<
From version < 116.1 >
edited by Mengting Qiu
on 2025/01/17 10:48
To version < 123.6 >
edited by Xiaoling
on 2025/04/01 16:57
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Xiaoling
Content
... ... @@ -148,7 +148,7 @@
148 148  
149 149  === 1.4.3 Wireless Differential Air Pressure Sensor ===
150 150  
151 -[[image:image-20240511174954-1.png]]
151 +[[image:image-20240511174954-1.png||height="215" width="215"]]
152 152  
153 153  * Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
154 154  * Accuracy: 0.5% F.S, resolution is 0.05%.
... ... @@ -163,7 +163,7 @@
163 163  === 1.5.1 Thread Installation Type ===
164 164  
165 165  
166 -(% style="color:blue" %)**Application:**
166 +Application:
167 167  
168 168  * Hydraulic Pressure
169 169  * Petrochemical Industry
... ... @@ -181,7 +181,7 @@
181 181  === 1.5.2 Immersion Type ===
182 182  
183 183  
184 -(% style="color:blue" %)**Application:**
184 +Application:
185 185  
186 186  Liquid & Water Pressure / Level detect.
187 187  
... ... @@ -200,12 +200,15 @@
200 200  
201 201  [[image:1675071776102-240.png]]
202 202  
203 +Size of immersion type water depth sensor:
203 203  
205 +[[image:image-20250401102131-1.png||height="268" width="707"]]
204 204  
207 +
205 205  === 1.5.3 Wireless Differential Air Pressure Sensor ===
206 206  
207 207  
208 -(% style="color:blue" %)**Application:**
211 +Application:
209 209  
210 210  Indoor Air Control & Filter clogging Detect.
211 211  
... ... @@ -229,28 +229,32 @@
229 229  == 1.6 Sleep mode and working mode ==
230 230  
231 231  
232 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
235 +Deep Sleep Mode: Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
233 233  
234 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
237 +Working Mode: In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
235 235  
236 236  
237 237  == 1.7 Button & LEDs ==
238 238  
239 239  
240 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]](% style="display:none" %)
243 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
241 241  
242 242  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
243 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
246 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action
244 244  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
245 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
248 +
249 +
250 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once.
246 246  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
247 247  )))
248 248  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
249 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
250 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
254 +
255 +
256 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network.
257 +Green led will solidly turn on for 5 seconds after joined in network.
251 251  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
252 252  )))
253 -|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
260 +|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
254 254  
255 255  == 1.8 Pin Mapping ==
256 256  
... ... @@ -278,13 +278,13 @@
278 278  === 1.10.1 for LB version ===
279 279  
280 280  
281 -[[image:image-20240109160800-6.png]]
288 +[[image:image-20250401163530-1.jpeg]]
282 282  
283 283  
284 284  === 1.10.2 for LS version ===
285 285  
286 286  
287 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/WebHome/image-20231231203439-3.png?width=886&height=385&rev=1.1||alt="image-20231231203439-3.png"]]
294 +[[image:image-20250401163539-2.jpeg]]
288 288  
289 289  
290 290  = 2. Configure PS-LB/LS to connect to LoRaWAN network =
... ... @@ -292,7 +292,7 @@
292 292  == 2.1 How it works ==
293 293  
294 294  
295 -The PS-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
302 +The PS-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
296 296  
297 297  
298 298  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -306,7 +306,7 @@
306 306  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
307 307  
308 308  
309 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB/LS.
316 +Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.
310 310  
311 311  Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
312 312  
... ... @@ -316,32 +316,32 @@
316 316  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
317 317  
318 318  
319 -(% style="color:blue" %)**Register the device**
326 +Register the device
320 320  
321 321  [[image:1675144099263-405.png]]
322 322  
323 323  
324 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
331 +Add APP EUI and DEV EUI
325 325  
326 326  [[image:1675144117571-832.png]]
327 327  
328 328  
329 -(% style="color:blue" %)**Add APP EUI in the application**
336 +Add APP EUI in the application
330 330  
331 331  
332 332  [[image:1675144143021-195.png]]
333 333  
334 334  
335 -(% style="color:blue" %)**Add APP KEY**
342 +Add APP KEY
336 336  
337 337  [[image:1675144157838-392.png]]
338 338  
339 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB/LS
346 +Step 2: Activate on PS-LB/LS
340 340  
341 341  
342 342  Press the button for 5 seconds to activate the PS-LB/LS.
343 343  
344 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
351 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network.
