 -Step 2: Activate on PS-LB/LS
342 +(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB/LS
347 347  
348 348  
349 349  Press the button for 5 seconds to activate the PS-LB/LS.
350 350  
351 -Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network.
347 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
352 352  
353 353  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
354 354  
... ... @@ -363,9 +363,9 @@
363 363  Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
364 364  
365 365  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
366 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)Device Status (FPORT=5)
367 -|(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2
368 -|(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
362 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
363 +|(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
364 +|(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
369 369  
370 370  Example parse in TTNv3
371 371  
... ... @@ -372,11 +372,11 @@
372 372  [[image:1675144504430-490.png]]
373 373  
374 374  
375 -Sensor Model: For PS-LB/LS, this value is 0x16
371 +(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB/LS, this value is 0x16
376 376  
377 -Firmware Version: 0x0100, Means: v1.0.0 version
373 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
378 378  
379 -Frequency Band:
375 +(% style="color:#037691" %)**Frequency Band**:
380 380  
381 381  *0x01: EU868
382 382  
... ... @@ -407,7 +407,7 @@
407 407  *0x0e: MA869
408 408  
409 409  
410 -Sub-Band:
406 +(% style="color:#037691" %)**Sub-Band**:
411 411  
412 412  AU915 and US915:value 0x00 ~~ 0x08
413 413  
... ... @@ -416,7 +416,7 @@
416 416  Other Bands: Always 0x00
417 417  
418 418  
419 -Battery Info:
415 +(% style="color:#037691" %)**Battery Info**:
420 420  
421 421  Check the battery voltage.
422 422  
... ... @@ -431,12 +431,10 @@
431 431  Uplink payload includes in total 9 bytes.
432 432  
433 433  
434 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
430 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
435 435  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
436 -
437 -
438 -Size(bytes)
439 -)))|(% style="background-color:#4f81bd; color:white; width:50px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
432 +**Size(bytes)**
433 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
440 440  |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
441 441  
442 442  [[image:1675144608950-310.png]]
... ... @@ -458,10 +458,10 @@
458 458  PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
459 459  
460 460  
461 -For example.
455 +**For example.**
462 462  
463 463  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
464 -|(% style="background-color:#4f81bd; color:white" %)Part Number|(% style="background-color:#4f81bd; color:white" %)Probe Used|(% style="background-color:#4f81bd; color:white" %)4~~20mA scale|(% style="background-color:#4f81bd; color:white" %)Example: 12mA meaning
458 +|(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
465 465  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
466 466  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
467 467  |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
... ... @@ -472,9 +472,9 @@
472 472  === 2.3.5 0~~20mA value (IDC_IN) ===
473 473  
474 474  
475 -The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
469 +The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
476 476  
477 -Example:
471 +(% style="color:#037691" %)**Example**:
478 478  
479 479  27AE(H) = 10158 (D)/1000 = 10.158mA.
480 480  
... ... @@ -489,7 +489,7 @@
489 489  
490 490  Measure the voltage value. The range is 0 to 30V.
491 491  
492 -Example:
486 +(% style="color:#037691" %)**Example**:
493 493  
494 494  138E(H) = 5006(D)/1000= 5.006V
495 495  
... ... @@ -499,7 +499,7 @@
499 499  
500 500  IN1 and IN2 are used as digital input pins.
501 501  
502 -Example:
496 +(% style="color:#037691" %)**Example**:
503 503  
504 504  09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
505 505  
... ... @@ -506,9 +506,9 @@
506 506  09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
507 507  
508 508  
509 -This data field shows if this packet is generated by Interrupt Pin or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
503 +This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
510 510  
511 -Example:
505 +(% style="color:#037691" %)**Example:**
512 512  
513 513  09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
514 514  
... ... @@ -522,13 +522,9 @@
522 522  
523 523  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
524 524  |(% style="background-color:#4f81bd; color:white; width:65px" %)(((
525 -
526 -
527 -Size(bytes)
528 -)))|(% style="background-color:#4f81bd; color:white; width:35px" %)2|(% style="background-color:#4f81bd; color:white; width:400px" %)n
519 +**Size(bytes)**
520 +)))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
529 529  |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
530 -
531 -
532 532  Voltage value, each 2 bytes is a set of voltage values.
533 533  )))
534 534  
... ... @@ -561,9 +561,9 @@
561 561  
562 562  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
563 563  
564 -Step 1: Be sure that your device is programmed and properly connected to the network at this time.
554 +(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
565 565  
566 -Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
556 +(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
567 567  
568 568  [[image:1675144951092-237.png]]
569 569  
... ... @@ -571,9 +571,9 @@
571 571  [[image:1675144960452-126.png]]
572 572  
573 573  
574 -Step 3: Create an account or log in Datacake.
