<
From version < 123.12 >
edited by Xiaoling
on 2025/04/01 17:08
To version < 119.1 >
edited by Mengting Qiu
on 2025/04/01 10:21
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.ting
Content
... ... @@ -148,7 +148,7 @@
148 148  
149 149  === 1.4.3 Wireless Differential Air Pressure Sensor ===
150 150  
151 -[[image:image-20240511174954-1.png||height="215" width="215"]]
151 +[[image:image-20240511174954-1.png]]
152 152  
153 153  * Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
154 154  * Accuracy: 0.5% F.S, resolution is 0.05%.
... ... @@ -163,7 +163,7 @@
163 163  === 1.5.1 Thread Installation Type ===
164 164  
165 165  
166 -Application:
166 +(% style="color:blue" %)**Application:**
167 167  
168 168  * Hydraulic Pressure
169 169  * Petrochemical Industry
... ... @@ -181,7 +181,7 @@
181 181  === 1.5.2 Immersion Type ===
182 182  
183 183  
184 -Application:
184 +(% style="color:blue" %)**Application:**
185 185  
186 186  Liquid & Water Pressure / Level detect.
187 187  
... ... @@ -208,7 +208,7 @@
208 208  === 1.5.3 Wireless Differential Air Pressure Sensor ===
209 209  
210 210  
211 -Application:
211 +(% style="color:blue" %)**Application:**
212 212  
213 213  Indoor Air Control & Filter clogging Detect.
214 214  
... ... @@ -232,32 +232,28 @@
232 232  == 1.6 Sleep mode and working mode ==
233 233  
234 234  
235 -Deep Sleep Mode: Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
235 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
236 236  
237 -Working Mode: In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
237 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
238 238  
239 239  
240 240  == 1.7 Button & LEDs ==
241 241  
242 242  
243 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
243 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]](% style="display:none" %)
244 244  
245 245  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
246 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action
246 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
247 247  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
248 -
249 -
250 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once.
248 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
251 251  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
252 252  )))
253 253  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
254 -
255 -
256 -Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network.
257 -Green led will solidly turn on for 5 seconds after joined in network.
252 +(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
253 +(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
258 258  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
259 259  )))
260 -|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
256 +|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
261 261  
262 262  == 1.8 Pin Mapping ==
263 263  
... ... @@ -285,13 +285,13 @@
285 285  === 1.10.1 for LB version ===
286 286  
287 287  
288 -[[image:image-20250401163530-1.jpeg]]
284 +[[image:image-20240109160800-6.png]]
289 289  
290 290  
291 291  === 1.10.2 for LS version ===
292 292  
293 293  
294 -[[image:image-20250401163539-2.jpeg]]
290 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/WebHome/image-20231231203439-3.png?width=886&height=385&rev=1.1||alt="image-20231231203439-3.png"]]
295 295  
296 296  
297 297  = 2. Configure PS-LB/LS to connect to LoRaWAN network =
... ... @@ -299,7 +299,7 @@
299 299  == 2.1 How it works ==
300 300  
301 301  
302 -The PS-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
298 +The PS-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
303 303  
304 304  
305 305  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -313,7 +313,7 @@
313 313  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
314 314  
315 315  
316 -Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.
312 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB/LS.
317 317  
318 318  Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
319 319  
... ... @@ -323,32 +323,32 @@
323 323  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
324 324  
325 325  
326 -Register the device
322 +(% style="color:blue" %)**Register the device**
327 327  
328 328  [[image:1675144099263-405.png]]
329 329  
330 330  
331 -Add APP EUI and DEV EUI
327 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
332 332  
333 333  [[image:1675144117571-832.png]]
334 334  
335 335  
336 -Add APP EUI in the application
332 +(% style="color:blue" %)**Add APP EUI in the application**
337 337  
338 338  
339 339  [[image:1675144143021-195.png]]
340 340  
341 341  
342 -Add APP KEY
338 +(% style="color:blue" %)**Add APP KEY**
343 343  
344 344  [[image:1675144157838-392.png]]
345 345  
346 -Step 2: Activate on PS-LB/LS
342 +(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB/LS
347 347  
348 348  
349 349  Press the button for 5 seconds to activate the PS-LB/LS.
350 350  
351 -Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network.
347 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
352 352  
353 353  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
354 354  
... ... @@ -363,9 +363,9 @@
363 363  Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
364 364  
365 365  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
366 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)Device Status (FPORT=5)
367 -|(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2
368 -|(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
362 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
363 +|(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
364 +|(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
369 369  
370 370  Example parse in TTNv3
371 371  
... ... @@ -372,11 +372,11 @@
372 372  [[image:1675144504430-490.png]]
373 373  
374 374  
375 -Sensor Model: For PS-LB/LS, this value is 0x16
371 +(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB/LS, this value is 0x16
376 376  
377 -Firmware Version: 0x0100, Means: v1.0.0 version
373 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
378 378  
379 -Frequency Band:
375 +(% style="color:#037691" %)**Frequency Band**:
380 380  
381 381  *0x01: EU868
382 382  
... ... @@ -407,7 +407,7 @@
407 407  *0x0e: MA869
408 408  
409 409  
410 -Sub-Band:
406 +(% style="color:#037691" %)**Sub-Band**:
411 411  
412 412  AU915 and US915:value 0x00 ~~ 0x08
413 413  
... ... @@ -416,7 +416,7 @@
416 416  Other Bands: Always 0x00
417 417  
418 418  
419 -Battery Info:
415 +(% style="color:#037691" %)**Battery Info**:
420 420  
421 421  Check the battery voltage.