345 345  
346 346  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
347 347  
... ... @@ -356,9 +356,9 @@
356 356  Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
357 357  
358 358  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
359 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
360 -|(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
361 -|(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
366 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)Device Status (FPORT=5)
367 +|(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2
368 +|(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
362 362  
363 363  Example parse in TTNv3
364 364  
... ... @@ -365,11 +365,11 @@
365 365  [[image:1675144504430-490.png]]
366 366  
367 367  
368 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB/LS, this value is 0x16
375 +Sensor Model: For PS-LB/LS, this value is 0x16
369 369  
370 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
377 +Firmware Version: 0x0100, Means: v1.0.0 version
371 371  
372 -(% style="color:#037691" %)**Frequency Band**:
379 +Frequency Band:
373 373  
374 374  *0x01: EU868
375 375  
... ... @@ -400,7 +400,7 @@
400 400  *0x0e: MA869
401 401  
402 402  
403 -(% style="color:#037691" %)**Sub-Band**:
410 +Sub-Band:
404 404  
405 405  AU915 and US915:value 0x00 ~~ 0x08
406 406  
... ... @@ -409,7 +409,7 @@
409 409  Other Bands: Always 0x00
410 410  
411 411  
412 -(% style="color:#037691" %)**Battery Info**:
419 +Battery Info:
413 413  
414 414  Check the battery voltage.
415 415  
... ... @@ -424,10 +424,12 @@
424 424  Uplink payload includes in total 9 bytes.
425 425  
426 426  
427 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
434 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
428 428  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
429 -**Size(bytes)**
430 -)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
436 +
437 +
438 +Size(bytes)
439 +)))|(% style="background-color:#4f81bd; color:white; width:50px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
431 431  |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
432 432  
433 433  [[image:1675144608950-310.png]]
... ... @@ -449,10 +449,10 @@
449 449  PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
450 450  
451 451  
452 -**For example.**
461 +For example.
453 453  
454 454  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
455 -|(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
464 +|(% style="background-color:#4f81bd; color:white" %)Part Number|(% style="background-color:#4f81bd; color:white" %)Probe Used|(% style="background-color:#4f81bd; color:white" %)4~~20mA scale|(% style="background-color:#4f81bd; color:white" %)Example: 12mA meaning
456 456  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
457 457  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
458 458  |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
... ... @@ -463,9 +463,9 @@
463 463  === 2.3.5 0~~20mA value (IDC_IN) ===
464 464  
465 465  
466 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
475 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
467 467  
468 -(% style="color:#037691" %)**Example**:
477 +Example:
469 469  
470 470  27AE(H) = 10158 (D)/1000 = 10.158mA.
471 471  
... ... @@ -480,7 +480,7 @@
480 480  
481 481  Measure the voltage value. The range is 0 to 30V.
482 482  
483 -(% style="color:#037691" %)**Example**:
492 +Example:
484 484  
485 485  138E(H) = 5006(D)/1000= 5.006V
486 486  
... ... @@ -490,7 +490,7 @@
490 490  
491 491  IN1 and IN2 are used as digital input pins.
492 492  
493 -(% style="color:#037691" %)**Example**:
502 +Example:
494 494  
495 495  09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
496 496  
... ... @@ -497,9 +497,9 @@
497 497  09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
498 498  
499 499  
500 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
509 +This data field shows if this packet is generated by Interrupt Pin or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
501 501  
502 -(% style="color:#037691" %)**Example:**
511 +Example:
503 503  
504 504  09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
505 505  
... ... @@ -513,9 +513,13 @@
513 513  
514 514  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
515 515  |(% style="background-color:#4f81bd; color:white; width:65px" %)(((
516 -**Size(bytes)**
517 -)))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
525 +
526 +
527 +Size(bytes)
528 +)))|(% style="background-color:#4f81bd; color:white; width:35px" %)2|(% style="background-color:#4f81bd; color:white; width:400px" %)n
518 518  |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
530 +
531 +
519 519  Voltage value, each 2 bytes is a set of voltage values.
520 520  )))
521 521  
... ... @@ -548,9 +548,9 @@
548 548  
549 549  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
550 550  
551 -(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
564 +Step 1: Be sure that your device is programmed and properly connected to the network at this time.
552 552  
553 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
566 +Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
554 554  
555 555  [[image:1675144951092-237.png]]
556 556  
... ... @@ -558,9 +558,9 @@
558 558  [[image:1675144960452-126.png]]
559 559  
560 560  
561 -(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
574 +Step 3: Create an account or log in Datacake.
562 562  
563 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB/LS product.
576 +Step 4: Create PS-LB/LS product.
564 564  
565 565  [[image:1675145004465-869.png]]
566 566  
... ... @@ -571,7 +571,7 @@
571 571  [[image:1675145029119-717.png]]
572 572  
573 573  
574 -(% style="color:blue" %)**Step 5: **(%%)add payload decode
587 +Step 5: add payload decode
575 575  
576 576  [[image:1675145051360-659.png]]
577 577  
... ... @@ -595,13 +595,13 @@
595 595  
596 596  PS-LB uses Unix TimeStamp format based on
597 597  
598 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861618065-927.png?width=705&height=109&rev=1.1||alt="1652861618065-927.png" height="109" width="705"]]
611 +[[image:image-20250401163826-3.jpeg]]
599 599  
600 600  Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
601 601  
602 602  Below is the converter example:
603 603  
604 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861637105-371.png?width=732&height=428&rev=1.1||alt="1652861637105-371.png"]]
617 +[[image:image-20250401163906-4.jpeg]]
605 605  
606 606  
607 607  === 2.6.2 Set Device Time ===
... ... @@ -610,16 +610,16 @@
610 610  There are two ways to set the device's time:
611 611  
612 612  
613 -(% style="color:blue" %)**1. Through LoRaWAN MAC Command (Default settings)**
626 +~1. Through LoRaWAN MAC Command (Default settings)
614 614  
615 615  Users need to set SYNCMOD=1 to enable sync time via the MAC command.