564 +(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
575 575  
576 -Step 4: Create PS-LB/LS product.
566 +(% style="color:blue" %)**Step 4:** (%%)Create PS-LB/LS product.
577 577  
578 578  [[image:1675145004465-869.png]]
579 579  
... ... @@ -584,7 +584,7 @@
584 584  [[image:1675145029119-717.png]]
585 585  
586 586  
587 -Step 5: add payload decode
577 +(% style="color:blue" %)**Step 5: **(%%)add payload decode
588 588  
589 589  [[image:1675145051360-659.png]]
590 590  
... ... @@ -608,13 +608,13 @@
608 608  
609 609  PS-LB uses Unix TimeStamp format based on
610 610  
611 -[[image:image-20250401163826-3.jpeg]]
601 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861618065-927.png?width=705&height=109&rev=1.1||alt="1652861618065-927.png" height="109" width="705"]]
612 612  
613 613  Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
614 614  
615 615  Below is the converter example:
616 616  
617 -[[image:image-20250401163906-4.jpeg]]
607 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861637105-371.png?width=732&height=428&rev=1.1||alt="1652861637105-371.png"]]
618 618  
619 619  
620 620  === 2.6.2 Set Device Time ===
... ... @@ -623,16 +623,16 @@
623 623  There are two ways to set the device's time:
624 624  
625 625  
626 -~1. Through LoRaWAN MAC Command (Default settings)
616 +(% style="color:blue" %)**1. Through LoRaWAN MAC Command (Default settings)**
627 627  
628 628  Users need to set SYNCMOD=1 to enable sync time via the MAC command.
629 629  
630 630  Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
631 631  
632 -Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.
622 +(% style="color:red" %)**Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.**
633 633  
634 634  
635 - 2. Manually Set Time
625 +(% style="color:blue" %)** 2. Manually Set Time**
636 636  
637 637  Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
638 638  
... ... @@ -642,11 +642,9 @@
642 642  Users can poll sensor values based on timestamps. Below is the downlink command.
643 643  
644 644  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
645 -|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31)
646 -|(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte
635 +|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)**Downlink Command to poll Open/Close status (0x31)**
636 +|(% style="background-color:#f2f2f2; width:67px" %)**1byte**|(% style="background-color:#f2f2f2; width:145px" %)**4bytes**|(% style="background-color:#f2f2f2; width:133px" %)**4bytes**|(% style="background-color:#f2f2f2; width:163px" %)**1byte**
647 647  |(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)(((
648 -
649 -
650 650  Timestamp end
651 651  )))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval
652 652  
... ... @@ -664,32 +664,36 @@
664 664  
665 665  The Datalog uplinks will use below payload format.
666 666  
667 -Retrieval data payload:
655 +**Retrieval data payload:**
668 668  
669 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
657 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
670 670  |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
671 -Size(bytes)
672 -)))|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)2|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)4
659 +**Size(bytes)**
660 +)))|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**2**|=(% style="width: 55px; background-color:#4F81BD;color:white" %)**2**|=(% style="width: 83px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 201px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4**
673 673  |(% style="width:103px" %)Value|(% style="width:68px" %)(((
674 -Probe_mod
662 +Probe
663 +
664 +_mod
675 675  )))|(% style="width:104px" %)(((
676 -VDC_intput_V
666 +VDC
667 +
668 +_intput_V
677 677  )))|(% style="width:83px" %)(((
678 -IDC_intput_mA
670 +IDC
671 +
672 +_intput_mA
679 679  )))|(% style="width:201px" %)(((
680 680  IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status
681 681  )))|(% style="width:86px" %)Unix Time Stamp
682 682  
677 +**IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:**
683 683  
684 -
685 -IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:
686 -
687 687  [[image:image-20250117104847-4.png]]
688 688  
689 689  
690 -No ACK Message:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
682 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
691 691  
692 -Poll Message Flag: 1: This message is a poll message reply.
684 +**Poll Message Flag**: 1: This message is a poll message reply.
693 693  
694 694  * Poll Message Flag is set to 1.
695 695  
... ... @@ -697,17 +697,17 @@
697 697  
698 698  For example, in US915 band, the max payload for different DR is:
699 699  
700 -a) DR0: max is 11 bytes so one entry of data
692 +**a) DR0:** max is 11 bytes so one entry of data
701 701  
702 -b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
694 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
703 703  
704 -c) DR2: total payload includes 11 entries of data
696 +**c) DR2:** total payload includes 11 entries of data
705 705  
706 -d) DR3: total payload includes 22 entries of data.
698 +**d) DR3: **total payload includes 22 entries of data.
