<
From version < 123.10 >
edited by Xiaoling
on 2025/04/01 17:03
To version < 119.1 >
edited by Mengting Qiu
on 2025/04/01 10:21
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.ting
Content
... ... @@ -148,7 +148,7 @@
148 148  
149 149  === 1.4.3 Wireless Differential Air Pressure Sensor ===
150 150  
151 -[[image:image-20240511174954-1.png||height="215" width="215"]]
151 +[[image:image-20240511174954-1.png]]
152 152  
153 153  * Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
154 154  * Accuracy: 0.5% F.S, resolution is 0.05%.
... ... @@ -163,7 +163,7 @@
163 163  === 1.5.1 Thread Installation Type ===
164 164  
165 165  
166 -Application:
166 +(% style="color:blue" %)**Application:**
167 167  
168 168  * Hydraulic Pressure
169 169  * Petrochemical Industry
... ... @@ -181,7 +181,7 @@
181 181  === 1.5.2 Immersion Type ===
182 182  
183 183  
184 -Application:
184 +(% style="color:blue" %)**Application:**
185 185  
186 186  Liquid & Water Pressure / Level detect.
187 187  
... ... @@ -208,7 +208,7 @@
208 208  === 1.5.3 Wireless Differential Air Pressure Sensor ===
209 209  
210 210  
211 -Application:
211 +(% style="color:blue" %)**Application:**
212 212  
213 213  Indoor Air Control & Filter clogging Detect.
214 214  
... ... @@ -232,32 +232,28 @@
232 232  == 1.6 Sleep mode and working mode ==
233 233  
234 234  
235 -Deep Sleep Mode: Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
235 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
236 236  
237 -Working Mode: In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
237 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
238 238  
239 239  
240 240  == 1.7 Button & LEDs ==
241 241  
242 242  
243 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
243 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]](% style="display:none" %)
244 244  
245 245  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
246 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action
246 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
247 247  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
248 -
249 -
250 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once.
248 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
251 251  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
252 252  )))
253 253  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
254 -
255 -
256 -Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network.
257 -Green led will solidly turn on for 5 seconds after joined in network.
252 +(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
253 +(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
258 258  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
259 259  )))
260 -|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
256 +|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
261 261  
262 262  == 1.8 Pin Mapping ==
263 263  
... ... @@ -285,13 +285,13 @@
285 285  === 1.10.1 for LB version ===
286 286  
287 287  
288 -[[image:image-20250401163530-1.jpeg]]
284 +[[image:image-20240109160800-6.png]]
289 289  
290 290  
291 291  === 1.10.2 for LS version ===
292 292  
293 293  
294 -[[image:image-20250401163539-2.jpeg]]
290 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/WebHome/image-20231231203439-3.png?width=886&height=385&rev=1.1||alt="image-20231231203439-3.png"]]
295 295  
296 296  
297 297  = 2. Configure PS-LB/LS to connect to LoRaWAN network =
... ... @@ -299,7 +299,7 @@
299 299  == 2.1 How it works ==
300 300  
301 301  
302 -The PS-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
298 +The PS-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
303 303  
304 304  
305 305  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -313,7 +313,7 @@
313 313  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
314 314  
315 315  
316 -Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.
312 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB/LS.
317 317  
318 318  Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
319 319  
... ... @@ -323,32 +323,32 @@
323 323  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
324 324  
325 325  
326 -Register the device
322 +(% style="color:blue" %)**Register the device**
327 327  
328 328  [[image:1675144099263-405.png]]
329 329  
330 330  
331 -Add APP EUI and DEV EUI
327 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
332 332  
333 333  [[image:1675144117571-832.png]]
334 334  
335 335  
336 -Add APP EUI in the application
332 +(% style="color:blue" %)**Add APP EUI in the application**
337 337  
338 338  
339 339  [[image:1675144143021-195.png]]
340 340  
341 341  
342 -Add APP KEY
338 +(% style="color:blue" %)**Add APP KEY**
343 343  
344 344  [[image:1675144157838-392.png]]
345 345  
346 -Step 2: Activate on PS-LB/LS
342 +(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB/LS
347 347  
348 348  
349 349  Press the button for 5 seconds to activate the PS-LB/LS.
350 350  
351 -Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network.
347 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
352 352  
353 353  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
354 354  
... ... @@ -363,9 +363,9 @@
363 363  Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
364 364  
365 365  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
366 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)Device Status (FPORT=5)
367 -|(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2
368 -|(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
362 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
363 +|(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
364 +|(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
369 369  
370 370  Example parse in TTNv3
371 371  
... ... @@ -372,11 +372,11 @@
372 372  [[image:1675144504430-490.png]]
373 373  
374 374  
375 -Sensor Model: For PS-LB/LS, this value is 0x16
371 +(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB/LS, this value is 0x16
376 376  
377 -Firmware Version: 0x0100, Means: v1.0.0 version
373 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
378 378  
379 -Frequency Band:
375 +(% style="color:#037691" %)**Frequency Band**:
380 380  
381 381  *0x01: EU868
382 382  
... ... @@ -407,7 +407,7 @@
407 407  *0x0e: MA869
408 408  
409 409  
410 -Sub-Band:
406 +(% style="color:#037691" %)**Sub-Band**:
411 411  
412 412  AU915 and US915:value 0x00 ~~ 0x08
413 413  
... ... @@ -416,7 +416,7 @@
416 416  Other Bands: Always 0x00
417 417  
418 418  
419 -Battery Info:
415 +(% style="color:#037691" %)**Battery Info**:
420 420  
421 421  Check the battery voltage.
