Last modified by Xiaoling on 2025/07/10 16:21

From version 123.11
edited by Xiaoling
on 2025/04/01 17:06
Change comment: There is no comment for this version
To version 148.1
edited by Mengting Qiu
on 2025/07/10 15:14
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.ting
Content
... ... @@ -1,8 +1,7 @@
1 1  
2 2  
3 3  
4 -(% style="text-align:center" %)
5 -[[image:image-20240109154731-4.png||height="671" width="945"]]
4 +[[image:image-20240109154731-4.png||data-xwiki-image-style-alignment="center" height="546" width="769"]]
6 6  
7 7  
8 8  
... ... @@ -48,9 +48,7 @@
48 48  Each PS-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
49 49  )))
50 50  
51 -[[image:1675071321348-194.png]]
52 52  
53 -
54 54  == 1.2 ​Features ==
55 55  
56 56  
... ... @@ -136,7 +136,7 @@
136 136  === 1.4.2 Immersion Type ===
137 137  
138 138  
139 -[[image:image-20240109160445-5.png||height="221" width="166"]]
136 +[[image:image-20240109160445-5.png||height="199" width="150"]]
140 140  
141 141  * Immersion Type, Probe IP Level: IP68
142 142  * Measuring Range: Measure range can be customized, up to 100m.
... ... @@ -144,11 +144,15 @@
144 144  * Long-Term Stability: ±0.2% F.S / Year
145 145  * Storage temperature: -30°C~~80°C
146 146  * Operating temperature: 0°C~~50°C
147 -* Material: 316 stainless steels
144 +* Probe Material: 316 stainless steels
145 +* Cable model specifications: CGYPU 5*0.2mm2
146 +* Usage characteristics of Cable
147 +1) Operating temperature:-40℃— +70℃
148 +2) -30℃ bending cable 15 times of outer diameter can work normally
148 148  
149 149  === 1.4.3 Wireless Differential Air Pressure Sensor ===
150 150  
151 -[[image:image-20240511174954-1.png||height="215" width="215"]]
152 +[[image:image-20240511174954-1.png||height="193" width="193"]]
152 152  
153 153  * Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
154 154  * Accuracy: 0.5% F.S, resolution is 0.05%.
... ... @@ -163,7 +163,7 @@
163 163  === 1.5.1 Thread Installation Type ===
164 164  
165 165  
166 -Application:
167 +(% style="color:blue" %)**Application:**
167 167  
168 168  * Hydraulic Pressure
169 169  * Petrochemical Industry
... ... @@ -181,7 +181,7 @@
181 181  === 1.5.2 Immersion Type ===
182 182  
183 183  
184 -Application:
185 +(% style="color:blue" %)**Application:**
185 185  
186 186  Liquid & Water Pressure / Level detect.
187 187  
... ... @@ -208,7 +208,7 @@
208 208  === 1.5.3 Wireless Differential Air Pressure Sensor ===
209 209  
210 210  
211 -Application:
212 +(% style="color:blue" %)**Application:**
212 212  
213 213  Indoor Air Control & Filter clogging Detect.
214 214  
... ... @@ -224,40 +224,36 @@
224 224  
225 225  Size of wind pressure transmitter:
226 226  
227 -[[image:image-20240513094047-2.png]]
228 +[[image:image-20240513094047-2.png||height="462" width="518"]]
228 228  
229 -Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.
230 +(% style="color:red" %)**Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.**
230 230  
231 231  
232 232  == 1.6 Sleep mode and working mode ==
233 233  
234 234  
235 -Deep Sleep Mode: Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
236 +**Deep Sleep Mode:** Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
236 236  
237 -Working Mode: In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
238 +**Working Mode: **In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
238 238  
239 239  
240 240  == 1.7 Button & LEDs ==
241 241  
242 242  
243 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
244 +[[image:image-20250419092225-1.jpeg]]
244 244  
245 245  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
246 246  |=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action
247 -|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
248 -
249 -
248 +|[[image:1749540420016-961.png]] 1~~3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
250 250  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once.
251 251  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
252 252  )))
253 -|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
254 -
255 -
252 +|[[image:1749540423574-437.png]] >3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
256 256  Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network.
257 257  Green led will solidly turn on for 5 seconds after joined in network.