707 707  
708 708  If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
709 709  
710 -Example:
702 +**Example:**
711 711  
712 712  If PS-LB-NA has below data inside Flash:
713 713  
... ... @@ -721,46 +721,53 @@
721 721   Stop time: 6788DB63 = time 25/1/16 10:11:47
722 722  
723 723  
724 -PA-LB-NA will uplink this payload.
716 +**PA-LB-NA will uplink this payload.**
725 725  
726 726  [[image:image-20250117104827-2.png]]
727 727  
728 -
720 +(((
729 729  00001B620000406788D9BF  00000D130000406788D9FB  00000D120000406788DA37  00000D110000406788DA73  00000D100000406788DAAF  00000D100000406788DAEB  00000D0F0000406788DB27  00000D100000406788DB63
722 +)))
730 730  
731 -
724 +(((
732 732  Where the first 11 bytes is for the first entry :
726 +)))
733 733  
734 -
728 +(((
735 735  0000  0D10  0000  40  6788DB63
730 +)))
736 736  
732 +(((
733 +**Probe_mod **= 0x0000 = 0000
734 +)))
737 737  
738 -Probe_mod = 0x0000 = 0000
736 +(((
737 +**VDC_intput_V **= 0x0D10/1000=3.344V
739 739  
739 +**IDC_intput_mA **= 0x0000/1000=0mA
740 +)))
740 740  
741 -VDC_intput_V = 0x0D10/1000=3.344V
742 +(((
743 +**IN1_pin_level **= (0x40& 0x08)? "High":"Low" = 0(Low)
742 742  
743 -IDC_intput_mA = 0x0000/1000=0mA
745 +**IN2_pin_level = (**0x40& 0x04)? "High":"Low" = 0(Low)
744 744  
747 +**Exti_pin_level = (**0x40& 0x02)? "High":"Low" = 0(Low)
745 745  
746 -IN1_pin_level = (0x40& 0x08)? "High":"Low" = 0(Low)
749 +**Exti_status = (**0x40& 0x01)? "True":"False" = 0(False)
750 +)))
747 747  
748 -IN2_pin_level = (0x40& 0x04)? "High":"Low" = 0(Low)
752 +(((
753 +**Unix time** is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
754 +)))
749 749  
750 -Exti_pin_level = (0x40& 0x02)? "High":"Low" = 0(Low)
756 +**Its data format is:**
751 751  
752 -Exti_status = (0x40& 0x01)? "True":"False" = 0(False)
758 +[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level**, **IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level**, **IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
753 753  
760 +(% style="color:red" %)**Note: water_deep in the data needs to be converted using decoding to get it.**
754 754  
755 -Unix time is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
756 756  
757 -Its data format is:
758 -
759 -[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
760 -
761 -Note: water_deep in the data needs to be converted using decoding to get it.
762 -
763 -
764 764  === 2.6.5 Decoder in TTN V3 ===
765 765  
766 766  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
... ... @@ -787,51 +787,47 @@
787 787  
788 788  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
789 789  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
790 -
791 -
792 -Size(bytes)
793 -)))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
789 +**Size(bytes)**
790 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
794 794  |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
795 -
796 -
797 797  [[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag
798 798  )))
799 799  
800 -IN1 &IN2 , Interrupt  flag , ROC_flag:
795 +(% style="color:blue" %)**IN1 &IN2 , Interrupt  flag , ROC_flag:**
801 801  
802 802  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
803 -|(% style="background-color:#4f81bd; color:white; width:50px" %)Size(bit)|(% style="background-color:#4f81bd; color:white; width:60px" %)bit7|(% style="background-color:#4f81bd; color:white; width:62px" %)bit6|(% style="background-color:#4f81bd; color:white; width:62px" %)bit5|(% style="background-color:#4f81bd; color:white; width:65px" %)bit4|(% style="background-color:#4f81bd; color:white; width:56px" %)bit3|(% style="background-color:#4f81bd; color:white; width:55px" %)bit2|(% style="background-color:#4f81bd; color:white; width:55px" %)bit1|(% style="background-color:#4f81bd; color:white; width:50px" %)bit0
798 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bit)**|(% style="background-color:#4f81bd; color:white; width:60px" %)**bit7**|(% style="background-color:#4f81bd; color:white; width:62px" %)**bit6**|(% style="background-color:#4f81bd; color:white; width:62px" %)**bit5**|(% style="background-color:#4f81bd; color:white; width:65px" %)**bit4**|(% style="background-color:#4f81bd; color:white; width:56px" %)**bit3**|(% style="background-color:#4f81bd; color:white; width:55px" %)**bit2**|(% style="background-color:#4f81bd; color:white; width:55px" %)**bit1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**bit0**
804 804  |(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status
805 805  
806 -* IDC_Roc_flagL
801 +* (% style="color:#037691" %)**IDC_Roc_flagL**
807 807  
808 -80 (H): (0x80&0x80)=80(H)=1000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
803 +80 (H): (0x80&0x80)=80(H)=**1**000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
809 809  