422 422  
... ... @@ -431,12 +431,10 @@
431 431  Uplink payload includes in total 9 bytes.
432 432  
433 433  
434 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
430 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
435 435  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
436 -
437 -
438 -Size(bytes)
439 -)))|(% style="background-color:#4f81bd; color:white; width:50px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
432 +**Size(bytes)**
433 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
440 440  |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
441 441  
442 442  [[image:1675144608950-310.png]]
... ... @@ -458,10 +458,10 @@
458 458  PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
459 459  
460 460  
461 -For example.
455 +**For example.**
462 462  
463 463  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
464 -|(% style="background-color:#4f81bd; color:white" %)Part Number|(% style="background-color:#4f81bd; color:white" %)Probe Used|(% style="background-color:#4f81bd; color:white" %)4~~20mA scale|(% style="background-color:#4f81bd; color:white" %)Example: 12mA meaning
458 +|(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
465 465  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
466 466  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
467 467  |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
... ... @@ -472,9 +472,9 @@
472 472  === 2.3.5 0~~20mA value (IDC_IN) ===
473 473  
474 474  
475 -The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
469 +The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
476 476  
477 -Example:
471 +(% style="color:#037691" %)**Example**:
478 478  
479 479  27AE(H) = 10158 (D)/1000 = 10.158mA.
480 480  
... ... @@ -489,7 +489,7 @@
489 489  
490 490  Measure the voltage value. The range is 0 to 30V.
491 491  
492 -Example:
486 +(% style="color:#037691" %)**Example**:
493 493  
494 494  138E(H) = 5006(D)/1000= 5.006V
495 495  
... ... @@ -499,7 +499,7 @@
499 499  
500 500  IN1 and IN2 are used as digital input pins.
501 501  
502 -Example:
496 +(% style="color:#037691" %)**Example**:
503 503  
504 504  09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
505 505  
... ... @@ -506,9 +506,9 @@
506 506  09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
507 507  
508 508  
509 -This data field shows if this packet is generated by Interrupt Pin or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
503 +This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
510 510  
511 -Example:
505 +(% style="color:#037691" %)**Example:**
512 512  
513 513  09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
514 514  
... ... @@ -522,13 +522,9 @@
522 522  
523 523  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
524 524  |(% style="background-color:#4f81bd; color:white; width:65px" %)(((
525 -
526 -
527 -Size(bytes)
528 -)))|(% style="background-color:#4f81bd; color:white; width:35px" %)2|(% style="background-color:#4f81bd; color:white; width:400px" %)n
519 +**Size(bytes)**
520 +)))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
529 529  |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
530 -
531 -
532 532  Voltage value, each 2 bytes is a set of voltage values.
533 533  )))
534 534  
... ... @@ -561,9 +561,9 @@
561 561  
562 562  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
563 563  
564 -Step 1: Be sure that your device is programmed and properly connected to the network at this time.
554 +(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
565 565  
566 -Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
556 +(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
567 567  
568 568  [[image:1675144951092-237.png]]
569 569  
... ... @@ -571,9 +571,9 @@
571 571  [[image:1675144960452-126.png]]
572 572  
573 573  
574 -Step 3: Create an account or log in Datacake.
564 +(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
575 575  
576 -Step 4: Create PS-LB/LS product.
566 +(% style="color:blue" %)**Step 4:** (%%)Create PS-LB/LS product.
577 577  
578 578  [[image:1675145004465-869.png]]
579 579  
... ... @@ -584,7 +584,7 @@
584 584  [[image:1675145029119-717.png]]
585 585  
586 586  
587 -Step 5: add payload decode
577 +(% style="color:blue" %)**Step 5: **(%%)add payload decode
588 588  
589 589  [[image:1675145051360-659.png]]
590 590  
... ... @@ -608,13 +608,13 @@
608 608  
609 609  PS-LB uses Unix TimeStamp format based on
610 610  
611 -[[image:image-20250401163826-3.jpeg]]
601 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861618065-927.png?width=705&height=109&rev=1.1||alt="1652861618065-927.png" height="109" width="705"]]
612 612  
613 613  Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
614 614  
615 615  Below is the converter example:
616 616  
617 -[[image:image-20250401163906-4.jpeg]]
607 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861637105-371.png?width=732&height=428&rev=1.1||alt="1652861637105-371.png"]]
618 618  
619 619  
620 620  === 2.6.2 Set Device Time ===
... ... @@ -623,16 +623,16 @@
623 623  There are two ways to set the device's time:
624 624  
625 625  
626 -~1. Through LoRaWAN MAC Command (Default settings)
616 +(% style="color:blue" %)**1. Through LoRaWAN MAC Command (Default settings)**
627 627  
628 628  Users need to set SYNCMOD=1 to enable sync time via the MAC command.
629 629  
630 630  Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
631 631  
632 -Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.
