<
From version < 118.1 >
edited by Mengting Qiu
on 2025/04/01 10:21
To version < 123.8 >
edited by Xiaoling
on 2025/04/01 17:01
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Xiaoling
Content
... ... @@ -148,7 +148,7 @@
148 148  
149 149  === 1.4.3 Wireless Differential Air Pressure Sensor ===
150 150  
151 -[[image:image-20240511174954-1.png]]
151 +[[image:image-20240511174954-1.png||height="215" width="215"]]
152 152  
153 153  * Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
154 154  * Accuracy: 0.5% F.S, resolution is 0.05%.
... ... @@ -163,7 +163,7 @@
163 163  === 1.5.1 Thread Installation Type ===
164 164  
165 165  
166 -(% style="color:blue" %)**Application:**
166 +Application:
167 167  
168 168  * Hydraulic Pressure
169 169  * Petrochemical Industry
... ... @@ -181,7 +181,7 @@
181 181  === 1.5.2 Immersion Type ===
182 182  
183 183  
184 -(% style="color:blue" %)**Application:**
184 +Application:
185 185  
186 186  Liquid & Water Pressure / Level detect.
187 187  
... ... @@ -200,12 +200,15 @@
200 200  
201 201  [[image:1675071776102-240.png]]
202 202  
203 +Size of immersion type water depth sensor:
203 203  
205 +[[image:image-20250401102131-1.png||height="268" width="707"]]
204 204  
207 +
205 205  === 1.5.3 Wireless Differential Air Pressure Sensor ===
206 206  
207 207  
208 -(% style="color:blue" %)**Application:**
211 +Application:
209 209  
210 210  Indoor Air Control & Filter clogging Detect.
211 211  
... ... @@ -229,28 +229,32 @@
229 229  == 1.6 Sleep mode and working mode ==
230 230  
231 231  
232 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
235 +Deep Sleep Mode: Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
233 233  
234 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
237 +Working Mode: In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
235 235  
236 236  
237 237  == 1.7 Button & LEDs ==
238 238  
239 239  
240 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]](% style="display:none" %)
243 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
241 241  
242 242  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
243 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
246 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action
244 244  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
245 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
248 +
249 +
250 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once.
246 246  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
247 247  )))
248 248  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
249 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
250 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
254 +
255 +
256 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network.
257 +Green led will solidly turn on for 5 seconds after joined in network.
251 251  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
252 252  )))
253 -|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
260 +|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
254 254  
255 255  == 1.8 Pin Mapping ==
256 256  
... ... @@ -278,13 +278,13 @@
278 278  === 1.10.1 for LB version ===
279 279  
280 280  
281 -[[image:image-20240109160800-6.png]]
288 +[[image:image-20250401163530-1.jpeg]]
282 282  
283 283  
284 284  === 1.10.2 for LS version ===
285 285  
286 286  
287 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/WebHome/image-20231231203439-3.png?width=886&height=385&rev=1.1||alt="image-20231231203439-3.png"]]
294 +[[image:image-20250401163539-2.jpeg]]
288 288  
289 289  
290 290  = 2. Configure PS-LB/LS to connect to LoRaWAN network =
... ... @@ -292,7 +292,7 @@
292 292  == 2.1 How it works ==
293 293  
294 294  
295 -The PS-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
302 +The PS-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
296 296  
297 297  
298 298  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -306,7 +306,7 @@
306 306  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
307 307  
308 308  
309 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB/LS.
316 +Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.
310 310  
311 311  Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
312 312  
... ... @@ -316,32 +316,32 @@
316 316  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
317 317  
318 318  
319 -(% style="color:blue" %)**Register the device**
326 +Register the device
320 320  
321 321  [[image:1675144099263-405.png]]
322 322  
323 323  
324 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
331 +Add APP EUI and DEV EUI
325 325  
326 326  [[image:1675144117571-832.png]]
327 327  
328 328  
329 -(% style="color:blue" %)**Add APP EUI in the application**
336 +Add APP EUI in the application
330 330  
331 331  
332 332  [[image:1675144143021-195.png]]
333 333  
334 334  
335 -(% style="color:blue" %)**Add APP KEY**
342 +Add APP KEY
336 336  
337 337  [[image:1675144157838-392.png]]
338 338  
339 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB/LS
346 +Step 2: Activate on PS-LB/LS
340 340  
341 341  
342 342  Press the button for 5 seconds to activate the PS-LB/LS.
343 343  
344 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
351 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network.
345 345  
346 346  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
347 347  
... ... @@ -356,9 +356,9 @@
356 356  Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
357 357  
358 358  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
359 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
360 -|(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
361 -|(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
366 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)Device Status (FPORT=5)
367 +|(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2
368 +|(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
362 362  
363 363  Example parse in TTNv3
364 364  
... ... @@ -365,11 +365,11 @@
365 365  [[image:1675144504430-490.png]]
366 366  
367 367  
368 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB/LS, this value is 0x16
375 +Sensor Model: For PS-LB/LS, this value is 0x16
369 369  
370 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
377 +Firmware Version: 0x0100, Means: v1.0.0 version
371 371  
372 -(% style="color:#037691" %)**Frequency Band**:
379 +Frequency Band:
373 373  
374 374  *0x01: EU868
375 375  
... ... @@ -400,7 +400,7 @@
400 400  *0x0e: MA869
401 401  
402 402  
403 -(% style="color:#037691" %)**Sub-Band**:
410 +Sub-Band:
404 404  
405 405  AU915 and US915:value 0x00 ~~ 0x08
406 406  
... ... @@ -409,7 +409,7 @@
409 409  Other Bands: Always 0x00
410 410  
411 411  
412 -(% style="color:#037691" %)**Battery Info**:
419 +Battery Info:
413 413  
414 414  Check the battery voltage.