810 810  60 (H): (0x60&0x80)=0  bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
811 811  
812 812  
813 -* IDC_Roc_flagH
808 +* (% style="color:#037691" %)**IDC_Roc_flagH**
814 814  
815 -60 (H): (0x60&0x40)=60(H)=01000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
810 +60 (H): (0x60&0x40)=60(H)=0**1**000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
816 816  
817 817  80 (H): (0x80&0x40)=0  bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
818 818  
819 819  
820 -* VDC_Roc_flagL
815 +* (% style="color:#037691" %)**VDC_Roc_flagL**
821 821  
822 -20 (H): (0x20&0x20)=20(H)=0010 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
817 +20 (H): (0x20&0x20)=20(H)=00**1**0 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
823 823  
824 824  90 (H): (0x90&0x20)=0  bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
825 825  
826 826  
827 -* VDC_Roc_flagH
822 +* (% style="color:#037691" %)**VDC_Roc_flagH**
828 828  
829 -90 (H): (0x90&0x10)=10(H)=0001 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
824 +90 (H): (0x90&0x10)=10(H)=000**1** 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
830 830  
831 831  20 (H): (0x20&0x10)=0  bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
832 832  
833 833  
834 -* IN1_pin_level & IN2_pin_level
829 +* (% style="color:#037691" %)**IN1_pin_level & IN2_pin_level**
835 835  
836 836  IN1 and IN2 are used as digital input pins.
837 837  
... ... @@ -840,15 +840,15 @@
840 840  80 (H): (0x09&0x04)=0    IN2 pin is low level.
841 841  
842 842  
843 -* Exti_pin_level &Exti_status
838 +* (% style="color:#037691" %)**Exti_pin_level &Exti_status**
844 844  
845 845  This data field shows whether the packet is generated by an interrupt pin.
846 846  
847 -Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the GPIO_EXTI pin.
842 +Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the **GPIO_EXTI** pin.
848 848  
849 -Exti_pin_level:  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
844 +**Exti_pin_level:**  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
850 850  
851 -Exti_status: 80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
846 +**Exti_status: **80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
852 852  
853 853  
854 854  === 2.8.2 Set the Report on Change ===
... ... @@ -861,16 +861,14 @@
861 861  
862 862  Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed.
863 863  
864 -* Change value: The amount by which the next detection value increases/decreases relative to the previous detection value.
865 -* Comparison value: A parameter to compare with the latest ROC test.
859 +* (% style="color:#037691" %)**Change value: **(%%)The amount by which the next detection value increases/decreases relative to the previous detection value.
860 +* (% style="color:#037691" %)**Comparison value:**(%%) A parameter to compare with the latest ROC test.
866 866  
867 -AT Command: AT+ROC
862 +(% style="color:blue" %)**AT Command: AT+ROC**
868 868  
869 869  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
870 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
865 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)**Parameters**|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation**
871 871  |(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
872 -
873 -
874 874  0,0,0,0(default)
875 875  OK
876 876  )))
... ... @@ -879,7 +879,6 @@
879 879  
880 880  
881 881  
882 -
883 883  AT+ROC=a,b,c,d
884 884  )))|(% style="width:154px" %)(((
885 885  
... ... @@ -888,25 +888,20 @@
888 888  
889 889  
890 890  
891 -
892 -a: Enable or disable the ROC
883 +**a**: Enable or disable the ROC
893 893  )))|(% style="width:197px" %)(((
894 -
885 +**0:** off
886 +**1:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
895 895  
896 -0: off
897 -1: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
898 -
899 -2: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
888 +**2: **Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
900 900  )))
901 -|(% style="width:154px" %)b: Set the detection interval|(% style="width:197px" %)(((
902 -
903 -
890 +|(% style="width:154px" %)**b**: Set the detection interval|(% style="width:197px" %)(((
904 904  Range:  0~~65535s
905 905  )))
906 -|(% style="width:154px" %)c: Setting the IDC change value|(% style="width:197px" %)Unit: uA
907 -|(% style="width:154px" %)d: Setting the VDC change value|(% style="width:197px" %)Unit: mV
893 +|(% style="width:154px" %)**c**: Setting the IDC change value|(% style="width:197px" %)Unit: uA
894 +|(% style="width:154px" %)**d**: Setting the VDC change value|(% style="width:197px" %)Unit: mV
908 908  
909 -Example:
896 +**Example:**
910 910  
911 911  * AT+ROC=0,0,0,0  ~/~/The ROC function is not used.
912 912  * AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed.