622 +(% style="color:red" %)**Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.**
633 633  
634 634  
635 - 2. Manually Set Time
625 +(% style="color:blue" %)** 2. Manually Set Time**
636 636  
637 637  Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
638 638  
... ... @@ -642,8 +642,8 @@
642 642  Users can poll sensor values based on timestamps. Below is the downlink command.
643 643  
644 644  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
645 -|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31)
646 -|(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte
635 +|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)**Downlink Command to poll Open/Close status (0x31)**
636 +|(% style="background-color:#f2f2f2; width:67px" %)**1byte**|(% style="background-color:#f2f2f2; width:145px" %)**4bytes**|(% style="background-color:#f2f2f2; width:133px" %)**4bytes**|(% style="background-color:#f2f2f2; width:163px" %)**1byte**
647 647  |(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)(((
648 648  Timestamp end
649 649  )))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval
... ... @@ -662,32 +662,36 @@
662 662  
663 663  The Datalog uplinks will use below payload format.
664 664  
665 -Retrieval data payload:
655 +**Retrieval data payload:**
666 666  
667 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
657 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
668 668  |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
669 -Size(bytes)
670 -)))|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)2|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)4
659 +**Size(bytes)**
660 +)))|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**2**|=(% style="width: 55px; background-color:#4F81BD;color:white" %)**2**|=(% style="width: 83px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 201px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4**
671 671  |(% style="width:103px" %)Value|(% style="width:68px" %)(((
672 -Probe_mod
662 +Probe
663 +
664 +_mod
673 673  )))|(% style="width:104px" %)(((
674 -VDC_intput_V
666 +VDC
667 +
668 +_intput_V
675 675  )))|(% style="width:83px" %)(((
676 -IDC_intput_mA
670 +IDC
671 +
672 +_intput_mA
677 677  )))|(% style="width:201px" %)(((
678 678  IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status
679 679  )))|(% style="width:86px" %)Unix Time Stamp
680 680  
677 +**IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:**
681 681  
682 -
683 -IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:
684 -
685 685  [[image:image-20250117104847-4.png]]
686 686  
687 687  
688 -No ACK Message:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
682 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
689 689  
690 -Poll Message Flag: 1: This message is a poll message reply.
684 +**Poll Message Flag**: 1: This message is a poll message reply.
691 691  
692 692  * Poll Message Flag is set to 1.
693 693  
... ... @@ -695,17 +695,17 @@
695 695  
696 696  For example, in US915 band, the max payload for different DR is:
697 697  
698 -a) DR0: max is 11 bytes so one entry of data
692 +**a) DR0:** max is 11 bytes so one entry of data
699 699  
700 -b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
694 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
701 701  
702 -c) DR2: total payload includes 11 entries of data
696 +**c) DR2:** total payload includes 11 entries of data
703 703  
704 -d) DR3: total payload includes 22 entries of data.
698 +**d) DR3: **total payload includes 22 entries of data.
705 705  
706 706  If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
707 707  
708 -Example:
702 +**Example:**
709 709  
710 710  If PS-LB-NA has below data inside Flash:
711 711  
... ... @@ -719,46 +719,53 @@
719 719   Stop time: 6788DB63 = time 25/1/16 10:11:47
720 720  
721 721  
722 -PA-LB-NA will uplink this payload.
716 +**PA-LB-NA will uplink this payload.**
723 723  
724 724  [[image:image-20250117104827-2.png]]
725 725  
726 -
720 +(((
727 727  00001B620000406788D9BF  00000D130000406788D9FB  00000D120000406788DA37  00000D110000406788DA73  00000D100000406788DAAF  00000D100000406788DAEB  00000D0F0000406788DB27  00000D100000406788DB63
722 +)))
728 728  
729 -
724 +(((
730 730  Where the first 11 bytes is for the first entry :
726 +)))
731 731  
732 -
728 +(((
733 733  0000  0D10  0000  40  6788DB63
730 +)))
734 734  
732 +(((
733 +**Probe_mod **= 0x0000 = 0000
734 +)))
735 735  
736 -Probe_mod = 0x0000 = 0000
736 +(((
737 +**VDC_intput_V **= 0x0D10/1000=3.344V
737 737  
739 +**IDC_intput_mA **= 0x0000/1000=0mA
740 +)))
738 738  
739 -VDC_intput_V = 0x0D10/1000=3.344V
742 +(((
743 +**IN1_pin_level **= (0x40& 0x08)? "High":"Low" = 0(Low)
740 740  
741 -IDC_intput_mA = 0x0000/1000=0mA
745 +**IN2_pin_level = (**0x40& 0x04)? "High":"Low" = 0(Low)
742 742  
747 +**Exti_pin_level = (**0x40& 0x02)? "High":"Low" = 0(Low)
743 743  
744 -IN1_pin_level = (0x40& 0x08)? "High":"Low" = 0(Low)
749 +**Exti_status = (**0x40& 0x01)? "True":"False" = 0(False)
750 +)))
745 745  
746 -IN2_pin_level = (0x40& 0x04)? "High":"Low" = 0(Low)
752 +(((
753 +**Unix time** is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
754 +)))
747 747  
748 -Exti_pin_level = (0x40& 0x02)? "High":"Low" = 0(Low)
756 +**Its data format is:**
749 749  
750 -Exti_status = (0x40& 0x01)? "True":"False" = 0(False)
758 +[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level**, **IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level**, **IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
751 751  
760 +(% style="color:red" %)**Note: water_deep in the data needs to be converted using decoding to get it.**
752 752  
753 -Unix time is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
754 754  
755 -Its data format is:
756 -
757 -[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
758 -
759 -Note: water_deep in the data needs to be converted using decoding to get it.