422 422  
... ... @@ -431,12 +431,10 @@
431 431  Uplink payload includes in total 9 bytes.
432 432  
433 433  
434 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
430 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
435 435  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
436 -
437 -
438 -Size(bytes)
439 -)))|(% style="background-color:#4f81bd; color:white; width:50px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
432 +**Size(bytes)**
433 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
440 440  |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
441 441  
442 442  [[image:1675144608950-310.png]]
... ... @@ -458,10 +458,10 @@
458 458  PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
459 459  
460 460  
461 -For example.
455 +**For example.**
462 462  
463 463  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
464 -|(% style="background-color:#4f81bd; color:white" %)Part Number|(% style="background-color:#4f81bd; color:white" %)Probe Used|(% style="background-color:#4f81bd; color:white" %)4~~20mA scale|(% style="background-color:#4f81bd; color:white" %)Example: 12mA meaning
458 +|(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
465 465  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
466 466  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
467 467  |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
... ... @@ -472,9 +472,9 @@
472 472  === 2.3.5 0~~20mA value (IDC_IN) ===
473 473  
474 474  
475 -The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
469 +The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
476 476  
477 -Example:
471 +(% style="color:#037691" %)**Example**:
478 478  
479 479  27AE(H) = 10158 (D)/1000 = 10.158mA.
480 480  
... ... @@ -489,7 +489,7 @@
489 489  
490 490  Measure the voltage value. The range is 0 to 30V.
491 491  
492 -Example:
486 +(% style="color:#037691" %)**Example**:
493 493  
494 494  138E(H) = 5006(D)/1000= 5.006V
495 495  
... ... @@ -499,7 +499,7 @@
499 499  
500 500  IN1 and IN2 are used as digital input pins.
501 501  
502 -Example:
496 +(% style="color:#037691" %)**Example**:
503 503  
504 504  09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
505 505  
... ... @@ -506,9 +506,9 @@
506 506  09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
507 507  
508 508  
509 -This data field shows if this packet is generated by Interrupt Pin or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
503 +This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
510 510  
511 -Example:
505 +(% style="color:#037691" %)**Example:**
512 512  
513 513  09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
514 514  
... ... @@ -522,13 +522,9 @@
522 522  
523 523  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
524 524  |(% style="background-color:#4f81bd; color:white; width:65px" %)(((
525 -
526 -
527 -Size(bytes)
528 -)))|(% style="background-color:#4f81bd; color:white; width:35px" %)2|(% style="background-color:#4f81bd; color:white; width:400px" %)n
519 +**Size(bytes)**
520 +)))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
529 529  |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
530 -
531 -
532 532  Voltage value, each 2 bytes is a set of voltage values.
533 533  )))
534 534  
... ... @@ -561,9 +561,9 @@
561 561  
562 562  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
563 563  
564 -Step 1: Be sure that your device is programmed and properly connected to the network at this time.
554 +(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
565 565  
566 -Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
556 +(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
567 567  
568 568  [[image:1675144951092-237.png]]
569 569  
... ... @@ -571,9 +571,9 @@
571 571  [[image:1675144960452-126.png]]
572 572  
573 573  
574 -Step 3: Create an account or log in Datacake.
564 +(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
575 575  
576 -Step 4: Create PS-LB/LS product.
566 +(% style="color:blue" %)**Step 4:** (%%)Create PS-LB/LS product.
577 577  
578 578  [[image:1675145004465-869.png]]
579 579  
... ... @@ -584,7 +584,7 @@
584 584  [[image:1675145029119-717.png]]
585 585  
586 586  
587 -Step 5: add payload decode
577 +(% style="color:blue" %)**Step 5: **(%%)add payload decode
588 588  
589 589  [[image:1675145051360-659.png]]
590 590  
... ... @@ -608,13 +608,13 @@
608 608  
609 609  PS-LB uses Unix TimeStamp format based on
610 610  
611 -[[image:image-20250401163826-3.jpeg]]
601 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861618065-927.png?width=705&height=109&rev=1.1||alt="1652861618065-927.png" height="109" width="705"]]
612 612  
613 613  Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
614 614  
615 615  Below is the converter example:
616 616  
617 -[[image:image-20250401163906-4.jpeg]]
607 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861637105-371.png?width=732&height=428&rev=1.1||alt="1652861637105-371.png"]]
618 618  
619 619  
620 620  === 2.6.2 Set Device Time ===
... ... @@ -623,16 +623,16 @@
623 623  There are two ways to set the device's time:
624 624  
625 625  
626 -~1. Through LoRaWAN MAC Command (Default settings)
616 +(% style="color:blue" %)**1. Through LoRaWAN MAC Command (Default settings)**
627 627  
628 628  Users need to set SYNCMOD=1 to enable sync time via the MAC command.
629 629  
630 630  Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
631 631  
632 -Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.