616 616  
617 617  Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
618 618  
619 -(% style="color:red" %)**Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.**
632 +Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.
620 620  
621 621  
622 -(% style="color:blue" %)** 2. Manually Set Time**
635 + 2. Manually Set Time
623 623  
624 624  Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
625 625  
... ... @@ -629,8 +629,8 @@
629 629  Users can poll sensor values based on timestamps. Below is the downlink command.
630 630  
631 631  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
632 -|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)**Downlink Command to poll Open/Close status (0x31)**
633 -|(% style="background-color:#f2f2f2; width:67px" %)**1byte**|(% style="background-color:#f2f2f2; width:145px" %)**4bytes**|(% style="background-color:#f2f2f2; width:133px" %)**4bytes**|(% style="background-color:#f2f2f2; width:163px" %)**1byte**
645 +|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31)
646 +|(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte
634 634  |(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)(((
635 635  Timestamp end
636 636  )))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval
... ... @@ -649,36 +649,32 @@
649 649  
650 650  The Datalog uplinks will use below payload format.
651 651  
652 -**Retrieval data payload:**
665 +Retrieval data payload:
653 653  
654 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
667 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
655 655  |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
656 -**Size(bytes)**
657 -)))|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**2**|=(% style="width: 55px; background-color:#4F81BD;color:white" %)**2**|=(% style="width: 83px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 201px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4**
669 +Size(bytes)
670 +)))|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)2|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)4
658 658  |(% style="width:103px" %)Value|(% style="width:68px" %)(((
659 -Probe
660 -
661 -_mod
672 +Probe_mod
662 662  )))|(% style="width:104px" %)(((
663 -VDC
664 -
665 -_intput_mV
674 +VDC_intput_V
666 666  )))|(% style="width:83px" %)(((
667 -IDC
668 -
669 -_intput_mA
676 +IDC_intput_mA
670 670  )))|(% style="width:201px" %)(((
671 671  IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status
672 672  )))|(% style="width:86px" %)Unix Time Stamp
673 673  
674 -**IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:**
675 675  
682 +
683 +IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:
684 +
676 676  [[image:image-20250117104847-4.png]]
677 677  
678 678  
679 -**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
688 +No ACK Message:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
680 680  
681 -**Poll Message Flag**: 1: This message is a poll message reply.
690 +Poll Message Flag: 1: This message is a poll message reply.
682 682  
683 683  * Poll Message Flag is set to 1.
684 684  
... ... @@ -686,17 +686,17 @@
686 686  
687 687  For example, in US915 band, the max payload for different DR is:
688 688  
689 -**a) DR0:** max is 11 bytes so one entry of data
698 +a) DR0: max is 11 bytes so one entry of data
690 690  
691 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
700 +b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
692 692  
693 -**c) DR2:** total payload includes 11 entries of data
702 +c) DR2: total payload includes 11 entries of data
694 694  
695 -**d) DR3: **total payload includes 22 entries of data.
704 +d) DR3: total payload includes 22 entries of data.
696 696  
697 697  If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
698 698  
699 -**Example:**
708 +Example:
700 700  
701 701  If PS-LB-NA has below data inside Flash:
702 702  
... ... @@ -710,47 +710,46 @@
710 710   Stop time: 6788DB63 = time 25/1/16 10:11:47
711 711  
712 712  
713 -**PA-LB-NA will uplink this payload.**
722 +PA-LB-NA will uplink this payload.
714 714  
715 715  [[image:image-20250117104827-2.png]]
716 716  
717 -(((
726 +
718 718  00001B620000406788D9BF  00000D130000406788D9FB  00000D120000406788DA37  00000D110000406788DA73  00000D100000406788DAAF  00000D100000406788DAEB  00000D0F0000406788DB27  00000D100000406788DB63
719 -)))
720 720  
721 -(((
729 +
722 722  Where the first 11 bytes is for the first entry :
723 -)))
724 724  
725 -(((
732 +
726 726  0000  0D10  0000  40  6788DB63
727 -)))
728 728  
729 -(((
730 -**Probe_mod **= 0x0000 = 0000
731 -)))
732 732  
733 -(((
734 -**VDC_intput_mV **= 0x0D10/1000=3.344mV
736 +Probe_mod = 0x0000 = 0000
735 735  
736 -**IDC_intput_mA **= 0x0000/1000=0mA
737 -)))
738 738  
739 -(((
740 -**IN1_pin_level **= (0x40& 0x08)? "High":"Low" = 0(Low)
739 +VDC_intput_V = 0x0D10/1000=3.344V
741 741  
742 -**IN2_pin_level = (**0x40& 0x04)? "High":"Low" = 0(Low)
741 +IDC_intput_mA = 0x0000/1000=0mA
743 743  
744 -**Exti_pin_level = (**0x40& 0x02)? "High":"Low" = 0(Low)
745 745  
746 -**Exti_status = (**0x40& 0x01)? "True":"False" = 0(False)
747 -)))
744 +IN1_pin_level = (0x40& 0x08)? "High":"Low" = 0(Low)
748 748  
749 -(((
750 -**Unix time** is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
751 -)))
746 +IN2_pin_level = (0x40& 0x04)? "High":"Low" = 0(Low)
752 752  
748 +Exti_pin_level = (0x40& 0x02)? "High":"Low" = 0(Low)
753 753  
750 +Exti_status = (0x40& 0x01)? "True":"False" = 0(False)
751 +
752 +
753 +Unix time is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
754 +
755 +Its data format is:
756 +
757 +[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
758 +
759 +Note: water_deep in the data needs to be converted using decoding to get it.