415 415  
... ... @@ -424,10 +424,12 @@
424 424  Uplink payload includes in total 9 bytes.
425 425  
426 426  
427 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
434 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
428 428  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
429 -**Size(bytes)**
430 -)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
436 +
437 +
438 +Size(bytes)
439 +)))|(% style="background-color:#4f81bd; color:white; width:50px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
431 431  |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
432 432  
433 433  [[image:1675144608950-310.png]]
... ... @@ -449,10 +449,10 @@
449 449  PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
450 450  
451 451  
452 -**For example.**
461 +For example.
453 453  
454 454  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
455 -|(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
464 +|(% style="background-color:#4f81bd; color:white" %)Part Number|(% style="background-color:#4f81bd; color:white" %)Probe Used|(% style="background-color:#4f81bd; color:white" %)4~~20mA scale|(% style="background-color:#4f81bd; color:white" %)Example: 12mA meaning
456 456  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
457 457  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
458 458  |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
... ... @@ -463,9 +463,9 @@
463 463  === 2.3.5 0~~20mA value (IDC_IN) ===
464 464  
465 465  
466 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
475 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
467 467  
468 -(% style="color:#037691" %)**Example**:
477 +Example:
469 469  
470 470  27AE(H) = 10158 (D)/1000 = 10.158mA.
471 471  
... ... @@ -480,7 +480,7 @@
480 480  
481 481  Measure the voltage value. The range is 0 to 30V.
482 482  
483 -(% style="color:#037691" %)**Example**:
492 +Example:
484 484  
485 485  138E(H) = 5006(D)/1000= 5.006V
486 486  
... ... @@ -490,7 +490,7 @@
490 490  
491 491  IN1 and IN2 are used as digital input pins.
492 492  
493 -(% style="color:#037691" %)**Example**:
502 +Example:
494 494  
495 495  09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
496 496  
... ... @@ -497,9 +497,9 @@
497 497  09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
498 498  
499 499  
500 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
509 +This data field shows if this packet is generated by Interrupt Pin or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
501 501  
502 -(% style="color:#037691" %)**Example:**
511 +Example:
503 503  
504 504  09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
505 505  
... ... @@ -513,9 +513,13 @@
513 513  
514 514  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
515 515  |(% style="background-color:#4f81bd; color:white; width:65px" %)(((
516 -**Size(bytes)**
517 -)))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
525 +
526 +
527 +Size(bytes)
528 +)))|(% style="background-color:#4f81bd; color:white; width:35px" %)2|(% style="background-color:#4f81bd; color:white; width:400px" %)n
518 518  |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
530 +
531 +
519 519  Voltage value, each 2 bytes is a set of voltage values.
520 520  )))
521 521  
... ... @@ -548,9 +548,9 @@
548 548  
549 549  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
550 550  
551 -(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
564 +Step 1: Be sure that your device is programmed and properly connected to the network at this time.
552 552  
553 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
566 +Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
554 554  
555 555  [[image:1675144951092-237.png]]
556 556  
... ... @@ -558,9 +558,9 @@
558 558  [[image:1675144960452-126.png]]
559 559  
560 560  
561 -(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
574 +Step 3: Create an account or log in Datacake.
562 562  
563 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB/LS product.
576 +Step 4: Create PS-LB/LS product.
564 564  
565 565  [[image:1675145004465-869.png]]
566 566  
... ... @@ -571,7 +571,7 @@
571 571  [[image:1675145029119-717.png]]
572 572  
573 573  
574 -(% style="color:blue" %)**Step 5: **(%%)add payload decode
587 +Step 5: add payload decode
575 575  
576 576  [[image:1675145051360-659.png]]
577 577  
... ... @@ -595,13 +595,13 @@
595 595  
596 596  PS-LB uses Unix TimeStamp format based on
597 597  
598 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861618065-927.png?width=705&height=109&rev=1.1||alt="1652861618065-927.png" height="109" width="705"]]
611 +[[image:image-20250401163826-3.jpeg]]
599 599  
600 600  Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
601 601  
602 602  Below is the converter example:
603 603  
604 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861637105-371.png?width=732&height=428&rev=1.1||alt="1652861637105-371.png"]]
617 +[[image:image-20250401163906-4.jpeg]]
605 605  
606 606  
607 607  === 2.6.2 Set Device Time ===
... ... @@ -610,16 +610,16 @@
610 610  There are two ways to set the device's time:
611 611  
612 612  
613 -(% style="color:blue" %)**1. Through LoRaWAN MAC Command (Default settings)**
626 +~1. Through LoRaWAN MAC Command (Default settings)
614 614  
615 615  Users need to set SYNCMOD=1 to enable sync time via the MAC command.