760 -
761 -
762 762  === 2.6.5 Decoder in TTN V3 ===
763 763  
764 764  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
... ... @@ -785,47 +785,47 @@
785 785  
786 786  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
787 787  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
788 -Size(bytes)
789 -)))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
790 -|(% style="width:98px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
789 +**Size(bytes)**
790 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
791 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
791 791  [[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag
792 792  )))
793 793  
794 -IN1 &IN2 , Interrupt  flag , ROC_flag:
795 +(% style="color:blue" %)**IN1 &IN2 , Interrupt  flag , ROC_flag:**
795 795  
796 796  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
797 -|(% style="background-color:#4f81bd; color:white; width:50px" %)Size(bit)|(% style="background-color:#4f81bd; color:white; width:60px" %)bit7|(% style="background-color:#4f81bd; color:white; width:62px" %)bit6|(% style="background-color:#4f81bd; color:white; width:62px" %)bit5|(% style="background-color:#4f81bd; color:white; width:65px" %)bit4|(% style="background-color:#4f81bd; color:white; width:56px" %)bit3|(% style="background-color:#4f81bd; color:white; width:55px" %)bit2|(% style="background-color:#4f81bd; color:white; width:55px" %)bit1|(% style="background-color:#4f81bd; color:white; width:50px" %)bit0
798 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bit)**|(% style="background-color:#4f81bd; color:white; width:60px" %)**bit7**|(% style="background-color:#4f81bd; color:white; width:62px" %)**bit6**|(% style="background-color:#4f81bd; color:white; width:62px" %)**bit5**|(% style="background-color:#4f81bd; color:white; width:65px" %)**bit4**|(% style="background-color:#4f81bd; color:white; width:56px" %)**bit3**|(% style="background-color:#4f81bd; color:white; width:55px" %)**bit2**|(% style="background-color:#4f81bd; color:white; width:55px" %)**bit1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**bit0**
798 798  |(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status
799 799  
800 -* IDC_Roc_flagL
801 +* (% style="color:#037691" %)**IDC_Roc_flagL**
801 801  
802 -80 (H): (0x80&0x80)=80(H)=1000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
803 +80 (H): (0x80&0x80)=80(H)=**1**000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
803 803  
804 804  60 (H): (0x60&0x80)=0  bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
805 805  
806 806  
807 -* IDC_Roc_flagH
808 +* (% style="color:#037691" %)**IDC_Roc_flagH**
808 808  
809 -60 (H): (0x60&0x40)=60(H)=01000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
810 +60 (H): (0x60&0x40)=60(H)=0**1**000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
810 810  
811 811  80 (H): (0x80&0x40)=0  bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
812 812  
813 813  
814 -* VDC_Roc_flagL
815 +* (% style="color:#037691" %)**VDC_Roc_flagL**
815 815  
816 -20 (H): (0x20&0x20)=20(H)=0010 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
817 +20 (H): (0x20&0x20)=20(H)=00**1**0 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
817 817  
818 818  90 (H): (0x90&0x20)=0  bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
819 819  
820 820  
821 -* VDC_Roc_flagH
822 +* (% style="color:#037691" %)**VDC_Roc_flagH**
822 822  
823 -90 (H): (0x90&0x10)=10(H)=0001 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
824 +90 (H): (0x90&0x10)=10(H)=000**1** 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
824 824  
825 825  20 (H): (0x20&0x10)=0  bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
826 826  
827 827  
828 -* IN1_pin_level & IN2_pin_level
829 +* (% style="color:#037691" %)**IN1_pin_level & IN2_pin_level**
829 829  
830 830  IN1 and IN2 are used as digital input pins.
831 831  
... ... @@ -834,15 +834,15 @@
834 834  80 (H): (0x09&0x04)=0    IN2 pin is low level.
835 835  
836 836  
837 -* Exti_pin_level &Exti_status
838 +* (% style="color:#037691" %)**Exti_pin_level &Exti_status**
838 838  
839 839  This data field shows whether the packet is generated by an interrupt pin.
840 840  
841 -Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the GPIO_EXTI pin.
842 +Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the **GPIO_EXTI** pin.
842 842  
843 -Exti_pin_level:  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
844 +**Exti_pin_level:**  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
844 844  
845 -Exti_status: 80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
846 +**Exti_status: **80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
846 846  
847 847  
848 848  === 2.8.2 Set the Report on Change ===
... ... @@ -855,33 +855,44 @@
855 855  
856 856  Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed.
857 857  
858 -* Change value: The amount by which the next detection value increases/decreases relative to the previous detection value.
859 -* Comparison value: A parameter to compare with the latest ROC test.
859 +* (% style="color:#037691" %)**Change value: **(%%)The amount by which the next detection value increases/decreases relative to the previous detection value.