... ... @@ -913,25 +913,25 @@
913 913  * AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage.
914 914  * AT+ROC=2,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed.
915 915  
916 -Downlink Command: 0x09 aa bb cc dd
903 +(% style="color:blue" %)**Downlink Command: 0x09 aa bb cc dd**
917 917  
918 918  Format: Function code (0x09) followed by 4 bytes.
919 919  
920 -aa: 1 byte; Set the wave alarm mode.
907 +(% style="color:blue" %)**aa: **(% style="color:#037691" %)**1 byte;**(%%) Set the wave alarm mode.
921 921  
922 -bb: 2 bytes; Set the detection interval. (second)
909 +(% style="color:blue" %)**bb: **(% style="color:#037691" %)**2 bytes;**(%%) Set the detection interval. (second)
923 923  
924 -cc: 2 bytes; Setting the IDC change threshold. (uA)
911 +(% style="color:blue" %)**cc: **(% style="color:#037691" %)**2 bytes;**(%%) Setting the IDC change threshold. (uA)
925 925  
926 -dd: 2 bytes; Setting the VDC change threshold. (mV)
913 +(% style="color:blue" %)**dd: **(% style="color:#037691" %)**2 bytes;**(%%) Setting the VDC change threshold. (mV)
927 927  
928 -Example:
915 +**Example:**
929 929  
930 -* Downlink Payload: 09 01 00 3C 0B B8 01 F4  ~/~/Equal to AT+ROC=1,60,3000, 500
931 -* Downlink Payload: 09 01 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=1,60,3000,0
932 -* Downlink Payload: 09 02 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=2,60,3000,0
917 +* Downlink Payload: **09 01 00 3C 0B B8 01 F4 ** ~/~/Equal to AT+ROC=1,60,3000, 500
918 +* Downlink Payload: **09 01 00 3C 0B B8 00 00 ** ~/~/Equal to AT+ROC=1,60,3000,0
919 +* Downlink Payload: **09 02 00 3C 0B B8 00 00 ** ~/~/Equal to AT+ROC=2,60,3000,0
933 933  
934 -Screenshot of parsing example in TTN:
921 +(% style="color:blue" %)**Screenshot of parsing example in TTN:**
935 935  
936 936  * AT+ROC=1,60,3000, 500.
937 937  
... ... @@ -942,13 +942,11 @@
942 942  
943 943  Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded.
944 944  
945 -AT Command: AT+ROC=3,a,b,c,d,e
932 +(% style="color:blue" %)**AT Command: AT+ROC=3,a,b,c,d,e**
946 946  
947 947  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
948 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
935 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)**Parameters**|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation**
949 949  |(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
950 -
951 -
952 952  0,0,0,0(default)
953 953  OK
954 954  )))
... ... @@ -957,70 +957,57 @@
957 957  
958 958  
959 959  
960 -
961 -AT+ROC=3,a,b,c,d,e
945 +AT+ROC=(% style="color:blue" %)**3**(%%),a,b,c,d,e
962 962  )))|(% style="width:160px" %)(((
963 -
964 -
965 -a: Set the detection interval
947 +**a: **Set the detection interval
966 966  )))|(% style="width:185px" %)(((
967 -
968 -
969 969  Range:  0~~65535s
970 970  )))
971 -|(% style="width:160px" %)b: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
972 -
951 +|(% style="width:160px" %)**b**: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
952 +**0:** Less than the set IDC threshold, Alarm
973 973  
974 -0: Less than the set IDC threshold, Alarm
975 -
976 -1: Greater than the set IDC threshold, Alarm
954 +**1:** Greater than the set IDC threshold, Alarm
977 977  )))
978 978  |(% style="width:160px" %)(((
979 -
980 -
981 -c:  IDC alarm threshold
957 +**c**:  IDC alarm threshold
982 982  )))|(% style="width:185px" %)(((
983 -
984 -
985 985  Unit: uA
986 986  )))
987 -|(% style="width:160px" %)d: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
988 -
961 +|(% style="width:160px" %)**d**: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
962 +**0:** Less than the set VDC threshold, Alarm
989 989  
990 -0: Less than the set VDC threshold, Alarm
991 -
992 -1: Greater than the set VDC threshold, Alarm
964 +**1:** Greater than the set VDC threshold, Alarm
993 993  )))
994 -|(% style="width:160px" %)e: VDC alarm threshold|(% style="width:185px" %)Unit: mV
966 +|(% style="width:160px" %)**e:** VDC alarm threshold|(% style="width:185px" %)Unit: mV
995 995  
996 -Example:
968 +**Example:**
997 997  
998 998  * AT+ROC=3,60,0,3000,0,5000  ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
999 999  * AT+ROC=3,180,1,3000,1,5000  ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
1000 1000  * AT+ROC=3,300,0,3000,1,5000  ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
1001 1001  
1002 -Downlink Command: 0x09 03 aa bb cc dd ee
974 +(% style="color:blue" %)**Downlink Command: 0x09 03 aa bb cc dd ee**
1003 1003  
1004 1004  Format: Function code (0x09) followed by 03 and the remaining 5 bytes.