616 616  
617 617  Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
618 618  
619 -(% style="color:red" %)**Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.**
632 +Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.
620 620  
621 621  
622 -(% style="color:blue" %)** 2. Manually Set Time**
635 + 2. Manually Set Time
623 623  
624 624  Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
625 625  
... ... @@ -629,8 +629,8 @@
629 629  Users can poll sensor values based on timestamps. Below is the downlink command.
630 630  
631 631  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
632 -|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)**Downlink Command to poll Open/Close status (0x31)**
633 -|(% style="background-color:#f2f2f2; width:67px" %)**1byte**|(% style="background-color:#f2f2f2; width:145px" %)**4bytes**|(% style="background-color:#f2f2f2; width:133px" %)**4bytes**|(% style="background-color:#f2f2f2; width:163px" %)**1byte**
645 +|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31)
646 +|(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte
634 634  |(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)(((
635 635  Timestamp end
636 636  )))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval
... ... @@ -649,36 +649,32 @@
649 649  
650 650  The Datalog uplinks will use below payload format.
651 651  
652 -**Retrieval data payload:**
665 +Retrieval data payload:
653 653  
654 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
667 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
655 655  |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
656 -**Size(bytes)**
657 -)))|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**2**|=(% style="width: 55px; background-color:#4F81BD;color:white" %)**2**|=(% style="width: 83px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 201px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4**
669 +Size(bytes)
670 +)))|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)2|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)4
658 658  |(% style="width:103px" %)Value|(% style="width:68px" %)(((
659 -Probe
660 -
661 -_mod
672 +Probe_mod
662 662  )))|(% style="width:104px" %)(((
663 -VDC
664 -
665 -_intput_V
674 +VDC_intput_V
666 666  )))|(% style="width:83px" %)(((
667 -IDC
668 -
669 -_intput_mA
676 +IDC_intput_mA
670 670  )))|(% style="width:201px" %)(((
671 671  IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status
672 672  )))|(% style="width:86px" %)Unix Time Stamp
673 673  
674 -**IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:**
675 675  
682 +
683 +IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:
684 +
676 676  [[image:image-20250117104847-4.png]]
677 677  
678 678  
679 -**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
688 +No ACK Message:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
680 680  
681 -**Poll Message Flag**: 1: This message is a poll message reply.
690 +Poll Message Flag: 1: This message is a poll message reply.
682 682  
683 683  * Poll Message Flag is set to 1.
684 684  
... ... @@ -686,17 +686,17 @@
686 686  
687 687  For example, in US915 band, the max payload for different DR is:
688 688  
689 -**a) DR0:** max is 11 bytes so one entry of data
698 +a) DR0: max is 11 bytes so one entry of data
690 690  
691 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
700 +b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
692 692  
693 -**c) DR2:** total payload includes 11 entries of data
702 +c) DR2: total payload includes 11 entries of data
694 694  
695 -**d) DR3: **total payload includes 22 entries of data.
704 +d) DR3: total payload includes 22 entries of data.
696 696  
697 697  If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
698 698  
699 -**Example:**
708 +Example:
700 700  
701 701  If PS-LB-NA has below data inside Flash:
702 702  
... ... @@ -710,53 +710,46 @@
710 710   Stop time: 6788DB63 = time 25/1/16 10:11:47
711 711  
712 712  
713 -**PA-LB-NA will uplink this payload.**
722 +PA-LB-NA will uplink this payload.
714 714  
715 715  [[image:image-20250117104827-2.png]]
716 716  
717 -(((
726 +
718 718  00001B620000406788D9BF  00000D130000406788D9FB  00000D120000406788DA37  00000D110000406788DA73  00000D100000406788DAAF  00000D100000406788DAEB  00000D0F0000406788DB27  00000D100000406788DB63
719 -)))
720 720  
721 -(((
729 +
722 722  Where the first 11 bytes is for the first entry :
723 -)))
724 724  
725 -(((
732 +
726 726  0000  0D10  0000  40  6788DB63
727 -)))
728 728  
729 -(((
730 -**Probe_mod **= 0x0000 = 0000
731 -)))
732 732  
733 -(((
734 -**VDC_intput_V **= 0x0D10/1000=3.344V
736 +Probe_mod = 0x0000 = 0000
735 735  
736 -**IDC_intput_mA **= 0x0000/1000=0mA
737 -)))
738 738  
739 -(((
740 -**IN1_pin_level **= (0x40& 0x08)? "High":"Low" = 0(Low)
739 +VDC_intput_V = 0x0D10/1000=3.344V
741 741  
742 -**IN2_pin_level = (**0x40& 0x04)? "High":"Low" = 0(Low)
741 +IDC_intput_mA = 0x0000/1000=0mA
743 743  
744 -**Exti_pin_level = (**0x40& 0x02)? "High":"Low" = 0(Low)
745 745  
746 -**Exti_status = (**0x40& 0x01)? "True":"False" = 0(False)
747 -)))
744 +IN1_pin_level = (0x40& 0x08)? "High":"Low" = 0(Low)
748 748  
749 -(((
750 -**Unix time** is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
751 -)))
746 +IN2_pin_level = (0x40& 0x04)? "High":"Low" = 0(Low)
752 752  
753 -**Its data format is:**
748 +Exti_pin_level = (0x40& 0x02)? "High":"Low" = 0(Low)
754 754  
755 -[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level**, **IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level**, **IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
750 +Exti_status = (0x40& 0x01)? "True":"False" = 0(False)
756 756  
757 -(% style="color:red" %)**Note: water_deep in the data needs to be converted using decoding to get it.**
758 758  
753 +Unix time is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
759 759  
755 +Its data format is:
756 +
757 +[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
758 +
759 +Note: water_deep in the data needs to be converted using decoding to get it.