860 +* (% style="color:#037691" %)**Comparison value:**(%%) A parameter to compare with the latest ROC test.
860 860  
861 -AT Command: AT+ROC
862 +(% style="color:blue" %)**AT Command: AT+ROC**
862 862  
863 863  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
864 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
865 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)**Parameters**|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation**
865 865  |(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
866 866  0,0,0,0(default)
867 867  OK
868 868  )))
869 869  |(% colspan="1" rowspan="4" style="width:143px" %)(((
871 +
872 +
873 +
874 +
870 870  AT+ROC=a,b,c,d
871 871  )))|(% style="width:154px" %)(((
872 -a: Enable or disable the ROC
877 +
878 +
879 +
880 +
881 +
882 +
883 +**a**: Enable or disable the ROC
873 873  )))|(% style="width:197px" %)(((
874 -0: off
875 -1: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
876 -2: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
885 +**0:** off
886 +**1:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
887 +
888 +**2: **Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
877 877  )))
878 -|(% style="width:154px" %)b: Set the detection interval|(% style="width:197px" %)(((
890 +|(% style="width:154px" %)**b**: Set the detection interval|(% style="width:197px" %)(((
879 879  Range:  0~~65535s
880 880  )))
881 -|(% style="width:154px" %)c: Setting the IDC change value|(% style="width:197px" %)Unit: uA
882 -|(% style="width:154px" %)d: Setting the VDC change value|(% style="width:197px" %)Unit: mV
893 +|(% style="width:154px" %)**c**: Setting the IDC change value|(% style="width:197px" %)Unit: uA
894 +|(% style="width:154px" %)**d**: Setting the VDC change value|(% style="width:197px" %)Unit: mV
883 883  
884 -Example:
896 +**Example:**
885 885  
886 886  * AT+ROC=0,0,0,0  ~/~/The ROC function is not used.
887 887  * AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed.
... ... @@ -888,25 +888,25 @@
888 888  * AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage.
889 889  * AT+ROC=2,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed.
890 890  
891 -Downlink Command: 0x09 aa bb cc dd
903 +(% style="color:blue" %)**Downlink Command: 0x09 aa bb cc dd**
892 892  
893 893  Format: Function code (0x09) followed by 4 bytes.
894 894  
895 -aa: 1 byte; Set the wave alarm mode.
907 +(% style="color:blue" %)**aa: **(% style="color:#037691" %)**1 byte;**(%%) Set the wave alarm mode.
896 896  
897 -bb: 2 bytes; Set the detection interval. (second)
909 +(% style="color:blue" %)**bb: **(% style="color:#037691" %)**2 bytes;**(%%) Set the detection interval. (second)
898 898  
899 -cc: 2 bytes; Setting the IDC change threshold. (uA)
911 +(% style="color:blue" %)**cc: **(% style="color:#037691" %)**2 bytes;**(%%) Setting the IDC change threshold. (uA)
900 900  
901 -dd: 2 bytes; Setting the VDC change threshold. (mV)
913 +(% style="color:blue" %)**dd: **(% style="color:#037691" %)**2 bytes;**(%%) Setting the VDC change threshold. (mV)
902 902  
903 -Example:
915 +**Example:**
904 904  
905 -* Downlink Payload: 09 01 00 3C 0B B8 01 F4  ~/~/Equal to AT+ROC=1,60,3000, 500
906 -* Downlink Payload: 09 01 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=1,60,3000,0
907 -* Downlink Payload: 09 02 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=2,60,3000,0
917 +* Downlink Payload: **09 01 00 3C 0B B8 01 F4 ** ~/~/Equal to AT+ROC=1,60,3000, 500
918 +* Downlink Payload: **09 01 00 3C 0B B8 00 00 ** ~/~/Equal to AT+ROC=1,60,3000,0
919 +* Downlink Payload: **09 02 00 3C 0B B8 00 00 ** ~/~/Equal to AT+ROC=2,60,3000,0
908 908  
909 -Screenshot of parsing example in TTN:
921 +(% style="color:blue" %)**Screenshot of parsing example in TTN:**
910 910  
911 911  * AT+ROC=1,60,3000, 500.
912 912  
... ... @@ -917,13 +917,11 @@
917 917  
918 918  Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded.