622 +(% style="color:red" %)**Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.**
633 633  
634 634  
635 - 2. Manually Set Time
625 +(% style="color:blue" %)** 2. Manually Set Time**
636 636  
637 637  Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
638 638  
... ... @@ -642,8 +642,8 @@
642 642  Users can poll sensor values based on timestamps. Below is the downlink command.
643 643  
644 644  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
645 -|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31)
646 -|(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte
635 +|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)**Downlink Command to poll Open/Close status (0x31)**
636 +|(% style="background-color:#f2f2f2; width:67px" %)**1byte**|(% style="background-color:#f2f2f2; width:145px" %)**4bytes**|(% style="background-color:#f2f2f2; width:133px" %)**4bytes**|(% style="background-color:#f2f2f2; width:163px" %)**1byte**
647 647  |(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)(((
648 648  Timestamp end
649 649  )))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval
... ... @@ -662,31 +662,36 @@
662 662  
663 663  The Datalog uplinks will use below payload format.
664 664  
665 -Retrieval data payload:
655 +**Retrieval data payload:**
666 666  
667 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
657 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
668 668  |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
669 -Size(bytes)
670 -)))|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)2|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)4
659 +**Size(bytes)**
660 +)))|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**2**|=(% style="width: 55px; background-color:#4F81BD;color:white" %)**2**|=(% style="width: 83px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 201px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4**
671 671  |(% style="width:103px" %)Value|(% style="width:68px" %)(((
672 -Probe_mod
662 +Probe
663 +
664 +_mod
673 673  )))|(% style="width:104px" %)(((
674 -VDC_intput_V
666 +VDC
667 +
668 +_intput_V
675 675  )))|(% style="width:83px" %)(((
676 -IDC_intput_mA
670 +IDC
671 +
672 +_intput_mA
677 677  )))|(% style="width:201px" %)(((
678 678  IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status
679 679  )))|(% style="width:86px" %)Unix Time Stamp
680 680  
677 +**IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:**
681 681  
682 -IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:
683 -
684 684  [[image:image-20250117104847-4.png]]
685 685  
686 686  
687 -No ACK Message:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
682 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
688 688  
689 -Poll Message Flag: 1: This message is a poll message reply.
684 +**Poll Message Flag**: 1: This message is a poll message reply.
690 690  
691 691  * Poll Message Flag is set to 1.
692 692  
... ... @@ -694,17 +694,17 @@
694 694  
695 695  For example, in US915 band, the max payload for different DR is:
696 696  
697 -a) DR0: max is 11 bytes so one entry of data
692 +**a) DR0:** max is 11 bytes so one entry of data
698 698  
699 -b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
694 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
700 700  
701 -c) DR2: total payload includes 11 entries of data
696 +**c) DR2:** total payload includes 11 entries of data
702 702  
703 -d) DR3: total payload includes 22 entries of data.
698 +**d) DR3: **total payload includes 22 entries of data.
704 704  
705 705  If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
706 706  
707 -Example:
702 +**Example:**
708 708  
709 709  If PS-LB-NA has below data inside Flash:
710 710  
... ... @@ -718,46 +718,53 @@
718 718   Stop time: 6788DB63 = time 25/1/16 10:11:47
719 719  
720 720  
721 -PA-LB-NA will uplink this payload.
716 +**PA-LB-NA will uplink this payload.**
722 722  
723 723  [[image:image-20250117104827-2.png]]
724 724  
725 -
720 +(((
726 726  00001B620000406788D9BF  00000D130000406788D9FB  00000D120000406788DA37  00000D110000406788DA73  00000D100000406788DAAF  00000D100000406788DAEB  00000D0F0000406788DB27  00000D100000406788DB63
722 +)))
727 727  
728 -
724 +(((
729 729  Where the first 11 bytes is for the first entry :
726 +)))
730 730  
731 -
728 +(((
732 732  0000  0D10  0000  40  6788DB63
730 +)))
733 733  
732 +(((
733 +**Probe_mod **= 0x0000 = 0000
734 +)))
734 734  
735 -Probe_mod = 0x0000 = 0000
736 +(((
737 +**VDC_intput_V **= 0x0D10/1000=3.344V
736 736  
739 +**IDC_intput_mA **= 0x0000/1000=0mA
740 +)))
737 737  
738 -VDC_intput_V = 0x0D10/1000=3.344V
742 +(((
743 +**IN1_pin_level **= (0x40& 0x08)? "High":"Low" = 0(Low)
739 739  
740 -IDC_intput_mA = 0x0000/1000=0mA
745 +**IN2_pin_level = (**0x40& 0x04)? "High":"Low" = 0(Low)
741 741  
747 +**Exti_pin_level = (**0x40& 0x02)? "High":"Low" = 0(Low)
742 742  
743 -IN1_pin_level = (0x40& 0x08)? "High":"Low" = 0(Low)
749 +**Exti_status = (**0x40& 0x01)? "True":"False" = 0(False)
750 +)))
744 744  
745 -IN2_pin_level = (0x40& 0x04)? "High":"Low" = 0(Low)
752 +(((
753 +**Unix time** is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
754 +)))
746 746  
747 -Exti_pin_level = (0x40& 0x02)? "High":"Low" = 0(Low)
756 +**Its data format is:**
748 748  
749 -Exti_status = (0x40& 0x01)? "True":"False" = 0(False)
758 +[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level**, **IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level**, **IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
750 750  
760 +(% style="color:red" %)**Note: water_deep in the data needs to be converted using decoding to get it.**
751 751  
752 -Unix time is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
753 753  
754 -Its data format is:
755 -
756 -[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
757 -
758 -Note: water_deep in the data needs to be converted using decoding to get it.