760 +
761 +
760 760  === 2.6.5 Decoder in TTN V3 ===
761 761  
762 762  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
... ... @@ -783,47 +783,47 @@
783 783  
784 784  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
785 785  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
786 -**Size(bytes)**
787 -)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
788 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
788 +Size(bytes)
789 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
790 +|(% style="width:98px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
789 789  [[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag
790 790  )))
791 791  
792 -(% style="color:blue" %)**IN1 &IN2 , Interrupt  flag , ROC_flag:**
794 +IN1 &IN2 , Interrupt  flag , ROC_flag:
793 793  
794 794  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
795 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bit)**|(% style="background-color:#4f81bd; color:white; width:60px" %)**bit7**|(% style="background-color:#4f81bd; color:white; width:62px" %)**bit6**|(% style="background-color:#4f81bd; color:white; width:62px" %)**bit5**|(% style="background-color:#4f81bd; color:white; width:65px" %)**bit4**|(% style="background-color:#4f81bd; color:white; width:56px" %)**bit3**|(% style="background-color:#4f81bd; color:white; width:55px" %)**bit2**|(% style="background-color:#4f81bd; color:white; width:55px" %)**bit1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**bit0**
797 +|(% style="background-color:#4f81bd; color:white; width:50px" %)Size(bit)|(% style="background-color:#4f81bd; color:white; width:60px" %)bit7|(% style="background-color:#4f81bd; color:white; width:62px" %)bit6|(% style="background-color:#4f81bd; color:white; width:62px" %)bit5|(% style="background-color:#4f81bd; color:white; width:65px" %)bit4|(% style="background-color:#4f81bd; color:white; width:56px" %)bit3|(% style="background-color:#4f81bd; color:white; width:55px" %)bit2|(% style="background-color:#4f81bd; color:white; width:55px" %)bit1|(% style="background-color:#4f81bd; color:white; width:50px" %)bit0
796 796  |(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status
797 797  
798 -* (% style="color:#037691" %)**IDC_Roc_flagL**
800 +* IDC_Roc_flagL
799 799  
800 -80 (H): (0x80&0x80)=80(H)=**1**000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
802 +80 (H): (0x80&0x80)=80(H)=1000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
801 801  
802 802  60 (H): (0x60&0x80)=0  bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
803 803  
804 804  
805 -* (% style="color:#037691" %)**IDC_Roc_flagH**
807 +* IDC_Roc_flagH
806 806  
807 -60 (H): (0x60&0x40)=60(H)=0**1**000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
809 +60 (H): (0x60&0x40)=60(H)=01000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
808 808  
809 809  80 (H): (0x80&0x40)=0  bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
810 810  
811 811  
812 -* (% style="color:#037691" %)**VDC_Roc_flagL**
814 +* VDC_Roc_flagL
813 813  
814 -20 (H): (0x20&0x20)=20(H)=00**1**0 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
816 +20 (H): (0x20&0x20)=20(H)=0010 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
815 815  
816 816  90 (H): (0x90&0x20)=0  bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
817 817  
818 818  
819 -* (% style="color:#037691" %)**VDC_Roc_flagH**
821 +* VDC_Roc_flagH
820 820  
821 -90 (H): (0x90&0x10)=10(H)=000**1** 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
823 +90 (H): (0x90&0x10)=10(H)=0001 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
822 822  
823 823  20 (H): (0x20&0x10)=0  bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
824 824  
825 825  
826 -* (% style="color:#037691" %)**IN1_pin_level & IN2_pin_level**
828 +* IN1_pin_level & IN2_pin_level
827 827  
828 828  IN1 and IN2 are used as digital input pins.
829 829  
... ... @@ -832,15 +832,15 @@
832 832  80 (H): (0x09&0x04)=0    IN2 pin is low level.
833 833  
834 834  
835 -* (% style="color:#037691" %)**Exti_pin_level &Exti_status**
837 +* Exti_pin_level &Exti_status
836 836  
837 837  This data field shows whether the packet is generated by an interrupt pin.
838 838  
839 -Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the **GPIO_EXTI** pin.
841 +Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the GPIO_EXTI pin.
840 840  
841 -**Exti_pin_level:**  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
843 +Exti_pin_level:  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
842 842  
843 -**Exti_status: **80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
845 +Exti_status: 80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
844 844  
845 845  
846 846  === 2.8.2 Set the Report on Change ===
... ... @@ -853,44 +853,36 @@
853 853  
854 854  Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed.
855 855  
856 -* (% style="color:#037691" %)**Change value: **(%%)The amount by which the next detection value increases/decreases relative to the previous detection value.