258 258  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
259 259  )))
260 -|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
257 +|[[image:1749540397649-875.png]] x5|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
261 261  
262 262  == 1.8 Pin Mapping ==
263 263  
... ... @@ -307,13 +307,13 @@
307 307  
308 308  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
309 309  
310 -[[image:1675144005218-297.png]]
307 +[[image:image-20250419162538-1.png]]
311 311  
312 312  
313 313  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
314 314  
315 315  
316 -Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.
313 +(% style="color:blue" %)**Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.**
317 317  
318 318  Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
319 319  
... ... @@ -322,30 +322,45 @@
322 322  
323 323  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
324 324  
322 +**Create the application.**
325 325  
326 -Register the device
324 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
327 327  
328 -[[image:1675144099263-405.png]]
326 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
329 329  
330 330  
331 -Add APP EUI and DEV EUI
329 +**Add devices to the created Application.**
332 332  
333 -[[image:1675144117571-832.png]]
331 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
334 334  
333 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
335 335  
336 -Add APP EUI in the application
337 337  
336 +**Enter end device specifics manually.**
338 338  
339 -[[image:1675144143021-195.png]]
338 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
340 340  
341 341  
342 -Add APP KEY
341 +**Add DevEUI and AppKey. Customize a platform ID for the device.**
343 343  
344 -[[image:1675144157838-392.png]]
343 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
345 345  
346 -Step 2: Activate on PS-LB/LS
347 347  
346 +(% style="color:blue" %)**Step 2: Add decoder.**
348 348  
348 +In TTN, user can add a custom payload so it shows friendly reading.
349 +
350 +Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
351 +
352 +Below is TTN screen shot:
353 +
354 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
355 +
356 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png" height="562" width="1168"]]
357 +
358 +
359 +(% style="color:blue" %)**Step 3: Activate on PS-LB/LS**
360 +
349 349  Press the button for 5 seconds to activate the PS-LB/LS.
350 350  
351 351  Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network.
... ... @@ -363,7 +363,7 @@
363 363  Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
364 364  
365 365  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
366 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)Device Status (FPORT=5)
378 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
367 367  |(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2
368 368  |(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
369 369  
... ... @@ -433,10 +433,8 @@
433 433  
434 434  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
435 435  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
436 -
437 -
438 -Size(bytes)
439 -)))|(% style="background-color:#4f81bd; color:white; width:50px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
448 +**Size(bytes)**
449 +)))|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
440 440  |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
441 441  
442 442  [[image:1675144608950-310.png]]
... ... @@ -457,11 +457,10 @@
457 457  
458 458  PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
459 459  
460 -
461 461  For example.
462 462  
463 463  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
464 -|(% style="background-color:#4f81bd; color:white" %)Part Number|(% style="background-color:#4f81bd; color:white" %)Probe Used|(% style="background-color:#4f81bd; color:white" %)4~~20mA scale|(% style="background-color:#4f81bd; color:white" %)Example: 12mA meaning
473 +|(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
465 465  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
466 466  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
467 467  |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
... ... @@ -469,6 +469,23 @@
469 469  The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
470 470  
471 471  
481 +When connecting to current sensors sold by our company, you can convert current readings to corresponding values by simply configuring the [[AT+PROBE>>||anchor="H3.3.4SettheProbeModel"]] command. If you prefer not to configure this command on the sensor, you can uniformly handle the conversion in the payload decoder instead.
482 +
483 +**Examples for decoder implementation:**
484 +
485 +~1. For AT+PROBE=0005, add the following processing in your decoder:
486 +
487 +[[image:image-20250512144042-1.png]]
488 +
489 +[[image:image-20250512144122-2.png]]
490 +
491 +2. For AT+PROBE=0102, add the following processing in your decoder(Corresponding to the position shown in the above screenshot).
492 +
493 +bytes[i]=0x01;bytes[1+i]=0x02;
494 +
495 +bytes[2]=0x01;bytes[3]=0x02;
496 +
497 +
472 472  === 2.3.5 0~~20mA value (IDC_IN) ===
473 473  
474 474  
... ... @@ -522,10 +522,8 @@
522 522  
523 523  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
524 524  |(% style="background-color:#4f81bd; color:white; width:65px" %)(((
525 -
526 -
527 -Size(bytes)
528 -)))|(% style="background-color:#4f81bd; color:white; width:35px" %)2|(% style="background-color:#4f81bd; color:white; width:400px" %)n
551 +**Size(bytes)**
552 +)))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
529 529  |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
530 530  
531 531  
... ... @@ -600,45 +600,54 @@
600 600  == 2.6 Datalog Feature (Since V1.1) ==
601 601  
602 602  
603 -When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot.