759 -
760 -
761 761  === 2.6.5 Decoder in TTN V3 ===
762 762  
763 763  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
... ... @@ -784,47 +784,47 @@
784 784  
785 785  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
786 786  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
787 -Size(bytes)
788 -)))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
789 -|(% style="width:98px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
789 +**Size(bytes)**
790 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
791 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
790 790  [[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag
791 791  )))
792 792  
793 -IN1 &IN2 , Interrupt  flag , ROC_flag:
795 +(% style="color:blue" %)**IN1 &IN2 , Interrupt  flag , ROC_flag:**
794 794  
795 795  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
796 -|(% style="background-color:#4f81bd; color:white; width:50px" %)Size(bit)|(% style="background-color:#4f81bd; color:white; width:60px" %)bit7|(% style="background-color:#4f81bd; color:white; width:62px" %)bit6|(% style="background-color:#4f81bd; color:white; width:62px" %)bit5|(% style="background-color:#4f81bd; color:white; width:65px" %)bit4|(% style="background-color:#4f81bd; color:white; width:56px" %)bit3|(% style="background-color:#4f81bd; color:white; width:55px" %)bit2|(% style="background-color:#4f81bd; color:white; width:55px" %)bit1|(% style="background-color:#4f81bd; color:white; width:50px" %)bit0
798 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bit)**|(% style="background-color:#4f81bd; color:white; width:60px" %)**bit7**|(% style="background-color:#4f81bd; color:white; width:62px" %)**bit6**|(% style="background-color:#4f81bd; color:white; width:62px" %)**bit5**|(% style="background-color:#4f81bd; color:white; width:65px" %)**bit4**|(% style="background-color:#4f81bd; color:white; width:56px" %)**bit3**|(% style="background-color:#4f81bd; color:white; width:55px" %)**bit2**|(% style="background-color:#4f81bd; color:white; width:55px" %)**bit1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**bit0**
797 797  |(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status
798 798  
799 -* IDC_Roc_flagL
801 +* (% style="color:#037691" %)**IDC_Roc_flagL**
800 800  
801 -80 (H): (0x80&0x80)=80(H)=1000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
803 +80 (H): (0x80&0x80)=80(H)=**1**000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
802 802  
803 803  60 (H): (0x60&0x80)=0  bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
804 804  
805 805  
806 -* IDC_Roc_flagH
808 +* (% style="color:#037691" %)**IDC_Roc_flagH**
807 807  
808 -60 (H): (0x60&0x40)=60(H)=01000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
810 +60 (H): (0x60&0x40)=60(H)=0**1**000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
809 809  
810 810  80 (H): (0x80&0x40)=0  bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
811 811  
812 812  
813 -* VDC_Roc_flagL
815 +* (% style="color:#037691" %)**VDC_Roc_flagL**
814 814  
815 -20 (H): (0x20&0x20)=20(H)=0010 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
817 +20 (H): (0x20&0x20)=20(H)=00**1**0 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
816 816  
817 817  90 (H): (0x90&0x20)=0  bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
818 818  
819 819  
820 -* VDC_Roc_flagH
822 +* (% style="color:#037691" %)**VDC_Roc_flagH**
821 821  
822 -90 (H): (0x90&0x10)=10(H)=0001 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
824 +90 (H): (0x90&0x10)=10(H)=000**1** 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
823 823  
824 824  20 (H): (0x20&0x10)=0  bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
825 825  
826 826  
827 -* IN1_pin_level & IN2_pin_level
829 +* (% style="color:#037691" %)**IN1_pin_level & IN2_pin_level**
828 828  
829 829  IN1 and IN2 are used as digital input pins.
830 830  
... ... @@ -833,15 +833,15 @@
833 833  80 (H): (0x09&0x04)=0    IN2 pin is low level.
834 834  
835 835  
836 -* Exti_pin_level &Exti_status
838 +* (% style="color:#037691" %)**Exti_pin_level &Exti_status**
837 837  
838 838  This data field shows whether the packet is generated by an interrupt pin.
839 839  
840 -Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the GPIO_EXTI pin.
842 +Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the **GPIO_EXTI** pin.
841 841  
842 -Exti_pin_level:  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
844 +**Exti_pin_level:**  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
843 843  
844 -Exti_status: 80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
846 +**Exti_status: **80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
845 845  
846 846  
847 847  === 2.8.2 Set the Report on Change ===
... ... @@ -852,61 +852,71 @@
852 852  
853 853  ==== 2.8.2.1 Wave alarm mode ====
854 854  
855 -
856 856  Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed.
857 857  
858 -* Change value: The amount by which the next detection value increases/decreases relative to the previous detection value.
859 -* Comparison value: A parameter to compare with the latest ROC test.
859 +* (% style="color:#037691" %)**Change value: **(%%)The amount by which the next detection value increases/decreases relative to the previous detection value.
860 +* (% style="color:#037691" %)**Comparison value:**(%%) A parameter to compare with the latest ROC test.