857 -* (% style="color:#037691" %)**Comparison value:**(%%) A parameter to compare with the latest ROC test.
858 +* Change value: The amount by which the next detection value increases/decreases relative to the previous detection value.
859 +* Comparison value: A parameter to compare with the latest ROC test.
858 858  
859 -(% style="color:blue" %)**AT Command: AT+ROC**
861 +AT Command: AT+ROC
860 860  
861 861  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
862 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)**Parameters**|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation**
864 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
863 863  |(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
864 864  0,0,0,0(default)
865 865  OK
866 866  )))
867 867  |(% colspan="1" rowspan="4" style="width:143px" %)(((
868 -
869 -
870 -
871 -
872 872  AT+ROC=a,b,c,d
873 873  )))|(% style="width:154px" %)(((
874 -
875 -
876 -
877 -
878 -
879 -
880 -**a**: Enable or disable the ROC
872 +a: Enable or disable the ROC
881 881  )))|(% style="width:197px" %)(((
882 -**0:** off
883 -**1:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
874 +0: off
875 +1: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
884 884  
885 -**2: **Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
877 +2: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
886 886  )))
887 -|(% style="width:154px" %)**b**: Set the detection interval|(% style="width:197px" %)(((
879 +|(% style="width:154px" %)b: Set the detection interval|(% style="width:197px" %)(((
880 +
881 +
888 888  Range:  0~~65535s
889 889  )))
890 -|(% style="width:154px" %)**c**: Setting the IDC change value|(% style="width:197px" %)Unit: uA
891 -|(% style="width:154px" %)**d**: Setting the VDC change value|(% style="width:197px" %)Unit: mV
884 +|(% style="width:154px" %)c: Setting the IDC change value|(% style="width:197px" %)Unit: uA
885 +|(% style="width:154px" %)d: Setting the VDC change value|(% style="width:197px" %)Unit: mV
892 892  
893 -**Example:**
887 +Example:
894 894  
895 895  * AT+ROC=0,0,0,0  ~/~/The ROC function is not used.
896 896  * AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed.
... ... @@ -897,25 +897,25 @@
897 897  * AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage.
898 898  * AT+ROC=2,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed.
899 899  
900 -(% style="color:blue" %)**Downlink Command: 0x09 aa bb cc dd**
894 +Downlink Command: 0x09 aa bb cc dd
901 901  
902 902  Format: Function code (0x09) followed by 4 bytes.
903 903  
904 -(% style="color:blue" %)**aa: **(% style="color:#037691" %)**1 byte;**(%%) Set the wave alarm mode.
898 +aa: 1 byte; Set the wave alarm mode.
905 905  
906 -(% style="color:blue" %)**bb: **(% style="color:#037691" %)**2 bytes;**(%%) Set the detection interval. (second)
900 +bb: 2 bytes; Set the detection interval. (second)
907 907  
908 -(% style="color:blue" %)**cc: **(% style="color:#037691" %)**2 bytes;**(%%) Setting the IDC change threshold. (uA)
902 +cc: 2 bytes; Setting the IDC change threshold. (uA)
909 909  
910 -(% style="color:blue" %)**dd: **(% style="color:#037691" %)**2 bytes;**(%%) Setting the VDC change threshold. (mV)
904 +dd: 2 bytes; Setting the VDC change threshold. (mV)
911 911  
912 -**Example:**
906 +Example:
913 913  
914 -* Downlink Payload: **09 01 00 3C 0B B8 01 F4 ** ~/~/Equal to AT+ROC=1,60,3000, 500
915 -* Downlink Payload: **09 01 00 3C 0B B8 00 00 ** ~/~/Equal to AT+ROC=1,60,3000,0
916 -* Downlink Payload: **09 02 00 3C 0B B8 00 00 ** ~/~/Equal to AT+ROC=2,60,3000,0
908 +* Downlink Payload: 09 01 00 3C 0B B8 01 F4  ~/~/Equal to AT+ROC=1,60,3000, 500
909 +* Downlink Payload: 09 01 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=1,60,3000,0
910 +* Downlink Payload: 09 02 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=2,60,3000,0
917 917  
918 -(% style="color:blue" %)**Screenshot of parsing example in TTN:**
912 +Screenshot of parsing example in TTN:
919 919  
920 920  * AT+ROC=1,60,3000, 500.
921 921  
... ... @@ -926,11 +926,13 @@
926 926  
927 927  Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded.