627 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, PS-LB will store the reading for future retrieving purposes.
604 604  
605 605  
606 -=== 2.6.1 Unix TimeStamp ===
630 +=== 2.6.1 How datalog works ===
607 607  
608 608  
609 -PS-LB uses Unix TimeStamp format based on
633 +PS-LB will wait for ACK for every uplink, when there is no LoRaWAN network,PS-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
610 610  
611 -[[image:image-20250401163826-3.jpeg]]
635 +* (((
636 +a) PS-LB will do an ACK check for data records sending to make sure every data arrive server.
637 +)))
638 +* (((
639 +b) PS-LB will send data in **CONFIRMED Mode**, but PS-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if PS-LB gets a ACK, PS-LB will consider there is a network connection and resend all NONE-ACK messages.
612 612  
613 -Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
641 +
642 +)))
614 614  
615 -Below is the converter example:
644 +=== 2.6.2 Enable Datalog ===
616 616  
617 -[[image:image-20250401163906-4.jpeg]]
618 618  
647 +User need to make sure below two settings are enable to use datalog;
619 619  
620 -=== 2.6.2 Set Device Time ===
649 +* (% style="color:blue" %)**SYNCMOD=1(Default)**(%%) to enable sync time via LoRaWAN MAC command, click here ([[AT+SYNCMOD>>https://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.6Settimesynchronizationmethod28ThenetworkservermustsupportLoRaWANv1.0.329]]) for detailed instructions.
650 +* (% style="color:blue" %)**PNACKMD=1**(%%)** **to enable datalog feature, click here ([[AT+PNACKMD>>https://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.26RequesttheservertosendanACK]]) for detailed instructions.
621 621  
622 622  
623 -There are two ways to set the device's time:
624 624  
654 +Once PS-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to PS-LB. If PS-LB fails to get the time from the server, PS-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
625 625  
626 -~1. Through LoRaWAN MAC Command (Default settings)
656 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
627 627  
628 -Users need to set SYNCMOD=1 to enable sync time via the MAC command.
629 629  
630 -Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
659 +=== 2.6.3 Unix TimeStamp ===
631 631  
632 -Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.
633 633  
662 +PS-LB uses Unix TimeStamp format based on
634 634  
635 - 2. Manually Set Time
664 +[[image:image-20250401163826-3.jpeg]]
636 636  
637 -Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
666 +Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
638 638  
668 +Below is the converter example:
639 639  
640 -=== 2.6.3 Poll sensor value ===
670 +[[image:image-20250401163906-4.jpeg]]
641 641  
672 +
673 +=== 2.6.4 Poll sensor value ===
674 +
642 642  Users can poll sensor values based on timestamps. Below is the downlink command.
643 643  
644 644  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
... ... @@ -657,7 +657,7 @@
657 657  Uplink Internal =5s,means PS-LB will send one packet every 5s. range 5~~255s.
658 658  
659 659  
660 -=== 2.6.4 Datalog Uplink payload (FPORT~=3) ===
693 +=== 2.6.5 Datalog Uplink payload (FPORT~=3) ===
661 661  
662 662  
663 663  The Datalog uplinks will use below payload format.
... ... @@ -678,7 +678,6 @@
678 678  IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status
679 679  )))|(% style="width:86px" %)Unix Time Stamp
680 680  
681 -
682 682  IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:
683 683  
684 684  [[image:image-20250117104847-4.png]]
... ... @@ -758,7 +758,7 @@
758 758  Note: water_deep in the data needs to be converted using decoding to get it.