860 860  
861 -AT Command: AT+ROC
862 +(% style="color:blue" %)**AT Command: AT+ROC**
862 862  
863 863  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
864 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
865 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)**Parameters**|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation**
865 865  |(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
866 866  0,0,0,0(default)
867 867  OK
868 868  )))
869 869  |(% colspan="1" rowspan="4" style="width:143px" %)(((
871 +
872 +
873 +
874 +
870 870  AT+ROC=a,b,c,d
871 871  )))|(% style="width:154px" %)(((
872 -**a:** Enable or disable the ROC
877 +
878 +
879 +
880 +
881 +
882 +
883 +**a**: Enable or disable the ROC
873 873  )))|(% style="width:197px" %)(((
874 874  **0:** off
875 875  **1:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
876 -**2:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
887 +
888 +**2: **Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
877 877  )))
878 -|(% style="width:154px" %)**b:** Set the detection interval|(% style="width:197px" %)(((
890 +|(% style="width:154px" %)**b**: Set the detection interval|(% style="width:197px" %)(((
879 879  Range:  0~~65535s
880 880  )))
881 -|(% style="width:154px" %)**c:** Setting the IDC change value|(% style="width:197px" %)Unit: uA
882 -|(% style="width:154px" %)**d:** Setting the VDC change value|(% style="width:197px" %)Unit: mV
893 +|(% style="width:154px" %)**c**: Setting the IDC change value|(% style="width:197px" %)Unit: uA
894 +|(% style="width:154px" %)**d**: Setting the VDC change value|(% style="width:197px" %)Unit: mV
883 883  
884 -Example:
896 +**Example:**
885 885  
886 -* AT+ROC=0,0,0,0  ~/~/ The ROC function is not used.
898 +* AT+ROC=0,0,0,0  ~/~/The ROC function is not used.
887 887  * AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed.
888 888  * AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage.
889 889  * AT+ROC=2,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed.
890 890  
891 -Downlink Command: 0x09 aa bb cc dd
903 +(% style="color:blue" %)**Downlink Command: 0x09 aa bb cc dd**
892 892  
893 893  Format: Function code (0x09) followed by 4 bytes.
894 894  
895 -aa: 1 byte; Set the wave alarm mode.
907 +(% style="color:blue" %)**aa: **(% style="color:#037691" %)**1 byte;**(%%) Set the wave alarm mode.
896 896  
897 -bb: 2 bytes; Set the detection interval. (second)
909 +(% style="color:blue" %)**bb: **(% style="color:#037691" %)**2 bytes;**(%%) Set the detection interval. (second)
898 898  
899 -cc: 2 bytes; Setting the IDC change threshold. (uA)
911 +(% style="color:blue" %)**cc: **(% style="color:#037691" %)**2 bytes;**(%%) Setting the IDC change threshold. (uA)
900 900  
901 -dd: 2 bytes; Setting the VDC change threshold. (mV)
913 +(% style="color:blue" %)**dd: **(% style="color:#037691" %)**2 bytes;**(%%) Setting the VDC change threshold. (mV)
902 902  
903 -Example:
915 +**Example:**
904 904  
905 -* Downlink Payload: 09 01 00 3C 0B B8 01 F4  ~/~/ Equal to AT+ROC=1,60,3000, 500
906 -* Downlink Payload: 09 01 00 3C 0B B8 00 00  ~/~/ Equal to AT+ROC=1,60,3000,0
907 -* Downlink Payload: 09 02 00 3C 0B B8 00 00  ~/~/ Equal to AT+ROC=2,60,3000,0
917 +* Downlink Payload: **09 01 00 3C 0B B8 01 F4 ** ~/~/Equal to AT+ROC=1,60,3000, 500
918 +* Downlink Payload: **09 01 00 3C 0B B8 00 00 ** ~/~/Equal to AT+ROC=1,60,3000,0
919 +* Downlink Payload: **09 02 00 3C 0B B8 00 00 ** ~/~/Equal to AT+ROC=2,60,3000,0
908 908  
909 -Screenshot of parsing example in TTN:
921 +(% style="color:blue" %)**Screenshot of parsing example in TTN:**
910 910  
911 911  * AT+ROC=1,60,3000, 500.
912 912  
... ... @@ -915,67 +915,72 @@
915 915  
916 916  ==== 2.8.2.2 Over-threshold alarm mode ====
917 917  
918 -
919 919  Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded.