928 928  
929 -(% style="color:blue" %)**AT Command: AT+ROC=3,a,b,c,d,e**
923 +AT Command: AT+ROC=3,a,b,c,d,e
930 930  
931 931  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
932 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)**Parameters**|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation**
926 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
933 933  |(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
928 +
929 +
934 934  0,0,0,0(default)
935 935  OK
936 936  )))
... ... @@ -939,57 +939,70 @@
939 939  
940 940  
941 941  
942 -AT+ROC=(% style="color:blue" %)**3**(%%),a,b,c,d,e
938 +
939 +AT+ROC=3,a,b,c,d,e
943 943  )))|(% style="width:160px" %)(((
944 -**a: **Set the detection interval
941 +
942 +
943 +a: Set the detection interval
945 945  )))|(% style="width:185px" %)(((
945 +
946 +
946 946  Range:  0~~65535s
947 947  )))
948 -|(% style="width:160px" %)**b**: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
949 -**0:** Less than the set IDC threshold, Alarm
949 +|(% style="width:160px" %)b: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
950 +
950 950  
951 -**1:** Greater than the set IDC threshold, Alarm
952 +0: Less than the set IDC threshold, Alarm
953 +
954 +1: Greater than the set IDC threshold, Alarm
952 952  )))
953 953  |(% style="width:160px" %)(((
954 -**c**:  IDC alarm threshold
957 +
958 +
959 +c:  IDC alarm threshold
955 955  )))|(% style="width:185px" %)(((
961 +
962 +
956 956  Unit: uA
957 957  )))
958 -|(% style="width:160px" %)**d**: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
959 -**0:** Less than the set VDC threshold, Alarm
965 +|(% style="width:160px" %)d: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
966 +
960 960  
961 -**1:** Greater than the set VDC threshold, Alarm
968 +0: Less than the set VDC threshold, Alarm
969 +
970 +1: Greater than the set VDC threshold, Alarm
962 962  )))
963 -|(% style="width:160px" %)**e:** VDC alarm threshold|(% style="width:185px" %)Unit: mV
972 +|(% style="width:160px" %)e: VDC alarm threshold|(% style="width:185px" %)Unit: mV
964 964  
965 -**Example:**
974 +Example:
966 966  
967 967  * AT+ROC=3,60,0,3000,0,5000  ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
968 968  * AT+ROC=3,180,1,3000,1,5000  ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
969 969  * AT+ROC=3,300,0,3000,1,5000  ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
970 970  
971 -(% style="color:blue" %)**Downlink Command: 0x09 03 aa bb cc dd ee**
980 +Downlink Command: 0x09 03 aa bb cc dd ee
972 972  
973 973  Format: Function code (0x09) followed by 03 and the remaining 5 bytes.
974 974  
975 -(% style="color:blue" %)**aa: **(% style="color:#037691" %)**2 bytes;**(%%) Set the detection interval.(second)
984 +aa: 2 bytes; Set the detection interval.(second)
976 976  
977 -(% style="color:blue" %)**bb: **(% style="color:#037691" %)**1 byte; **(%%)Set the IDC alarm trigger condition.
986 +bb: 1 byte; Set the IDC alarm trigger condition.
978 978  
979 -(% style="color:blue" %)**cc: **(% style="color:#037691" %)**2 bytes;**(%%) IDC alarm threshold.(uA)
988 +cc: 2 bytes; IDC alarm threshold.(uA)
980 980  
981 981  
982 -(% style="color:blue" %)**dd: **(% style="color:#037691" %)**1 byte;**(%%) Set the VDC alarm trigger condition.
991 +dd: 1 byte; Set the VDC alarm trigger condition.
983 983  
984 -(% style="color:blue" %)**ee: **(% style="color:#037691" %)**2 bytes; **(%%)VDC alarm threshold.(mV)
993 +ee: 2 bytes; VDC alarm threshold.(mV)
985 985  
986 -**Example:**
995 +Example:
987 987  
988 -* Downlink Payload: **09 03 00 3C 00 0B B8 00 13 38** ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
989 -* Downlink Payload: **09 03 00 b4 01 0B B8 01 13 38**  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
990 -* Downlink Payload: **09 03 01 2C 00 0B B8 01 13 38**  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
997 +* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
998 +* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
999 +* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
991 991  
992 -(% style="color:blue" %)**Screenshot of parsing example in TTN:**
1001 +Screenshot of parsing example in TTN:
993 993  
994 994  * AT+ROC=3,60,0,3000,0,5000
995 995  
... ... @@ -999,7 +999,7 @@
999 999  == 2.9 ​Firmware Change Log ==
1000 1000  
1001 1001  
1002 -**Firmware download link:**
1011 +Firmware download link:
1003 1003  
1004 1004  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
1005 1005  
... ... @@ -1011,7 +1011,7 @@
1011 1011  
1012 1012  PS-LB/LS supports below configure method:
1013 1013  
1014 -* AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1023 +* AT Command via Bluetooth Connection (Recommand Way): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1015 1015  * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
1016 1016  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
1017 1017  
... ... @@ -1039,21 +1039,25 @@
1039 1039  
1040 1040  Feature: Change LoRaWAN End Node Transmit Interval.
1041 1041  
1042 -(% style="color:blue" %)**AT Command: AT+TDC**
1051 +AT Command: AT+TDC
1043 1043  
1044 1044  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1045 -|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Response**
1054 +|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response
1046 1046  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
1056 +
1057 +
1047 1047  30000
1048 1048  OK
1049 1049  the interval is 30000ms = 30s
1050 1050  )))
1051 1051  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
1063 +
1064 +
1052 1052  OK
1053 1053  Set transmit interval to 60000ms = 60 seconds
1054 1054  )))
1055 1055  
1056 -(% style="color:blue" %)**Downlink Command: 0x01**
1069 +Downlink Command: 0x01
1057 1057  
1058 1058  Format: Command Code (0x01) followed by 3 bytes time value.
1059 1059  
... ... @@ -1067,16 +1067,20 @@
1067 1067  
1068 1068  Feature, Set Interrupt mode for GPIO_EXIT.