919 919  
920 -AT Command: AT+ROC=3,a,b,c,d,e
932 +(% style="color:blue" %)**AT Command: AT+ROC=3,a,b,c,d,e**
921 921  
922 922  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
923 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
935 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)**Parameters**|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation**
924 924  |(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
925 -
926 -
927 927  0,0,0,0(default)
928 928  OK
929 929  )))
... ... @@ -932,70 +932,57 @@
932 932  
933 933  
934 934  
935 -
936 -AT+ROC=3,a,b,c,d,e
945 +AT+ROC=(% style="color:blue" %)**3**(%%),a,b,c,d,e
937 937  )))|(% style="width:160px" %)(((
938 -
939 -
940 -a: Set the detection interval
947 +**a: **Set the detection interval
941 941  )))|(% style="width:185px" %)(((
942 -
943 -
944 944  Range:  0~~65535s
945 945  )))
946 -|(% style="width:160px" %)b: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
947 -
951 +|(% style="width:160px" %)**b**: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
952 +**0:** Less than the set IDC threshold, Alarm
948 948  
949 -0: Less than the set IDC threshold, Alarm
950 -
951 -1: Greater than the set IDC threshold, Alarm
954 +**1:** Greater than the set IDC threshold, Alarm
952 952  )))
953 953  |(% style="width:160px" %)(((
954 -
955 -
956 -c:  IDC alarm threshold
957 +**c**:  IDC alarm threshold
957 957  )))|(% style="width:185px" %)(((
958 -
959 -
960 960  Unit: uA
961 961  )))
962 -|(% style="width:160px" %)d: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
963 -
961 +|(% style="width:160px" %)**d**: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
962 +**0:** Less than the set VDC threshold, Alarm
964 964  
965 -0: Less than the set VDC threshold, Alarm
966 -
967 -1: Greater than the set VDC threshold, Alarm
964 +**1:** Greater than the set VDC threshold, Alarm
968 968  )))
969 -|(% style="width:160px" %)e: VDC alarm threshold|(% style="width:185px" %)Unit: mV
966 +|(% style="width:160px" %)**e:** VDC alarm threshold|(% style="width:185px" %)Unit: mV
970 970  
971 -Example:
968 +**Example:**
972 972  
973 973  * AT+ROC=3,60,0,3000,0,5000  ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
974 974  * AT+ROC=3,180,1,3000,1,5000  ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
975 975  * AT+ROC=3,300,0,3000,1,5000  ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
976 976  
977 -Downlink Command: 0x09 03 aa bb cc dd ee
974 +(% style="color:blue" %)**Downlink Command: 0x09 03 aa bb cc dd ee**
978 978  
979 979  Format: Function code (0x09) followed by 03 and the remaining 5 bytes.
980 980  
981 -aa: 2 bytes; Set the detection interval.(second)
978 +(% style="color:blue" %)**aa: **(% style="color:#037691" %)**2 bytes;**(%%) Set the detection interval.(second)
982 982  
983 -bb: 1 byte; Set the IDC alarm trigger condition.
980 +(% style="color:blue" %)**bb: **(% style="color:#037691" %)**1 byte; **(%%)Set the IDC alarm trigger condition.
984 984  
985 -cc: 2 bytes; IDC alarm threshold.(uA)
982 +(% style="color:blue" %)**cc: **(% style="color:#037691" %)**2 bytes;**(%%) IDC alarm threshold.(uA)
986 986  
987 987  
988 -dd: 1 byte; Set the VDC alarm trigger condition.
985 +(% style="color:blue" %)**dd: **(% style="color:#037691" %)**1 byte;**(%%) Set the VDC alarm trigger condition.
989 989  
990 -ee: 2 bytes; VDC alarm threshold.(mV)
987 +(% style="color:blue" %)**ee: **(% style="color:#037691" %)**2 bytes; **(%%)VDC alarm threshold.(mV)
991 991  
992 -Example:
989 +**Example:**
993 993  
994 -* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
995 -* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
996 -* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
991 +* Downlink Payload: **09 03 00 3C 00 0B B8 00 13 38** ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
992 +* Downlink Payload: **09 03 00 b4 01 0B B8 01 13 38**  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
993 +* Downlink Payload: **09 03 01 2C 00 0B B8 01 13 38**  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
997 997  
998 -Screenshot of parsing example in TTN:
995 +(% style="color:blue" %)**Screenshot of parsing example in TTN:**
999 999  
1000 1000  * AT+ROC=3,60,0,3000,0,5000
1001 1001  
... ... @@ -1005,7 +1005,7 @@
1005 1005  == 2.9 ​Firmware Change Log ==
1006 1006  
1007 1007  
1008 -Firmware download link:
1005 +**Firmware download link:**
1009 1009  
1010 1010  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
1011 1011  
... ... @@ -1017,7 +1017,7 @@
1017 1017  
1018 1018  PS-LB/LS supports below configure method:
1019 1019  
1020 -* AT Command via Bluetooth Connection (Recommand Way): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1017 +* AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1021 1021  * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
1022 1022  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
1023 1023  
... ... @@ -1045,25 +1045,21 @@
1045 1045  
1046 1046  Feature: Change LoRaWAN End Node Transmit Interval.
1047 1047  
1048 -AT Command: AT+TDC
1045 +(% style="color:blue" %)**AT Command: AT+TDC**
1049 1049  
1050 1050  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1051 -|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response
1048 +|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Response**
1052 1052  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
1053 -
1054 -
1055 1055  30000
1056 1056  OK
1057 1057  the interval is 30000ms = 30s
1058 1058  )))
1059 1059  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
1060 -
1061 -
1062 1062  OK
1063 1063  Set transmit interval to 60000ms = 60 seconds
1064 1064  )))
1065 1065  
1066 -Downlink Command: 0x01
1059 +(% style="color:blue" %)**Downlink Command: 0x01**
1067 1067  
1068 1068  Format: Command Code (0x01) followed by 3 bytes time value.
1069 1069  
... ... @@ -1077,20 +1077,16 @@
1077 1077  
1078 1078  Feature, Set Interrupt mode for GPIO_EXIT.