760 +
761 +
754 754  === 2.6.5 Decoder in TTN V3 ===
755 755  
756 756  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
... ... @@ -777,47 +777,47 @@
777 777  
778 778  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
779 779  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
780 -**Size(bytes)**
781 -)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
782 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
788 +Size(bytes)
789 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
790 +|(% style="width:98px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
783 783  [[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag
784 784  )))
785 785  
786 -(% style="color:blue" %)**IN1 &IN2 , Interrupt  flag , ROC_flag:**
794 +IN1 &IN2 , Interrupt  flag , ROC_flag:
787 787  
788 788  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
789 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bit)**|(% style="background-color:#4f81bd; color:white; width:60px" %)**bit7**|(% style="background-color:#4f81bd; color:white; width:62px" %)**bit6**|(% style="background-color:#4f81bd; color:white; width:62px" %)**bit5**|(% style="background-color:#4f81bd; color:white; width:65px" %)**bit4**|(% style="background-color:#4f81bd; color:white; width:56px" %)**bit3**|(% style="background-color:#4f81bd; color:white; width:55px" %)**bit2**|(% style="background-color:#4f81bd; color:white; width:55px" %)**bit1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**bit0**
797 +|(% style="background-color:#4f81bd; color:white; width:50px" %)Size(bit)|(% style="background-color:#4f81bd; color:white; width:60px" %)bit7|(% style="background-color:#4f81bd; color:white; width:62px" %)bit6|(% style="background-color:#4f81bd; color:white; width:62px" %)bit5|(% style="background-color:#4f81bd; color:white; width:65px" %)bit4|(% style="background-color:#4f81bd; color:white; width:56px" %)bit3|(% style="background-color:#4f81bd; color:white; width:55px" %)bit2|(% style="background-color:#4f81bd; color:white; width:55px" %)bit1|(% style="background-color:#4f81bd; color:white; width:50px" %)bit0
790 790  |(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status
791 791  
792 -* (% style="color:#037691" %)**IDC_Roc_flagL**
800 +* IDC_Roc_flagL
793 793  
794 -80 (H): (0x80&0x80)=80(H)=**1**000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
802 +80 (H): (0x80&0x80)=80(H)=1000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
795 795  
796 796  60 (H): (0x60&0x80)=0  bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
797 797  
798 798  
799 -* (% style="color:#037691" %)**IDC_Roc_flagH**
807 +* IDC_Roc_flagH
800 800  
801 -60 (H): (0x60&0x40)=60(H)=0**1**000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
809 +60 (H): (0x60&0x40)=60(H)=01000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
802 802  
803 803  80 (H): (0x80&0x40)=0  bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
804 804  
805 805  
806 -* (% style="color:#037691" %)**VDC_Roc_flagL**
814 +* VDC_Roc_flagL
807 807  
808 -20 (H): (0x20&0x20)=20(H)=00**1**0 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
816 +20 (H): (0x20&0x20)=20(H)=0010 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
809 809  
810 810  90 (H): (0x90&0x20)=0  bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
811 811  
812 812  
813 -* (% style="color:#037691" %)**VDC_Roc_flagH**
821 +* VDC_Roc_flagH
814 814  
815 -90 (H): (0x90&0x10)=10(H)=000**1** 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
823 +90 (H): (0x90&0x10)=10(H)=0001 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
816 816  
817 817  20 (H): (0x20&0x10)=0  bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
818 818  
819 819  
820 -* (% style="color:#037691" %)**IN1_pin_level & IN2_pin_level**
828 +* IN1_pin_level & IN2_pin_level
821 821  
822 822  IN1 and IN2 are used as digital input pins.
823 823  
... ... @@ -826,15 +826,15 @@
826 826  80 (H): (0x09&0x04)=0    IN2 pin is low level.
827 827  
828 828  
829 -* (% style="color:#037691" %)**Exti_pin_level &Exti_status**
837 +* Exti_pin_level &Exti_status
830 830  
831 831  This data field shows whether the packet is generated by an interrupt pin.
832 832  
833 -Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the **GPIO_EXTI** pin.
841 +Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the GPIO_EXTI pin.