1069 1069  
1070 -(% style="color:blue" %)**AT Command: AT+INTMOD**
1083 +AT Command: AT+INTMOD
1071 1071  
1072 1072  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1073 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Response**
1086 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response
1074 1074  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
1088 +
1089 +
1075 1075  0
1076 1076  OK
1077 1077  the mode is 0 =Disable Interrupt
1078 1078  )))
1079 1079  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
1095 +
1096 +
1080 1080  Set Transmit Interval
1081 1081  0. (Disable Interrupt),
1082 1082  ~1. (Trigger by rising and falling edge)
... ... @@ -1084,7 +1084,7 @@
1084 1084  3. (Trigger by rising edge)
1085 1085  )))|(% style="background-color:#f2f2f2; width:157px" %)OK
1086 1086  
1087 -(% style="color:blue" %)**Downlink Command: 0x06**
1104 +Downlink Command: 0x06
1088 1088  
1089 1089  Format: Command Code (0x06) followed by 3 bytes.
1090 1090  
... ... @@ -1098,79 +1098,99 @@
1098 1098  
1099 1099  Feature, Control the output 3V3 , 5V or 12V.
1100 1100  
1101 -(% style="color:blue" %)**AT Command: AT+3V3T**
1118 +AT Command: AT+3V3T
1102 1102  
1103 1103  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
1104 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 201px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1121 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1105 1105  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
1123 +
1124 +
1106 1106  0
1107 1107  OK
1108 1108  )))
1109 1109  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1129 +
1130 +
1110 1110  OK
1111 1111  default setting
1112 1112  )))
1113 1113  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
1135 +
1136 +
1114 1114  OK
1115 1115  )))
1116 1116  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1140 +
1141 +
1117 1117  OK
1118 1118  )))
1119 1119  
1120 -(% style="color:blue" %)**AT Command: AT+5VT**
1145 +AT Command: AT+5VT
1121 1121  
1122 1122  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
1123 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1148 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1124 1124  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1150 +
1151 +
1125 1125  0
1126 1126  OK
1127 1127  )))
1128 1128  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1156 +
1157 +
1129 1129  OK
1130 1130  default setting
1131 1131  )))
1132 1132  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
1162 +
1163 +
1133 1133  OK
1134 1134  )))
1135 1135  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1167 +
1168 +
1136 1136  OK
1137 1137  )))
1138 1138  
1139 -(% style="color:blue" %)**AT Command: AT+12VT**
1172 +AT Command: AT+12VT
1140 1140  
1141 1141  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
1142 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 199px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1175 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response
1143 1143  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1177 +
1178 +
1144 1144  0
1145 1145  OK
1146 1146  )))
1147 1147  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
1148 1148  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
1184 +
1185 +
1149 1149  OK
1150 1150  )))
1151 1151  
1152 -(% style="color:blue" %)**Downlink Command: 0x07**
1189 +Downlink Command: 0x07
1153 1153  
1154 1154  Format: Command Code (0x07) followed by 3 bytes.
1155 1155  
1156 1156  The first byte is which power, the second and third bytes are the time to turn on.
1157 1157  
1158 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
1159 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
1160 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
1161 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
1162 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
1163 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
1195 +* Example 1: Downlink Payload: 070101F4  ~-~-->  AT+3V3T=500
1196 +* Example 2: Downlink Payload: 0701FFFF   ~-~-->  AT+3V3T=65535
1197 +* Example 3: Downlink Payload: 070203E8  ~-~-->  AT+5VT=1000
1198 +* Example 4: Downlink Payload: 07020000  ~-~-->  AT+5VT=0
1199 +* Example 5: Downlink Payload: 070301F4  ~-~-->  AT+12VT=500
1200 +* Example 6: Downlink Payload: 07030000  ~-~-->  AT+12VT=0
1164 1164  
1165 -(% style="color:red" %)**Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.**
1202 +Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.
1166 1166  
1167 -(% style="color:red" %)**Therefore, the corresponding downlink command is increased by one byte to five bytes.**
1204 +Therefore, the corresponding downlink command is increased by one byte to five bytes.
1168 1168  
1169 -**Example: **
1206 +Example:
1170 1170  
1171 -* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 **01** 01 D4 C0  **~-~-->**  AT+3V3T=120000
1172 -* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 **02** 01 86 A0  **~-~-->**  AT+5VT=100000
1173 -* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 **03** 01 38 80  **~-~-->**  AT+12VT=80000
1208 +* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 01 01 D4 C0  ~-~-->  AT+3V3T=120000
1209 +* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 02 01 86 A0  ~-~-->  AT+5VT=100000
1210 +* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 03 01 38 80  ~-~-->  AT+12VT=80000
1174 1174  
1175 1175  === 3.3.4 Set the Probe Model ===
1176 1176  
... ... @@ -1177,7 +1177,7 @@
1177 1177  
1178 1178  Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
1179 1179  
1180 -(% style="color:blue" %)**AT Command: AT** **+PROBE**
1217 +AT Command: AT +PROBE
1181 1181  
1182 1182  AT+PROBE=aabb
1183 1183  
... ... @@ -1196,11 +1196,13 @@
1196 1196  (0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C)
1197 1197  
1198 1198  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1199 -|(% style="background-color:#4f81bd; color:white; width:154px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:269px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1236 +|(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1200 1200  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
1201 1201  OK
1202 1202  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
1203 1203  |(% style="background-color:#f2f2f2; width:154px" %)(((
1241 +
1242 +
1204 1204  AT+PROBE=000A
1205 1205  )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
1206 1206  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
... ... @@ -1207,12 +1207,12 @@
1207 1207  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
1208 1208  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
1209 1209  
1210 -(% style="color:blue" %)**Downlink Command: 0x08**
1249 +Downlink Command: 0x08
1211 1211  
1212 1212  Format: Command Code (0x08) followed by 2 bytes.