920 920  
921 -AT Command: AT+ROC=3,a,b,c,d,e
932 +(% style="color:blue" %)**AT Command: AT+ROC=3,a,b,c,d,e**
922 922  
923 923  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
924 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
935 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)**Parameters**|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation**
925 925  |(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
926 926  0,0,0,0(default)
927 927  OK
928 928  )))
929 929  |(% colspan="1" rowspan="5" style="width:143px" %)(((
930 -AT+ROC=3,a,b,c,d,e
941 +
942 +
943 +
944 +
945 +AT+ROC=(% style="color:blue" %)**3**(%%),a,b,c,d,e
931 931  )))|(% style="width:160px" %)(((
932 -**a:** Set the detection interval
947 +**a: **Set the detection interval
933 933  )))|(% style="width:185px" %)(((
934 934  Range:  0~~65535s
935 935  )))
936 -|(% style="width:160px" %)**b:** Set the IDC alarm trigger condition|(% style="width:185px" %)(((
951 +|(% style="width:160px" %)**b**: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
937 937  **0:** Less than the set IDC threshold, Alarm
953 +
938 938  **1:** Greater than the set IDC threshold, Alarm
939 939  )))
940 940  |(% style="width:160px" %)(((
941 -**c: ** IDC alarm threshold
957 +**c**:  IDC alarm threshold
942 942  )))|(% style="width:185px" %)(((
943 943  Unit: uA
944 944  )))
945 -|(% style="width:160px" %)**d:** Set the VDC alarm trigger condition|(% style="width:185px" %)(((
961 +|(% style="width:160px" %)**d**: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
946 946  **0:** Less than the set VDC threshold, Alarm
963 +
947 947  **1:** Greater than the set VDC threshold, Alarm
948 948  )))
949 949  |(% style="width:160px" %)**e:** VDC alarm threshold|(% style="width:185px" %)Unit: mV
950 950  
951 -Example:
968 +**Example:**
952 952  
953 -* AT+ROC=3,60,0,3000,0,5000  ~/~/ The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
954 -* AT+ROC=3,180,1,3000,1,5000  ~/~/ The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
955 -* AT+ROC=3,300,0,3000,1,5000  ~/~/ The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
970 +* AT+ROC=3,60,0,3000,0,5000  ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
971 +* AT+ROC=3,180,1,3000,1,5000  ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
972 +* AT+ROC=3,300,0,3000,1,5000  ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
956 956  
957 -Downlink Command: 0x09 03 aa bb cc dd ee
974 +(% style="color:blue" %)**Downlink Command: 0x09 03 aa bb cc dd ee**
958 958  
959 959  Format: Function code (0x09) followed by 03 and the remaining 5 bytes.
960 960  
961 -aa: 2 bytes; Set the detection interval.(second)
978 +(% style="color:blue" %)**aa: **(% style="color:#037691" %)**2 bytes;**(%%) Set the detection interval.(second)
962 962  
963 -bb: 1 byte; Set the IDC alarm trigger condition.
980 +(% style="color:blue" %)**bb: **(% style="color:#037691" %)**1 byte; **(%%)Set the IDC alarm trigger condition.
964 964  
965 -cc: 2 bytes; IDC alarm threshold.(uA)
982 +(% style="color:blue" %)**cc: **(% style="color:#037691" %)**2 bytes;**(%%) IDC alarm threshold.(uA)
966 966  
967 967  
968 -dd: 1 byte; Set the VDC alarm trigger condition.
985 +(% style="color:blue" %)**dd: **(% style="color:#037691" %)**1 byte;**(%%) Set the VDC alarm trigger condition.
969 969  
970 -ee: 2 bytes; VDC alarm threshold.(mV)
987 +(% style="color:blue" %)**ee: **(% style="color:#037691" %)**2 bytes; **(%%)VDC alarm threshold.(mV)
971 971  
972 -Example:
989 +**Example:**
973 973  
974 -* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/ Equal to AT+ROC=3,60,0,3000,0,5000
975 -* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38  ~/~/ Equal to AT+ROC=3,60,1,3000,1,5000
976 -* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38  ~/~/ Equal to AT+ROC=3,60,0,3000,1,5000
991 +* Downlink Payload: **09 03 00 3C 00 0B B8 00 13 38** ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
992 +* Downlink Payload: **09 03 00 b4 01 0B B8 01 13 38**  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
993 +* Downlink Payload: **09 03 01 2C 00 0B B8 01 13 38**  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
977 977  
978 -Screenshot of parsing example in TTN:
995 +(% style="color:blue" %)**Screenshot of parsing example in TTN:**
979 979  
980 980  * AT+ROC=3,60,0,3000,0,5000
981 981  
... ... @@ -985,7 +985,7 @@
985 985  == 2.9 ​Firmware Change Log ==
986 986  
987 987  
988 -Firmware download link:
1005 +**Firmware download link:**
989 989  
990 990  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
991 991  
... ... @@ -997,7 +997,7 @@
997 997  
998 998  PS-LB/LS supports below configure method:
999 999  
1000 -* AT Command via Bluetooth Connection (Recommand Way): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1017 +* AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1001 1001  * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
1002 1002  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
1003 1003  
... ... @@ -1025,25 +1025,21 @@
1025 1025  
1026 1026  Feature: Change LoRaWAN End Node Transmit Interval.
1027 1027  
1028 -AT Command: AT+TDC
1045 +(% style="color:blue" %)**AT Command: AT+TDC**
1029 1029  
1030 1030  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1031 -|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response
1048 +|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Response**
1032 1032  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
1033 -
1034 -
1035 1035  30000
1036 1036  OK
1037 1037  the interval is 30000ms = 30s
1038 1038  )))
1039 1039  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
1040 -
1041 -
1042 1042  OK
1043 1043  Set transmit interval to 60000ms = 60 seconds
1044 1044  )))
1045 1045  
1046 -Downlink Command: 0x01
1059 +(% style="color:blue" %)**Downlink Command: 0x01**
1047 1047  
1048 1048  Format: Command Code (0x01) followed by 3 bytes time value.