834 834  
835 -**Exti_pin_level:**  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
843 +Exti_pin_level:  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
836 836  
837 -**Exti_status: **80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
845 +Exti_status: 80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
838 838  
839 839  
840 840  === 2.8.2 Set the Report on Change ===
... ... @@ -847,14 +847,16 @@
847 847  
848 848  Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed.
849 849  
850 -* (% style="color:#037691" %)**Change value: **(%%)The amount by which the next detection value increases/decreases relative to the previous detection value.
851 -* (% style="color:#037691" %)**Comparison value:**(%%) A parameter to compare with the latest ROC test.
858 +* Change value: The amount by which the next detection value increases/decreases relative to the previous detection value.
859 +* Comparison value: A parameter to compare with the latest ROC test.
852 852  
853 -(% style="color:blue" %)**AT Command: AT+ROC**
861 +AT Command: AT+ROC
854 854  
855 855  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
856 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)**Parameters**|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation**
864 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
857 857  |(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
866 +
867 +
858 858  0,0,0,0(default)
859 859  OK
860 860  )))
... ... @@ -863,6 +863,7 @@
863 863  
864 864  
865 865  
876 +
866 866  AT+ROC=a,b,c,d
867 867  )))|(% style="width:154px" %)(((
868 868  
... ... @@ -871,20 +871,25 @@
871 871  
872 872  
873 873  
874 -**a**: Enable or disable the ROC
885 +
886 +a: Enable or disable the ROC
875 875  )))|(% style="width:197px" %)(((
876 -**0:** off
877 -**1:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
888 +
878 878  
879 -**2: **Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
890 +0: off
891 +1: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
892 +
893 +2: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
880 880  )))
881 -|(% style="width:154px" %)**b**: Set the detection interval|(% style="width:197px" %)(((
895 +|(% style="width:154px" %)b: Set the detection interval|(% style="width:197px" %)(((
896 +
897 +
882 882  Range:  0~~65535s
883 883  )))
884 -|(% style="width:154px" %)**c**: Setting the IDC change value|(% style="width:197px" %)Unit: uA
885 -|(% style="width:154px" %)**d**: Setting the VDC change value|(% style="width:197px" %)Unit: mV
900 +|(% style="width:154px" %)c: Setting the IDC change value|(% style="width:197px" %)Unit: uA
901 +|(% style="width:154px" %)d: Setting the VDC change value|(% style="width:197px" %)Unit: mV
886 886  
887 -**Example:**
903 +Example:
888 888  
889 889  * AT+ROC=0,0,0,0  ~/~/The ROC function is not used.
890 890  * AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed.
... ... @@ -891,25 +891,25 @@
891 891  * AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage.
892 892  * AT+ROC=2,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed.
893 893  
894 -(% style="color:blue" %)**Downlink Command: 0x09 aa bb cc dd**
910 +Downlink Command: 0x09 aa bb cc dd
895 895  
896 896  Format: Function code (0x09) followed by 4 bytes.
897 897  
898 -(% style="color:blue" %)**aa: **(% style="color:#037691" %)**1 byte;**(%%) Set the wave alarm mode.
914 +aa: 1 byte; Set the wave alarm mode.
899 899  
900 -(% style="color:blue" %)**bb: **(% style="color:#037691" %)**2 bytes;**(%%) Set the detection interval. (second)
916 +bb: 2 bytes; Set the detection interval. (second)
901 901  
902 -(% style="color:blue" %)**cc: **(% style="color:#037691" %)**2 bytes;**(%%) Setting the IDC change threshold. (uA)
918 +cc: 2 bytes; Setting the IDC change threshold. (uA)
903 903  
904 -(% style="color:blue" %)**dd: **(% style="color:#037691" %)**2 bytes;**(%%) Setting the VDC change threshold. (mV)
920 +dd: 2 bytes; Setting the VDC change threshold. (mV)
905 905  
906 -**Example:**
922 +Example:
907 907  
908 -* Downlink Payload: **09 01 00 3C 0B B8 01 F4 ** ~/~/Equal to AT+ROC=1,60,3000, 500
909 -* Downlink Payload: **09 01 00 3C 0B B8 00 00 ** ~/~/Equal to AT+ROC=1,60,3000,0
910 -* Downlink Payload: **09 02 00 3C 0B B8 00 00 ** ~/~/Equal to AT+ROC=2,60,3000,0
924 +* Downlink Payload: 09 01 00 3C 0B B8 01 F4  ~/~/Equal to AT+ROC=1,60,3000, 500
925 +* Downlink Payload: 09 01 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=1,60,3000,0
926 +* Downlink Payload: 09 02 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=2,60,3000,0
911 911  
912 -(% style="color:blue" %)**Screenshot of parsing example in TTN:**
928 +Screenshot of parsing example in TTN:
913 913  
914 914  * AT+ROC=1,60,3000, 500.
915 915  
... ... @@ -920,11 +920,13 @@
920 920  
921 921  Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded.