1213 1213  
1214 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
1215 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
1253 +* Example 1: Downlink Payload: 080003  ~-~-->  AT+PROBE=0003
1254 +* Example 2: Downlink Payload: 080101  ~-~-->  AT+PROBE=0101
1216 1216  
1217 1217  === 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
1218 1218  
... ... @@ -1219,41 +1219,47 @@
1219 1219  
1220 1220  Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time.
1221 1221  
1222 -(% style="color:blue" %)**AT Command: AT** **+STDC**
1261 +AT Command: AT +STDC
1223 1223  
1224 1224  AT+STDC=aa,bb,bb
1225 1225  
1226 -(% style="color:#037691" %)**aa:**(%%)
1227 -**0:** means disable this function and use TDC to send packets.
1228 -**1:** means that the function is enabled to send packets by collecting VDC data for multiple times.
1229 -**2:** means that the function is enabled to send packets by collecting IDC data for multiple times.
1230 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
1231 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
1265 +aa:
1266 +0: means disable this function and use TDC to send packets.
1267 +1: means that the function is enabled to send packets by collecting VDC data for multiple times.
1268 +2: means that the function is enabled to send packets by collecting IDC data for multiple times.
1269 +bb: Each collection interval (s), the value is 1~~65535
1270 +cc: the number of collection times, the value is 1~~120
1232 1232  
1233 1233  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1234 -|(% style="background-color:#4f81bd; color:white; width:160px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:215px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1273 +|(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1235 1235  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
1236 1236  OK
1237 1237  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1277 +
1278 +
1238 1238  Attention:Take effect after ATZ
1239 1239  
1240 1240  OK
1241 1241  )))
1242 1242  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
1284 +
1285 +
1243 1243  Use the TDC interval to send packets.(default)
1244 1244  
1245 1245  
1246 1246  )))|(% style="background-color:#f2f2f2" %)(((
1290 +
1291 +
1247 1247  Attention:Take effect after ATZ
1248 1248  
1249 1249  OK
1250 1250  )))
1251 1251  
1252 -(% style="color:blue" %)**Downlink Command: 0xAE**
1297 +Downlink Command: 0xAE
1253 1253  
1254 1254  Format: Command Code (0xAE) followed by 4 bytes.
1255 1255  
1256 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
1301 +* Example 1: Downlink Payload: AE 01 02 58 12 ~-~-->  AT+STDC=1,600,18
1257 1257  
1258 1258  = 4. Battery & Power Consumption =
1259 1259  
... ... @@ -1260,7 +1260,7 @@
1260 1260  
1261 1261  PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1262 1262  
1263 -[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1308 +[[Battery Info & Power Consumption Analyze>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1264 1264  
1265 1265  
1266 1266  = 5. OTA firmware update =
... ... @@ -1296,22 +1296,22 @@
1296 1296  Test the current values at the depth of different liquids and convert them to a linear scale.
1297 1297  Replace its ratio with the ratio of water to current in the decoder.
1298 1298  
1299 -**Example:**
1344 +Example:
1300 1300  
1301 1301  Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
1302 1302  
1303 -**Calculate scale factor:**
1348 +Calculate scale factor:
1304 1304  Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
1305 1305  
1306 -**Calculation formula:**
1351 +Calculation formula:
1307 1307  
1308 1308  Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
1309 1309  
1310 -**Actual calculations:**
1355 +Actual calculations:
1311 1311  
1312 1312  Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
1313 1313  
1314 -**Error:**
1359 +Error:
1315 1315  
1316 1316  0.009810726
1317 1317  
... ... @@ -1335,7 +1335,6 @@
1335 1335  = 8. Order Info =
1336 1336  
1337 1337  
1338 -(% style="display:none" %)
1339 1339  
1340 1340  [[image:image-20241021093209-1.png]]
1341 1341  
... ... @@ -1342,11 +1342,11 @@
1342 1342  = 9. ​Packing Info =
1343 1343  
1344 1344  
1345 -(% style="color:#037691" %)**Package Includes**:
1389 +Package Includes:
1346 1346  
1347 1347  * PS-LB or PS-LS LoRaWAN Pressure Sensor
1348 1348  
1349 -(% style="color:#037691" %)**Dimension and weight**:
1393 +Dimension and weight:
1350 1350  
1351 1351  * Device Size: cm
1352 1352  * Device Weight: g
image-20250401163530-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +44.9 KB
Content
image-20250401163539-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +31.1 KB
Content
image-20250401163826-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +18.9 KB
Content
image-20250401163906-4.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +181.6 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0