1005 1005  
1006 -aa: 2 bytes; Set the detection interval.(second)
978 +(% style="color:blue" %)**aa: **(% style="color:#037691" %)**2 bytes;**(%%) Set the detection interval.(second)
1007 1007  
1008 -bb: 1 byte; Set the IDC alarm trigger condition.
980 +(% style="color:blue" %)**bb: **(% style="color:#037691" %)**1 byte; **(%%)Set the IDC alarm trigger condition.
1009 1009  
1010 -cc: 2 bytes; IDC alarm threshold.(uA)
982 +(% style="color:blue" %)**cc: **(% style="color:#037691" %)**2 bytes;**(%%) IDC alarm threshold.(uA)
1011 1011  
1012 1012  
1013 -dd: 1 byte; Set the VDC alarm trigger condition.
985 +(% style="color:blue" %)**dd: **(% style="color:#037691" %)**1 byte;**(%%) Set the VDC alarm trigger condition.
1014 1014  
1015 -ee: 2 bytes; VDC alarm threshold.(mV)
987 +(% style="color:blue" %)**ee: **(% style="color:#037691" %)**2 bytes; **(%%)VDC alarm threshold.(mV)
1016 1016  
1017 -Example:
989 +**Example:**
1018 1018  
1019 -* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
1020 -* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
1021 -* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
991 +* Downlink Payload: **09 03 00 3C 00 0B B8 00 13 38** ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
992 +* Downlink Payload: **09 03 00 b4 01 0B B8 01 13 38**  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
993 +* Downlink Payload: **09 03 01 2C 00 0B B8 01 13 38**  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
1022 1022  
1023 -Screenshot of parsing example in TTN:
995 +(% style="color:blue" %)**Screenshot of parsing example in TTN:**
1024 1024  
1025 1025  * AT+ROC=3,60,0,3000,0,5000
1026 1026  
... ... @@ -1030,7 +1030,7 @@
1030 1030  == 2.9 ​Firmware Change Log ==
1031 1031  
1032 1032  
1033 -Firmware download link:
1005 +**Firmware download link:**
1034 1034  
1035 1035  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
1036 1036  
... ... @@ -1042,7 +1042,7 @@
1042 1042  
1043 1043  PS-LB/LS supports below configure method:
1044 1044  
1045 -* AT Command via Bluetooth Connection (Recommand Way): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1017 +* AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1046 1046  * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
1047 1047  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
1048 1048  
... ... @@ -1070,25 +1070,21 @@
1070 1070  
1071 1071  Feature: Change LoRaWAN End Node Transmit Interval.
1072 1072  
1073 -AT Command: AT+TDC
1045 +(% style="color:blue" %)**AT Command: AT+TDC**
1074 1074  
1075 1075  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1076 -|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response
1048 +|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Response**
1077 1077  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
1078 -
1079 -
1080 1080  30000
1081 1081  OK
1082 1082  the interval is 30000ms = 30s
1083 1083  )))
1084 1084  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
1085 -
1086 -
1087 1087  OK
1088 1088  Set transmit interval to 60000ms = 60 seconds
1089 1089  )))
1090 1090  
1091 -Downlink Command: 0x01
1059 +(% style="color:blue" %)**Downlink Command: 0x01**
1092 1092  
1093 1093  Format: Command Code (0x01) followed by 3 bytes time value.
1094 1094  
... ... @@ -1102,20 +1102,16 @@
1102 1102  
1103 1103  Feature, Set Interrupt mode for GPIO_EXIT.
1104 1104  
1105 -AT Command: AT+INTMOD
1073 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1106 1106  
1107 1107  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1108 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response
1076 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Response**
1109 1109  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
1110 -
1111 -
1112 1112  0
1113 1113  OK
1114 1114  the mode is 0 =Disable Interrupt
1115 1115  )))
1116 1116  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
1117 -
1118 -
1119 1119  Set Transmit Interval
1120 1120  0. (Disable Interrupt),
1121 1121  ~1. (Trigger by rising and falling edge)
... ... @@ -1123,7 +1123,7 @@
1123 1123  3. (Trigger by rising edge)
1124 1124  )))|(% style="background-color:#f2f2f2; width:157px" %)OK
1125 1125  
1126 -Downlink Command: 0x06
1090 +(% style="color:blue" %)**Downlink Command: 0x06**
1127 1127  
1128 1128  Format: Command Code (0x06) followed by 3 bytes.