1079 1079  
1080 -AT Command: AT+INTMOD
1073 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1081 1081  
1082 1082  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1083 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response
1076 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Response**
1084 1084  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
1085 -
1086 -
1087 1087  0
1088 1088  OK
1089 1089  the mode is 0 =Disable Interrupt
1090 1090  )))
1091 1091  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
1092 -
1093 -
1094 1094  Set Transmit Interval
1095 1095  0. (Disable Interrupt),
1096 1096  ~1. (Trigger by rising and falling edge)
... ... @@ -1098,7 +1098,7 @@
1098 1098  3. (Trigger by rising edge)
1099 1099  )))|(% style="background-color:#f2f2f2; width:157px" %)OK
1100 1100  
1101 -Downlink Command: 0x06
1090 +(% style="color:blue" %)**Downlink Command: 0x06**
1102 1102  
1103 1103  Format: Command Code (0x06) followed by 3 bytes.
1104 1104  
... ... @@ -1112,99 +1112,79 @@
1112 1112  
1113 1113  Feature, Control the output 3V3 , 5V or 12V.
1114 1114  
1115 -AT Command: AT+3V3T
1104 +(% style="color:blue" %)**AT Command: AT+3V3T**
1116 1116  
1117 1117  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
1118 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1107 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 201px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1119 1119  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
1120 -
1121 -
1122 1122  0
1123 1123  OK
1124 1124  )))
1125 1125  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1126 -
1127 -
1128 1128  OK
1129 1129  default setting
1130 1130  )))
1131 1131  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
1132 -
1133 -
1134 1134  OK
1135 1135  )))
1136 1136  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1137 -
1138 -
1139 1139  OK
1140 1140  )))
1141 1141  
1142 -AT Command: AT+5VT
1123 +(% style="color:blue" %)**AT Command: AT+5VT**
1143 1143  
1144 1144  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
1145 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1126 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1146 1146  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1147 -
1148 -
1149 1149  0
1150 1150  OK
1151 1151  )))
1152 1152  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1153 -
1154 -
1155 1155  OK
1156 1156  default setting
1157 1157  )))
1158 1158  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
1159 -
1160 -
1161 1161  OK
1162 1162  )))
1163 1163  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1164 -
1165 -
1166 1166  OK
1167 1167  )))
1168 1168  
1169 -AT Command: AT+12VT
1142 +(% style="color:blue" %)**AT Command: AT+12VT**
1170 1170  
1171 1171  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
1172 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response
1145 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 199px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1173 1173  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1174 -
1175 -
1176 1176  0
1177 1177  OK
1178 1178  )))
1179 1179  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
1180 1180  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
1181 -
1182 -
1183 1183  OK
1184 1184  )))
1185 1185  
1186 -Downlink Command: 0x07
1155 +(% style="color:blue" %)**Downlink Command: 0x07**
1187 1187  
1188 1188  Format: Command Code (0x07) followed by 3 bytes.
1189 1189  
1190 1190  The first byte is which power, the second and third bytes are the time to turn on.
1191 1191  
1192 -* Example 1: Downlink Payload: 070101F4  ~-~-->  AT+3V3T=500
1193 -* Example 2: Downlink Payload: 0701FFFF   ~-~-->  AT+3V3T=65535
1194 -* Example 3: Downlink Payload: 070203E8  ~-~-->  AT+5VT=1000
1195 -* Example 4: Downlink Payload: 07020000  ~-~-->  AT+5VT=0
1196 -* Example 5: Downlink Payload: 070301F4  ~-~-->  AT+12VT=500
1197 -* Example 6: Downlink Payload: 07030000  ~-~-->  AT+12VT=0
1161 +* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
1162 +* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
1163 +* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
1164 +* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
1165 +* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
1166 +* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
1198 1198  
1199 -Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.
1168 +(% style="color:red" %)**Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.**
1200 1200  
1201 -Therefore, the corresponding downlink command is increased by one byte to five bytes.
1170 +(% style="color:red" %)**Therefore, the corresponding downlink command is increased by one byte to five bytes.**
1202 1202  
1203 -Example:
1172 +**Example: **
1204 1204  
1205 -* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 01 01 D4 C0  ~-~-->  AT+3V3T=120000
1206 -* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 02 01 86 A0  ~-~-->  AT+5VT=100000
1207 -* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 03 01 38 80  ~-~-->  AT+12VT=80000
1174 +* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 **01** 01 D4 C0  **~-~-->**  AT+3V3T=120000
1175 +* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 **02** 01 86 A0  **~-~-->**  AT+5VT=100000
1176 +* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 **03** 01 38 80  **~-~-->**  AT+12VT=80000
1208 1208  
1209 1209  === 3.3.4 Set the Probe Model ===
1210 1210  
... ... @@ -1211,7 +1211,7 @@
1211 1211  
1212 1212  Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
1213 1213  
1214 -AT Command: AT +PROBE
1183 +(% style="color:blue" %)**AT Command: AT** **+PROBE**
1215 1215  
1216 1216  AT+PROBE=aabb
1217 1217  
... ... @@ -1230,13 +1230,11 @@
1230 1230  (0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C)
1231 1231  
1232 1232  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1233 -|(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1202 +|(% style="background-color:#4f81bd; color:white; width:154px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:269px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1234 1234  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
1235 1235  OK
1236 1236  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
1237 1237  |(% style="background-color:#f2f2f2; width:154px" %)(((
1238 -
1239 -
1240 1240  AT+PROBE=000A
1241 1241  )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
1242 1242  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
... ... @@ -1243,12 +1243,12 @@
1243 1243  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
1244 1244  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
1245 1245  
1246 -Downlink Command: 0x08
1213 +(% style="color:blue" %)**Downlink Command: 0x08**
1247 1247  
1248 1248  Format: Command Code (0x08) followed by 2 bytes.