922 922  
923 -(% style="color:blue" %)**AT Command: AT+ROC=3,a,b,c,d,e**
939 +AT Command: AT+ROC=3,a,b,c,d,e
924 924  
925 925  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
926 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)**Parameters**|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation**
942 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
927 927  |(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
944 +
945 +
928 928  0,0,0,0(default)
929 929  OK
930 930  )))
... ... @@ -933,57 +933,70 @@
933 933  
934 934  
935 935  
936 -AT+ROC=(% style="color:blue" %)**3**(%%),a,b,c,d,e
954 +
955 +AT+ROC=3,a,b,c,d,e
937 937  )))|(% style="width:160px" %)(((
938 -**a: **Set the detection interval
957 +
958 +
959 +a: Set the detection interval
939 939  )))|(% style="width:185px" %)(((
961 +
962 +
940 940  Range:  0~~65535s
941 941  )))
942 -|(% style="width:160px" %)**b**: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
943 -**0:** Less than the set IDC threshold, Alarm
965 +|(% style="width:160px" %)b: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
966 +
944 944  
945 -**1:** Greater than the set IDC threshold, Alarm
968 +0: Less than the set IDC threshold, Alarm
969 +
970 +1: Greater than the set IDC threshold, Alarm
946 946  )))
947 947  |(% style="width:160px" %)(((
948 -**c**:  IDC alarm threshold
973 +
974 +
975 +c:  IDC alarm threshold
949 949  )))|(% style="width:185px" %)(((
977 +
978 +
950 950  Unit: uA
951 951  )))
952 -|(% style="width:160px" %)**d**: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
953 -**0:** Less than the set VDC threshold, Alarm
981 +|(% style="width:160px" %)d: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
982 +
954 954  
955 -**1:** Greater than the set VDC threshold, Alarm
984 +0: Less than the set VDC threshold, Alarm
985 +
986 +1: Greater than the set VDC threshold, Alarm
956 956  )))
957 -|(% style="width:160px" %)**e:** VDC alarm threshold|(% style="width:185px" %)Unit: mV
988 +|(% style="width:160px" %)e: VDC alarm threshold|(% style="width:185px" %)Unit: mV
958 958  
959 -**Example:**
990 +Example:
960 960  
961 961  * AT+ROC=3,60,0,3000,0,5000  ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
962 962  * AT+ROC=3,180,1,3000,1,5000  ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
963 963  * AT+ROC=3,300,0,3000,1,5000  ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
964 964  
965 -(% style="color:blue" %)**Downlink Command: 0x09 03 aa bb cc dd ee**
996 +Downlink Command: 0x09 03 aa bb cc dd ee
966 966  
967 967  Format: Function code (0x09) followed by 03 and the remaining 5 bytes.
968 968  
969 -(% style="color:blue" %)**aa: **(% style="color:#037691" %)**2 bytes;**(%%) Set the detection interval.(second)
1000 +aa: 2 bytes; Set the detection interval.(second)
970 970  
971 -(% style="color:blue" %)**bb: **(% style="color:#037691" %)**1 byte; **(%%)Set the IDC alarm trigger condition.
1002 +bb: 1 byte; Set the IDC alarm trigger condition.
972 972  
973 -(% style="color:blue" %)**cc: **(% style="color:#037691" %)**2 bytes;**(%%) IDC alarm threshold.(uA)
1004 +cc: 2 bytes; IDC alarm threshold.(uA)
974 974  
975 975  
976 -(% style="color:blue" %)**dd: **(% style="color:#037691" %)**1 byte;**(%%) Set the VDC alarm trigger condition.
1007 +dd: 1 byte; Set the VDC alarm trigger condition.
977 977  
978 -(% style="color:blue" %)**ee: **(% style="color:#037691" %)**2 bytes; **(%%)VDC alarm threshold.(mV)
1009 +ee: 2 bytes; VDC alarm threshold.(mV)
979 979  
980 -**Example:**
1011 +Example:
981 981  
982 -* Downlink Payload: **09 03 00 3C 00 0B B8 00 13 38** ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
983 -* Downlink Payload: **09 03 00 b4 01 0B B8 01 13 38**  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
984 -* Downlink Payload: **09 03 01 2C 00 0B B8 01 13 38**  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
1013 +* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
1014 +* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
1015 +* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
985 985  
986 -(% style="color:blue" %)**Screenshot of parsing example in TTN:**
1017 +Screenshot of parsing example in TTN:
987 987  
988 988  * AT+ROC=3,60,0,3000,0,5000
989 989  
... ... @@ -993,7 +993,7 @@
993 993  == 2.9 ​Firmware Change Log ==
994 994  
995 995  
996 -**Firmware download link:**
1027 +Firmware download link:
997 997  
998 998  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
999 999  
... ... @@ -1005,7 +1005,7 @@
1005 1005  
1006 1006  PS-LB/LS supports below configure method:
1007 1007  
1008 -* AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1039 +* AT Command via Bluetooth Connection (Recommand Way): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1009 1009  * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
1010 1010  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
1011 1011  
... ... @@ -1033,21 +1033,25 @@
1033 1033  
1034 1034  Feature: Change LoRaWAN End Node Transmit Interval.