1129 1129  
... ... @@ -1137,99 +1137,79 @@
1137 1137  
1138 1138  Feature, Control the output 3V3 , 5V or 12V.
1139 1139  
1140 -AT Command: AT+3V3T
1104 +(% style="color:blue" %)**AT Command: AT+3V3T**
1141 1141  
1142 1142  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
1143 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1107 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 201px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1144 1144  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
1145 -
1146 -
1147 1147  0
1148 1148  OK
1149 1149  )))
1150 1150  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1151 -
1152 -
1153 1153  OK
1154 1154  default setting
1155 1155  )))
1156 1156  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
1157 -
1158 -
1159 1159  OK
1160 1160  )))
1161 1161  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1162 -
1163 -
1164 1164  OK
1165 1165  )))
1166 1166  
1167 -AT Command: AT+5VT
1123 +(% style="color:blue" %)**AT Command: AT+5VT**
1168 1168  
1169 1169  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
1170 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1126 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1171 1171  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1172 -
1173 -
1174 1174  0
1175 1175  OK
1176 1176  )))
1177 1177  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1178 -
1179 -
1180 1180  OK
1181 1181  default setting
1182 1182  )))
1183 1183  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
1184 -
1185 -
1186 1186  OK
1187 1187  )))
1188 1188  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1189 -
1190 -
1191 1191  OK
1192 1192  )))
1193 1193  
1194 -AT Command: AT+12VT
1142 +(% style="color:blue" %)**AT Command: AT+12VT**
1195 1195  
1196 1196  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
1197 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response
1145 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 199px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1198 1198  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1199 -
1200 -
1201 1201  0
1202 1202  OK
1203 1203  )))
1204 1204  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
1205 1205  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
1206 -
1207 -
1208 1208  OK
1209 1209  )))
1210 1210  
1211 -Downlink Command: 0x07
1155 +(% style="color:blue" %)**Downlink Command: 0x07**
1212 1212  
1213 1213  Format: Command Code (0x07) followed by 3 bytes.
1214 1214  
1215 1215  The first byte is which power, the second and third bytes are the time to turn on.
1216 1216  
1217 -* Example 1: Downlink Payload: 070101F4  ~-~-->  AT+3V3T=500
1218 -* Example 2: Downlink Payload: 0701FFFF   ~-~-->  AT+3V3T=65535
1219 -* Example 3: Downlink Payload: 070203E8  ~-~-->  AT+5VT=1000
1220 -* Example 4: Downlink Payload: 07020000  ~-~-->  AT+5VT=0
1221 -* Example 5: Downlink Payload: 070301F4  ~-~-->  AT+12VT=500
1222 -* Example 6: Downlink Payload: 07030000  ~-~-->  AT+12VT=0
1161 +* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
1162 +* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
1163 +* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
1164 +* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
1165 +* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
1166 +* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
1223 1223  
1224 -Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.
1168 +(% style="color:red" %)**Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.**
1225 1225  
1226 -Therefore, the corresponding downlink command is increased by one byte to five bytes.
1170 +(% style="color:red" %)**Therefore, the corresponding downlink command is increased by one byte to five bytes.**
1227 1227  
1228 -Example:
1172 +**Example: **
1229 1229  
1230 -* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 01 01 D4 C0  ~-~-->  AT+3V3T=120000
1231 -* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 02 01 86 A0  ~-~-->  AT+5VT=100000
1232 -* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 03 01 38 80  ~-~-->  AT+12VT=80000
1174 +* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 **01** 01 D4 C0  **~-~-->**  AT+3V3T=120000
1175 +* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 **02** 01 86 A0  **~-~-->**  AT+5VT=100000
1176 +* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 **03** 01 38 80  **~-~-->**  AT+12VT=80000
1233 1233  
1234 1234  === 3.3.4 Set the Probe Model ===
1235 1235  
... ... @@ -1236,7 +1236,7 @@
1236 1236  
1237 1237  Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
1238 1238  
1239 -AT Command: AT +PROBE
1183 +(% style="color:blue" %)**AT Command: AT** **+PROBE**
1240 1240  
1241 1241  AT+PROBE=aabb
1242 1242  
... ... @@ -1255,13 +1255,11 @@
1255 1255  (0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C)
1256 1256  
1257 1257  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1258 -|(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1202 +|(% style="background-color:#4f81bd; color:white; width:154px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:269px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1259 1259  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
1260 1260  OK
1261 1261  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
1262 1262  |(% style="background-color:#f2f2f2; width:154px" %)(((
1263 -
1264 -
1265 1265  AT+PROBE=000A
1266 1266  )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
1267 1267  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
... ... @@ -1268,12 +1268,12 @@
1268 1268  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
1269 1269  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
1270 1270  
1271 -Downlink Command: 0x08
1213 +(% style="color:blue" %)**Downlink Command: 0x08**
1272 1272  
1273 1273  Format: Command Code (0x08) followed by 2 bytes.