1249 1249  
1250 -* Example 1: Downlink Payload: 080003  ~-~-->  AT+PROBE=0003
1251 -* Example 2: Downlink Payload: 080101  ~-~-->  AT+PROBE=0101
1217 +* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
1218 +* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
1252 1252  
1253 1253  === 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
1254 1254  
... ... @@ -1255,47 +1255,41 @@
1255 1255  
1256 1256  Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time.
1257 1257  
1258 -AT Command: AT +STDC
1225 +(% style="color:blue" %)**AT Command: AT** **+STDC**
1259 1259  
1260 1260  AT+STDC=aa,bb,bb
1261 1261  
1262 -aa:
1263 -0: means disable this function and use TDC to send packets.
1264 -1: means that the function is enabled to send packets by collecting VDC data for multiple times.
1265 -2: means that the function is enabled to send packets by collecting IDC data for multiple times.
1266 -bb: Each collection interval (s), the value is 1~~65535
1267 -cc: the number of collection times, the value is 1~~120
1229 +(% style="color:#037691" %)**aa:**(%%)
1230 +**0:** means disable this function and use TDC to send packets.
1231 +**1:** means that the function is enabled to send packets by collecting VDC data for multiple times.
1232 +**2:** means that the function is enabled to send packets by collecting IDC data for multiple times.
1233 +(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
1234 +(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
1268 1268  
1269 1269  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1270 -|(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1237 +|(% style="background-color:#4f81bd; color:white; width:160px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:215px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1271 1271  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
1272 1272  OK
1273 1273  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1274 -
1275 -
1276 1276  Attention:Take effect after ATZ
1277 1277  
1278 1278  OK
1279 1279  )))
1280 1280  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
1281 -
1282 -
1283 1283  Use the TDC interval to send packets.(default)
1284 1284  
1285 1285  
1286 1286  )))|(% style="background-color:#f2f2f2" %)(((
1287 -
1288 -
1289 1289  Attention:Take effect after ATZ
1290 1290  
1291 1291  OK
1292 1292  )))
1293 1293  
1294 -Downlink Command: 0xAE
1255 +(% style="color:blue" %)**Downlink Command: 0xAE**
1295 1295  
1296 1296  Format: Command Code (0xAE) followed by 4 bytes.
1297 1297  
1298 -* Example 1: Downlink Payload: AE 01 02 58 12 ~-~-->  AT+STDC=1,600,18
1259 +* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
1299 1299  
1300 1300  = 4. Battery & Power Consumption =
1301 1301  
... ... @@ -1302,7 +1302,7 @@
1302 1302  
1303 1303  PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1304 1304  
1305 -[[Battery Info & Power Consumption Analyze>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1266 +[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1306 1306  
1307 1307  
1308 1308  = 5. OTA firmware update =
... ... @@ -1338,22 +1338,22 @@
1338 1338  Test the current values at the depth of different liquids and convert them to a linear scale.
1339 1339  Replace its ratio with the ratio of water to current in the decoder.
1340 1340  
1341 -Example:
1302 +**Example:**
1342 1342  
1343 1343  Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
1344 1344  
1345 -Calculate scale factor:
1306 +**Calculate scale factor:**
1346 1346  Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
1347 1347  
1348 -Calculation formula:
1309 +**Calculation formula:**
1349 1349  
1350 1350  Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
1351 1351  
1352 -Actual calculations:
1313 +**Actual calculations:**
1353 1353  
1354 1354  Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
1355 1355  
1356 -Error:
1317 +**Error:**
1357 1357  
1358 1358  0.009810726
1359 1359  
... ... @@ -1377,6 +1377,7 @@
1377 1377  = 8. Order Info =
1378 1378  
1379 1379  
1341 +(% style="display:none" %)
1380 1380  
1381 1381  [[image:image-20241021093209-1.png]]
1382 1382  
... ... @@ -1383,11 +1383,11 @@
1383 1383  = 9. ​Packing Info =
1384 1384  
1385 1385  
1386 -Package Includes:
1348 +(% style="color:#037691" %)**Package Includes**:
1387 1387  
1388 1388  * PS-LB or PS-LS LoRaWAN Pressure Sensor
1389 1389  
1390 -Dimension and weight:
1352 +(% style="color:#037691" %)**Dimension and weight**:
1391 1391  
1392 1392  * Device Size: cm
1393 1393  * Device Weight: g
image-20250401163530-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -44.9 KB
Content
image-20250401163539-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content
image-20250401163826-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -18.9 KB
Content
image-20250401163906-4.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -181.6 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0