1049 1049  
... ... @@ -1057,20 +1057,16 @@
1057 1057  
1058 1058  Feature, Set Interrupt mode for GPIO_EXIT.
1059 1059  
1060 -AT Command: AT+INTMOD
1073 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1061 1061  
1062 1062  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1063 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response
1076 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Response**
1064 1064  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
1065 -
1066 -
1067 1067  0
1068 1068  OK
1069 1069  the mode is 0 =Disable Interrupt
1070 1070  )))
1071 1071  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
1072 -
1073 -
1074 1074  Set Transmit Interval
1075 1075  0. (Disable Interrupt),
1076 1076  ~1. (Trigger by rising and falling edge)
... ... @@ -1078,7 +1078,7 @@
1078 1078  3. (Trigger by rising edge)
1079 1079  )))|(% style="background-color:#f2f2f2; width:157px" %)OK
1080 1080  
1081 -Downlink Command: 0x06
1090 +(% style="color:blue" %)**Downlink Command: 0x06**
1082 1082  
1083 1083  Format: Command Code (0x06) followed by 3 bytes.
1084 1084  
... ... @@ -1092,99 +1092,79 @@
1092 1092  
1093 1093  Feature, Control the output 3V3 , 5V or 12V.
1094 1094  
1095 -AT Command: AT+3V3T
1104 +(% style="color:blue" %)**AT Command: AT+3V3T**
1096 1096  
1097 1097  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
1098 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1107 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 201px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1099 1099  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
1100 -
1101 -
1102 1102  0
1103 1103  OK
1104 1104  )))
1105 1105  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1106 -
1107 -
1108 1108  OK
1109 1109  default setting
1110 1110  )))
1111 1111  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
1112 -
1113 -
1114 1114  OK
1115 1115  )))
1116 1116  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1117 -
1118 -
1119 1119  OK
1120 1120  )))
1121 1121  
1122 -AT Command: AT+5VT
1123 +(% style="color:blue" %)**AT Command: AT+5VT**
1123 1123  
1124 1124  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
1125 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1126 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1126 1126  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1127 -
1128 -
1129 1129  0
1130 1130  OK
1131 1131  )))
1132 1132  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1133 -
1134 -
1135 1135  OK
1136 1136  default setting
1137 1137  )))
1138 1138  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
1139 -
1140 -
1141 1141  OK
1142 1142  )))
1143 1143  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1144 -
1145 -
1146 1146  OK
1147 1147  )))
1148 1148  
1149 -AT Command: AT+12VT
1142 +(% style="color:blue" %)**AT Command: AT+12VT**
1150 1150  
1151 1151  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
1152 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response
1145 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 199px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1153 1153  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1154 -
1155 -
1156 1156  0
1157 1157  OK
1158 1158  )))
1159 1159  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
1160 1160  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
1161 -
1162 -
1163 1163  OK
1164 1164  )))
1165 1165  
1166 -Downlink Command: 0x07
1155 +(% style="color:blue" %)**Downlink Command: 0x07**
1167 1167  
1168 1168  Format: Command Code (0x07) followed by 3 bytes.
1169 1169  
1170 1170  The first byte is which power, the second and third bytes are the time to turn on.
1171 1171  
1172 -* Example 1: Downlink Payload: 070101F4  ~-~-->  AT+3V3T=500
1173 -* Example 2: Downlink Payload: 0701FFFF   ~-~-->  AT+3V3T=65535
1174 -* Example 3: Downlink Payload: 070203E8  ~-~-->  AT+5VT=1000
1175 -* Example 4: Downlink Payload: 07020000  ~-~-->  AT+5VT=0
1176 -* Example 5: Downlink Payload: 070301F4  ~-~-->  AT+12VT=500
1177 -* Example 6: Downlink Payload: 07030000  ~-~-->  AT+12VT=0
1161 +* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
1162 +* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
1163 +* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
1164 +* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
1165 +* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
1166 +* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
1178 1178  
1179 -Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.
1168 +(% style="color:red" %)**Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.**
1180 1180  
1181 -Therefore, the corresponding downlink command is increased by one byte to five bytes.
1170 +(% style="color:red" %)**Therefore, the corresponding downlink command is increased by one byte to five bytes.**
1182 1182  
1183 -Example:
1172 +**Example: **
1184 1184  
1185 -* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 01 01 D4 C0  ~-~-->  AT+3V3T=120000
1186 -* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 02 01 86 A0  ~-~-->  AT+5VT=100000
1187 -* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 03 01 38 80  ~-~-->  AT+12VT=80000
1174 +* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 **01** 01 D4 C0  **~-~-->**  AT+3V3T=120000
1175 +* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 **02** 01 86 A0  **~-~-->**  AT+5VT=100000
1176 +* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 **03** 01 38 80  **~-~-->**  AT+12VT=80000
1188 1188  
1189 1189  === 3.3.4 Set the Probe Model ===
1190 1190  
... ... @@ -1191,7 +1191,7 @@
1191 1191  
1192 1192  Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
1193 1193  
1194 -AT Command: AT +PROBE
1183 +(% style="color:blue" %)**AT Command: AT** **+PROBE**
1195 1195  
1196 1196  AT+PROBE=aabb
1197 1197  
... ... @@ -1210,13 +1210,11 @@
1210 1210  (0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C)
1211 1211  
1212 1212  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1213 -|(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1202 +|(% style="background-color:#4f81bd; color:white; width:154px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:269px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1214 1214  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
1215 1215  OK
1216 1216  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
1217 1217  |(% style="background-color:#f2f2f2; width:154px" %)(((
1218 -
1219 -
1220 1220  AT+PROBE=000A
1221 1221  )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
1222 1222  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
... ... @@ -1223,12 +1223,12 @@
1223 1223  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
1224 1224  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
1225 1225  
1226 -Downlink Command: 0x08
1213 +(% style="color:blue" %)**Downlink Command: 0x08**
1227 1227  
1228 1228  Format: Command Code (0x08) followed by 2 bytes.