759 759  
760 760  
761 -=== 2.6.5 Decoder in TTN V3 ===
793 +=== 2.6.6 Decoder in TTN V3 ===
762 762  
763 763  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
764 764  
... ... @@ -861,7 +861,7 @@
861 861  AT Command: AT+ROC
862 862  
863 863  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
864 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
896 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 193px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
865 865  |(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
866 866  0,0,0,0(default)
867 867  OK
... ... @@ -921,17 +921,12 @@
921 921  AT Command: AT+ROC=3,a,b,c,d,e
922 922  
923 923  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
924 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
956 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 187px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
925 925  |(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
926 926  0,0,0,0(default)
927 927  OK
928 928  )))
929 929  |(% colspan="1" rowspan="5" style="width:143px" %)(((
930 -
931 -
932 -
933 -
934 -
935 935  AT+ROC=3,a,b,c,d,e
936 936  )))|(% style="width:160px" %)(((
937 937  **a:** Set the detection interval
... ... @@ -940,7 +940,6 @@
940 940  )))
941 941  |(% style="width:160px" %)**b:** Set the IDC alarm trigger condition|(% style="width:185px" %)(((
942 942  **0:** Less than the set IDC threshold, Alarm
943 -
944 944  **1:** Greater than the set IDC threshold, Alarm
945 945  )))
946 946  |(% style="width:160px" %)(((
... ... @@ -950,7 +950,6 @@
950 950  )))
951 951  |(% style="width:160px" %)**d:** Set the VDC alarm trigger condition|(% style="width:185px" %)(((
952 952  **0:** Less than the set VDC threshold, Alarm
953 -
954 954  **1:** Greater than the set VDC threshold, Alarm
955 955  )))
956 956  |(% style="width:160px" %)**e:** VDC alarm threshold|(% style="width:185px" %)Unit: mV
... ... @@ -1034,18 +1034,14 @@
1034 1034  
1035 1035  AT Command: AT+TDC
1036 1036  
1037 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1062 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1038 1038  |=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response
1039 1039  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
1040 -
1041 -
1042 1042  30000
1043 1043  OK
1044 1044  the interval is 30000ms = 30s
1045 1045  )))
1046 1046  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
1047 -
1048 -
1049 1049  OK
1050 1050  Set transmit interval to 60000ms = 60 seconds
1051 1051  )))
... ... @@ -1066,18 +1066,14 @@
1066 1066  
1067 1067  AT Command: AT+INTMOD
1068 1068  
1069 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1090 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1070 1070  |=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response
1071 1071  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
1072 -
1073 -
1074 1074  0
1075 1075  OK
1076 1076  the mode is 0 =Disable Interrupt
1077 1077  )))
1078 1078  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
1079 -
1080 -
1081 1081  Set Transmit Interval
1082 1082  0. (Disable Interrupt),
1083 1083  ~1. (Trigger by rising and falling edge)
... ... @@ -1101,72 +1101,52 @@
1101 1101  
1102 1102  AT Command: AT+3V3T
1103 1103  
1104 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
1121 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:474px" %)
1105 1105  |=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1106 1106  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
1107 -
1108 -
1109 1109  0
1110 1110  OK
1111 1111  )))
1112 1112  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1113 -
1114 -
1115 1115  OK
1116 1116  default setting
1117 1117  )))
1118 1118  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
1119 -
1120 -
1121 1121  OK
1122 1122  )))
1123 1123  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1124 -
1125 -
1126 1126  OK
1127 1127  )))
1128 1128  
1129 1129  AT Command: AT+5VT
1130 1130  
1131 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
1140 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
1132 1132  |=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1133 1133  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1134 -
1135 -
1136 1136  0
1137 1137  OK
1138 1138  )))
1139 1139  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1140 -
1141 -
1142 1142  OK
1143 1143  default setting
1144 1144  )))
1145 1145  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
1146 -
1147 -
1148 1148  OK
1149 1149  )))
1150 1150  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1151 -
1152 -
1153 1153  OK
1154 1154  )))
1155 1155  
1156 1156  AT Command: AT+12VT
1157 1157  
1158 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
1159 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:443px" %)
1159 1159  |=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response
1160 1160  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1161 -
1162 -
1163 1163  0
1164 1164  OK
1165 1165  )))
1166 1166  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
1167 1167  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
1168 -
1169 -
1170 1170  OK
1171 1171  )))
1172 1172  
... ... @@ -1222,8 +1222,6 @@
1222 1222  OK
1223 1223  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
1224 1224  |(% style="background-color:#f2f2f2; width:154px" %)(((
1225 -
1226 -
1227 1227  AT+PROBE=000A
1228 1228  )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
1229 1229  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
... ... @@ -1244,7 +1244,7 @@
1244 1244  
1245 1245  AT Command: AT +STDC
1246 1246  
1247 -AT+STDC=aa,bb,bb
1242 +AT+STDC=aa,bb,cc
1248 1248  
1249 1249  aa:
1250 1250  0: means disable this function and use TDC to send packets.