1274 1274  
1275 -* Example 1: Downlink Payload: 080003  ~-~-->  AT+PROBE=0003
1276 -* Example 2: Downlink Payload: 080101  ~-~-->  AT+PROBE=0101
1217 +* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
1218 +* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
1277 1277  
1278 1278  === 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
1279 1279  
... ... @@ -1280,47 +1280,41 @@
1280 1280  
1281 1281  Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time.
1282 1282  
1283 -AT Command: AT +STDC
1225 +(% style="color:blue" %)**AT Command: AT** **+STDC**
1284 1284  
1285 1285  AT+STDC=aa,bb,bb
1286 1286  
1287 -aa:
1288 -0: means disable this function and use TDC to send packets.
1289 -1: means that the function is enabled to send packets by collecting VDC data for multiple times.
1290 -2: means that the function is enabled to send packets by collecting IDC data for multiple times.
1291 -bb: Each collection interval (s), the value is 1~~65535
1292 -cc: the number of collection times, the value is 1~~120
1229 +(% style="color:#037691" %)**aa:**(%%)
1230 +**0:** means disable this function and use TDC to send packets.
1231 +**1:** means that the function is enabled to send packets by collecting VDC data for multiple times.
1232 +**2:** means that the function is enabled to send packets by collecting IDC data for multiple times.
1233 +(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
1234 +(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
1293 1293  
1294 1294  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1295 -|(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1237 +|(% style="background-color:#4f81bd; color:white; width:160px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:215px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1296 1296  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
1297 1297  OK
1298 1298  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1299 -
1300 -
1301 1301  Attention:Take effect after ATZ
1302 1302  
1303 1303  OK
1304 1304  )))
1305 1305  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
1306 -
1307 -
1308 1308  Use the TDC interval to send packets.(default)
1309 1309  
1310 1310  
1311 1311  )))|(% style="background-color:#f2f2f2" %)(((
1312 -
1313 -
1314 1314  Attention:Take effect after ATZ
1315 1315  
1316 1316  OK
1317 1317  )))
1318 1318  
1319 -Downlink Command: 0xAE
1255 +(% style="color:blue" %)**Downlink Command: 0xAE**
1320 1320  
1321 1321  Format: Command Code (0xAE) followed by 4 bytes.
1322 1322  
1323 -* Example 1: Downlink Payload: AE 01 02 58 12 ~-~-->  AT+STDC=1,600,18
1259 +* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
1324 1324  
1325 1325  = 4. Battery & Power Consumption =
1326 1326  
... ... @@ -1327,7 +1327,7 @@
1327 1327  
1328 1328  PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1329 1329  
1330 -[[Battery Info & Power Consumption Analyze>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1266 +[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1331 1331  
1332 1332  
1333 1333  = 5. OTA firmware update =
... ... @@ -1363,22 +1363,22 @@
1363 1363  Test the current values at the depth of different liquids and convert them to a linear scale.
1364 1364  Replace its ratio with the ratio of water to current in the decoder.
1365 1365  
1366 -Example:
1302 +**Example:**
1367 1367  
1368 1368  Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
1369 1369  
1370 -Calculate scale factor:
1306 +**Calculate scale factor:**
1371 1371  Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
1372 1372  
1373 -Calculation formula:
1309 +**Calculation formula:**
1374 1374  
1375 1375  Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
1376 1376  
1377 -Actual calculations:
1313 +**Actual calculations:**
1378 1378  
1379 1379  Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
1380 1380  
1381 -Error:
1317 +**Error:**
1382 1382  
1383 1383  0.009810726
1384 1384  
... ... @@ -1402,6 +1402,7 @@
1402 1402  = 8. Order Info =
1403 1403  
1404 1404  
1341 +(% style="display:none" %)
1405 1405  
1406 1406  [[image:image-20241021093209-1.png]]
1407 1407  
... ... @@ -1408,11 +1408,11 @@
1408 1408  = 9. ​Packing Info =
1409 1409  
1410 1410  
1411 -Package Includes:
1348 +(% style="color:#037691" %)**Package Includes**:
1412 1412  
1413 1413  * PS-LB or PS-LS LoRaWAN Pressure Sensor
1414 1414  
1415 -Dimension and weight:
1352 +(% style="color:#037691" %)**Dimension and weight**:
1416 1416  
1417 1417  * Device Size: cm
1418 1418  * Device Weight: g
image-20250401163826-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -18.9 KB
Content
image-20250401163906-4.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -181.6 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0