1229 1229  
1230 -* Example 1: Downlink Payload: 080003  ~-~-->  AT+PROBE=0003
1231 -* Example 2: Downlink Payload: 080101  ~-~-->  AT+PROBE=0101
1217 +* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
1218 +* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
1232 1232  
1233 1233  === 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
1234 1234  
... ... @@ -1235,47 +1235,41 @@
1235 1235  
1236 1236  Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time.
1237 1237  
1238 -AT Command: AT +STDC
1225 +(% style="color:blue" %)**AT Command: AT** **+STDC**
1239 1239  
1240 1240  AT+STDC=aa,bb,bb
1241 1241  
1242 -aa:
1243 -0: means disable this function and use TDC to send packets.
1244 -1: means that the function is enabled to send packets by collecting VDC data for multiple times.
1245 -2: means that the function is enabled to send packets by collecting IDC data for multiple times.
1246 -bb: Each collection interval (s), the value is 1~~65535
1247 -cc: the number of collection times, the value is 1~~120
1229 +(% style="color:#037691" %)**aa:**(%%)
1230 +**0:** means disable this function and use TDC to send packets.
1231 +**1:** means that the function is enabled to send packets by collecting VDC data for multiple times.
1232 +**2:** means that the function is enabled to send packets by collecting IDC data for multiple times.
1233 +(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
1234 +(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
1248 1248  
1249 1249  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1250 -|(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1237 +|(% style="background-color:#4f81bd; color:white; width:160px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:215px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1251 1251  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
1252 1252  OK
1253 1253  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1254 -
1255 -
1256 1256  Attention:Take effect after ATZ
1257 1257  
1258 1258  OK
1259 1259  )))
1260 1260  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
1261 -
1262 -
1263 1263  Use the TDC interval to send packets.(default)
1264 1264  
1265 1265  
1266 1266  )))|(% style="background-color:#f2f2f2" %)(((
1267 -
1268 -
1269 1269  Attention:Take effect after ATZ
1270 1270  
1271 1271  OK
1272 1272  )))
1273 1273  
1274 -Downlink Command: 0xAE
1255 +(% style="color:blue" %)**Downlink Command: 0xAE**
1275 1275  
1276 1276  Format: Command Code (0xAE) followed by 4 bytes.
1277 1277  
1278 -* Example 1: Downlink Payload: AE 01 02 58 12 ~-~-->  AT+STDC=1,600,18
1259 +* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
1279 1279  
1280 1280  = 4. Battery & Power Consumption =
1281 1281  
... ... @@ -1282,7 +1282,7 @@
1282 1282  
1283 1283  PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1284 1284  
1285 -[[Battery Info & Power Consumption Analyze>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1266 +[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1286 1286  
1287 1287  
1288 1288  = 5. OTA firmware update =
... ... @@ -1318,22 +1318,22 @@
1318 1318  Test the current values at the depth of different liquids and convert them to a linear scale.
1319 1319  Replace its ratio with the ratio of water to current in the decoder.
1320 1320  
1321 -Example:
1302 +**Example:**
1322 1322  
1323 1323  Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
1324 1324  
1325 -Calculate scale factor:
1306 +**Calculate scale factor:**
1326 1326  Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
1327 1327  
1328 -Calculation formula:
1309 +**Calculation formula:**
1329 1329  
1330 1330  Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
1331 1331  
1332 -Actual calculations:
1313 +**Actual calculations:**
1333 1333  
1334 1334  Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
1335 1335  
1336 -Error:
1317 +**Error:**
1337 1337  
1338 1338  0.009810726
1339 1339  
... ... @@ -1357,6 +1357,7 @@
1357 1357  = 8. Order Info =
1358 1358  
1359 1359  
1341 +(% style="display:none" %)
1360 1360  
1361 1361  [[image:image-20241021093209-1.png]]
1362 1362  
... ... @@ -1363,11 +1363,11 @@
1363 1363  = 9. ​Packing Info =
1364 1364  
1365 1365  
1366 -Package Includes:
1348 +(% style="color:#037691" %)**Package Includes**:
1367 1367  
1368 1368  * PS-LB or PS-LS LoRaWAN Pressure Sensor
1369 1369  
1370 -Dimension and weight:
1352 +(% style="color:#037691" %)**Dimension and weight**:
1371 1371  
1372 1372  * Device Size: cm
1373 1373  * Device Weight: g
image-20250401163530-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -44.9 KB
Content
image-20250401163539-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content
image-20250401163826-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -18.9 KB
Content
image-20250401163906-4.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -181.6 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0