1035 1035  
1036 -(% style="color:blue" %)**AT Command: AT+TDC**
1067 +AT Command: AT+TDC
1037 1037  
1038 1038  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1039 -|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Response**
1070 +|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response
1040 1040  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
1072 +
1073 +
1041 1041  30000
1042 1042  OK
1043 1043  the interval is 30000ms = 30s
1044 1044  )))
1045 1045  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
1079 +
1080 +
1046 1046  OK
1047 1047  Set transmit interval to 60000ms = 60 seconds
1048 1048  )))
1049 1049  
1050 -(% style="color:blue" %)**Downlink Command: 0x01**
1085 +Downlink Command: 0x01
1051 1051  
1052 1052  Format: Command Code (0x01) followed by 3 bytes time value.
1053 1053  
... ... @@ -1061,16 +1061,20 @@
1061 1061  
1062 1062  Feature, Set Interrupt mode for GPIO_EXIT.
1063 1063  
1064 -(% style="color:blue" %)**AT Command: AT+INTMOD**
1099 +AT Command: AT+INTMOD
1065 1065  
1066 1066  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1067 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Response**
1102 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response
1068 1068  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
1104 +
1105 +
1069 1069  0
1070 1070  OK
1071 1071  the mode is 0 =Disable Interrupt
1072 1072  )))
1073 1073  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
1111 +
1112 +
1074 1074  Set Transmit Interval
1075 1075  0. (Disable Interrupt),
1076 1076  ~1. (Trigger by rising and falling edge)
... ... @@ -1078,7 +1078,7 @@
1078 1078  3. (Trigger by rising edge)
1079 1079  )))|(% style="background-color:#f2f2f2; width:157px" %)OK
1080 1080  
1081 -(% style="color:blue" %)**Downlink Command: 0x06**
1120 +Downlink Command: 0x06
1082 1082  
1083 1083  Format: Command Code (0x06) followed by 3 bytes.
1084 1084  
... ... @@ -1092,79 +1092,99 @@
1092 1092  
1093 1093  Feature, Control the output 3V3 , 5V or 12V.
1094 1094  
1095 -(% style="color:blue" %)**AT Command: AT+3V3T**
1134 +AT Command: AT+3V3T
1096 1096  
1097 1097  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
1098 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 201px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1137 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1099 1099  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
1139 +
1140 +
1100 1100  0
1101 1101  OK
1102 1102  )))
1103 1103  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1145 +
1146 +
1104 1104  OK
1105 1105  default setting
1106 1106  )))
1107 1107  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
1151 +
1152 +
1108 1108  OK
1109 1109  )))
1110 1110  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1156 +
1157 +
1111 1111  OK
1112 1112  )))
1113 1113  
1114 -(% style="color:blue" %)**AT Command: AT+5VT**
1161 +AT Command: AT+5VT
1115 1115  
1116 1116  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
1117 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1164 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1118 1118  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1166 +
1167 +
1119 1119  0
1120 1120  OK
1121 1121  )))
1122 1122  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1172 +
1173 +
1123 1123  OK
1124 1124  default setting
1125 1125  )))
1126 1126  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
1178 +
1179 +
1127 1127  OK
1128 1128  )))
1129 1129  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1183 +
1184 +
1130 1130  OK
1131 1131  )))
1132 1132  
1133 -(% style="color:blue" %)**AT Command: AT+12VT**
1188 +AT Command: AT+12VT
1134 1134  
1135 1135  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
1136 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 199px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1191 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response
1137 1137  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1193 +
1194 +
1138 1138  0
1139 1139  OK
1140 1140  )))
1141 1141  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
1142 1142  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
1200 +
1201 +
1143 1143  OK
1144 1144  )))
1145 1145  
1146 -(% style="color:blue" %)**Downlink Command: 0x07**
1205 +Downlink Command: 0x07
1147 1147  
1148 1148  Format: Command Code (0x07) followed by 3 bytes.
1149 1149  
1150 1150  The first byte is which power, the second and third bytes are the time to turn on.
1151 1151  
1152 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
1153 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
1154 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
1155 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
1156 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
1157 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
1211 +* Example 1: Downlink Payload: 070101F4  ~-~-->  AT+3V3T=500
1212 +* Example 2: Downlink Payload: 0701FFFF   ~-~-->  AT+3V3T=65535
1213 +* Example 3: Downlink Payload: 070203E8  ~-~-->  AT+5VT=1000
1214 +* Example 4: Downlink Payload: 07020000  ~-~-->  AT+5VT=0
1215 +* Example 5: Downlink Payload: 070301F4  ~-~-->  AT+12VT=500
1216 +* Example 6: Downlink Payload: 07030000  ~-~-->  AT+12VT=0
1158 1158  
1159 -(% style="color:red" %)**Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.**
1218 +Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.
1160 1160  
1161 -(% style="color:red" %)**Therefore, the corresponding downlink command is increased by one byte to five bytes.**
1220 +Therefore, the corresponding downlink command is increased by one byte to five bytes.