... ... @@ -1253,15 +1253,12 @@
1253 1253  bb: Each collection interval (s), the value is 1~~65535
1254 1254  cc: the number of collection times, the value is 1~~120
1255 1255  
1256 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1251 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1257 1257  |(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1258 1258  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
1259 1259  OK
1260 1260  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1261 -
1262 -
1263 1263  Attention:Take effect after ATZ
1264 -
1265 1265  OK
1266 1266  )))
1267 1267  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
... ... @@ -1271,10 +1271,7 @@
1271 1271  
1272 1272  
1273 1273  )))|(% style="background-color:#f2f2f2" %)(((
1274 -
1275 -
1276 1276  Attention:Take effect after ATZ
1277 -
1278 1278  OK
1279 1279  )))
1280 1280  
... ... @@ -1284,6 +1284,113 @@
1284 1284  
1285 1285  * Example 1: Downlink Payload: AE 01 02 58 12 ~-~-->  AT+STDC=1,600,18
1286 1286  
1276 +== 3.4 Print data entries base on page(Since v1.1.0) ==
1277 +
1278 +
1279 +Feature: Print the sector data from start page to stop page (max is 416 pages).
1280 +
1281 +(% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1282 +
1283 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1284 +|(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1285 +|(% style="width:156px" %)(((
1286 + AT+PDTA=1,1
1287 +Print page 1 to 1
1288 +)))|(% style="width:311px" %)(((
1289 +Stop Tx events when read sensor data
1290 +
1291 +8031000 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1292 +
1293 +8031010 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1294 +
1295 +8031020 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1296 +
1297 +8031030 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1298 +
1299 +8031040 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1300 +
1301 +8031050 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1302 +
1303 +8031060 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1304 +
1305 +8031070 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1306 +
1307 +Start Tx events
1308 +
1309 +
1310 +OK
1311 +)))
1312 +
1313 +(% style="color:#4f81bd" %)**Downlink Command:**
1314 +
1315 +No downlink commands for feature
1316 +
1317 +
1318 +== 3.5 Print last few data entries(Since v1.1.0) ==
1319 +
1320 +
1321 +Feature: Print the last few data entries
1322 +
1323 +
1324 +(% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1325 +
1326 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1327 +|(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1328 +|(% style="width:156px" %)(((
1329 +AT+PLDTA=10
1330 +Print last 10 entries
1331 +)))|(% style="width:311px" %)(((
1332 +Stop Tx events when read sensor data
1333 +
1334 +0001 2025/5/19 06:16:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1335 +
1336 +0002 2025/5/19 06:17:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1337 +
1338 +0003 2025/5/19 06:18:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1339 +
1340 +0004 2025/5/19 06:19:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1341 +
1342 +0005 2025/5/19 06:20:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1343 +
1344 +0006 2025/5/19 06:21:50 3246 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1345 +
1346 +0007 2025/5/19 06:22:50 3240 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1347 +
1348 +0008 2025/5/19 06:26:44 3276 in1:low in2:low exti:low status:false vdc:3.385 idc:0.000 proble:0000 water_deep:0.000
1349 +
1350 +0009 2025/5/19 06:27:36 3246 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1351 +
1352 +0010 2025/5/19 06:28:36 3240 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1353 +
1354 +Start Tx events
1355 +
1356 +OK
1357 +)))
1358 +
1359 +(% style="color:#4f81bd" %)**Downlink Command:**
1360 +
1361 +No downlink commands for feature
1362 +
1363 +
1364 +== 3.6 Clear Flash Record(Since v1.1.0) ==
1365 +
1366 +
1367 +Feature: Clear flash storage for data log feature.
1368 +
1369 +(% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1370 +
1371 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1372 +|(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1373 +|(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1374 +Clear all stored sensor data…
1375 +
1376 +OK
1377 +)))
1378 +
1379 +(% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1380 +
1381 +* Example: 0xA301  ~/~/  Same as AT+CLRDTA
1382 +
1287 1287  = 4. Battery & Power Consumption =
1288 1288  
1289 1289  
... ... @@ -1329,18 +1329,18 @@
1329 1329  
1330 1330  Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
1331 1331  
1332 -Calculate scale factor
1428 +Calculate scale factor:
1333 1333  Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
1334 1334  
1335 -Calculation formula
1431 +Calculation formula:
1336 1336  
1337 1337  Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
1338 1338  
1339 -Actual calculations
1435 +Actual calculations:
1340 1340  
1341 1341  Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
1342 1342  
1343 -Error
1439 +Error:
1344 1344  
1345 1345  0.009810726
1346 1346  
... ... @@ -1347,6 +1347,31 @@
1347 1347  
1348 1348  [[image:image-20240329175044-1.png]]
1349 1349  
1446 +
1447 +== 6.5 Cable & Probe Material Compatibility(Immersion type) ==
1448 +
1449 +
1450 +Since the installation method of immersion sensors requires immersion in a liquid environment, the discussion of liquids that can be safely installed is very important.
1451 +
1452 +(% style="color:blue" %)**The material of the immersed part of the immersion sensor:**
1453 +
1454 +* **Cable Jacket**: Black polyurethane (PU) – Resistant to water, oils, and mild chemicals.
1455 +* **Probe Material**: 316 stainless steel – Corrosion-resistant in most industrial/marine environments.
1456 +
1457 +(% style="color:blue" %)**Chemical Compatibility:**
1458 +
1459 +* **Polyurethane (PU) Cable:** Resists water, oils, fuels, and mild chemicals but may degrade with prolonged exposure to strong acids, bases, or solvents (e.g., acetone, chlorinated hydrocarbons).
1460 +* 3**16 Stainless Steel Probe:** Suitable for water, seawater, mild acids/alkalis, and industrial fluids. Avoid highly concentrated acids (e.g., hydrochloric acid) or chlorides at high temperatures.
1461 +
1462 +**Chemical Resistance Chart for Polyurethane (PU) Cable**
1463 +
1464 +[[image:image-20250603171424-1.png||height="429" width="625"]]
1465 +
1466 +**Chemical Resistance Chart for 316 Stainless Steel Probe**
1467 +
1468 +[[image:image-20250603171503-2.png||height="350" width="616"]]
1469 +
1470 +
1350 1350  = 7. Troubleshooting =
1351 1351  
1352 1352  == 7.1 Water Depth Always shows 0 in payload ==
... ... @@ -1363,16 +1363,40 @@
1363 1363  
1364 1364  = 8. Order Info =
1365 1365  
1487 +== 8.1 Thread Installation Type & Immersion Type Pressure Sensor ==
1366 1366  
1367 1367  
1490 +Part Number: (% style="color:blue" %)**PS-LB/LS-Txx-YY  or  PS-LB/LS-Ixx-YY**
1491 +
1492 +(% style="color:blue" %)**XX:**(%%)** Pressure Range and Thread Type **
1493 +
1494 +(% style="color:blue" %)**YY:**(%%)** The default frequency band**
1495 +
1496 +* YY: Frequency Bands, options: EU433,CN470,EU868,IN865,KR920,AS923,AU915,US915
1497 +
1368 1368  [[image:image-20241021093209-1.png]]
1369 1369  
1500 +
1501 +== 8.2 Wireless Differential Air Pressure Sensor ==
1502 +
1503 +
1504 +Part Number: (% style="color:blue" %)**PS-LB-Dxx-YY  or  PS-LS-Dxx-YY **
1505 +
1506 +(% style="color:blue" %)**XX:**(%%)** Differential Pressure Range**
1507 +
1508 +(% style="color:blue" %)**YY:**(%%)** The default frequency band**
1509 +
1510 +* YY: Frequency Bands, options: EU433,CN470,EU868,IN865,KR920,AS923,AU915,US915
1511 +
1512 +[[image:image-20250401174215-1.png||height="486" width="656"]]
1513 +
1514 +
1370 1370  = 9. ​Packing Info =
1371 1371  
1372 1372  
1373 1373  Package Includes:
1374 1374  
1375 -* PS-LB or PS-LS LoRaWAN Pressure Sensor
1520 +* PS-LB/LS-Txx/Ixx, PS-LB/LS-Dxx   LoRaWAN Pressure Sensor
1376 1376  
1377 1377  Dimension and weight:
1378 1378  
1749540397649-875.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +1.4 KB
Content
1749540420016-961.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +1.9 KB
Content
1749540423574-437.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +1.9 KB
Content
image-20250401174215-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.3 KB
Content
image-20250419092225-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +47.6 KB
Content
image-20250419162538-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +90.3 KB
Content
image-20250512144042-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +471.4 KB
Content
image-20250512144122-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +572.9 KB
Content
image-20250603171424-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +38.7 KB
Content
image-20250603171503-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +33.7 KB
Content