1162 1162  
1163 -**Example: **
1222 +Example:
1164 1164  
1165 -* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 **01** 01 D4 C0  **~-~-->**  AT+3V3T=120000
1166 -* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 **02** 01 86 A0  **~-~-->**  AT+5VT=100000
1167 -* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 **03** 01 38 80  **~-~-->**  AT+12VT=80000
1224 +* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 01 01 D4 C0  ~-~-->  AT+3V3T=120000
1225 +* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 02 01 86 A0  ~-~-->  AT+5VT=100000
1226 +* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 03 01 38 80  ~-~-->  AT+12VT=80000
1168 1168  
1169 1169  === 3.3.4 Set the Probe Model ===
1170 1170  
... ... @@ -1171,7 +1171,7 @@
1171 1171  
1172 1172  Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
1173 1173  
1174 -(% style="color:blue" %)**AT Command: AT** **+PROBE**
1233 +AT Command: AT +PROBE
1175 1175  
1176 1176  AT+PROBE=aabb
1177 1177  
... ... @@ -1190,11 +1190,13 @@
1190 1190  (0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C)
1191 1191  
1192 1192  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1193 -|(% style="background-color:#4f81bd; color:white; width:154px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:269px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1252 +|(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1194 1194  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
1195 1195  OK
1196 1196  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
1197 1197  |(% style="background-color:#f2f2f2; width:154px" %)(((
1257 +
1258 +
1198 1198  AT+PROBE=000A
1199 1199  )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
1200 1200  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
... ... @@ -1201,12 +1201,12 @@
1201 1201  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
1202 1202  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
1203 1203  
1204 -(% style="color:blue" %)**Downlink Command: 0x08**
1265 +Downlink Command: 0x08
1205 1205  
1206 1206  Format: Command Code (0x08) followed by 2 bytes.
1207 1207  
1208 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
1209 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
1269 +* Example 1: Downlink Payload: 080003  ~-~-->  AT+PROBE=0003
1270 +* Example 2: Downlink Payload: 080101  ~-~-->  AT+PROBE=0101
1210 1210  
1211 1211  === 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
1212 1212  
... ... @@ -1213,41 +1213,47 @@
1213 1213  
1214 1214  Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time.
1215 1215  
1216 -(% style="color:blue" %)**AT Command: AT** **+STDC**
1277 +AT Command: AT +STDC
1217 1217  
1218 1218  AT+STDC=aa,bb,bb
1219 1219  
1220 -(% style="color:#037691" %)**aa:**(%%)
1221 -**0:** means disable this function and use TDC to send packets.
1222 -**1:** means that the function is enabled to send packets by collecting VDC data for multiple times.
1223 -**2:** means that the function is enabled to send packets by collecting IDC data for multiple times.
1224 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
1225 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
1281 +aa:
1282 +0: means disable this function and use TDC to send packets.
1283 +1: means that the function is enabled to send packets by collecting VDC data for multiple times.
1284 +2: means that the function is enabled to send packets by collecting IDC data for multiple times.
1285 +bb: Each collection interval (s), the value is 1~~65535
1286 +cc: the number of collection times, the value is 1~~120
1226 1226  
1227 1227  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1228 -|(% style="background-color:#4f81bd; color:white; width:160px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:215px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1289 +|(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1229 1229  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
1230 1230  OK
1231 1231  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1293 +
1294 +
1232 1232  Attention:Take effect after ATZ
1233 1233  
1234 1234  OK
1235 1235  )))
1236 1236  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
1300 +
1301 +
1237 1237  Use the TDC interval to send packets.(default)
1238 1238  
1239 1239  
1240 1240  )))|(% style="background-color:#f2f2f2" %)(((
1306 +
1307 +
1241 1241  Attention:Take effect after ATZ
1242 1242  
1243 1243  OK
1244 1244  )))
1245 1245  
1246 -(% style="color:blue" %)**Downlink Command: 0xAE**
1313 +Downlink Command: 0xAE
1247 1247  
1248 1248  Format: Command Code (0xAE) followed by 4 bytes.
1249 1249  
1250 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
1317 +* Example 1: Downlink Payload: AE 01 02 58 12 ~-~-->  AT+STDC=1,600,18
1251 1251  
1252 1252  = 4. Battery & Power Consumption =
1253 1253  
... ... @@ -1254,7 +1254,7 @@
1254 1254  
1255 1255  PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1256 1256  
1257 -[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1324 +[[Battery Info & Power Consumption Analyze>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1258 1258  
1259 1259  
1260 1260  = 5. OTA firmware update =
... ... @@ -1290,22 +1290,22 @@
1290 1290  Test the current values at the depth of different liquids and convert them to a linear scale.
1291 1291  Replace its ratio with the ratio of water to current in the decoder.
1292 1292  
1293 -**Example:**
1360 +Example:
1294 1294  
1295 1295  Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
1296 1296  
1297 -**Calculate scale factor:**
1364 +Calculate scale factor:
1298 1298  Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
1299 1299  
1300 -**Calculation formula:**
1367 +Calculation formula:
1301 1301  
1302 1302  Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
1303 1303  
1304 -**Actual calculations:**
1371 +Actual calculations:
1305 1305  
1306 1306  Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
1307 1307  
1308 -**Error:**
1375 +Error:
1309 1309  
1310 1310  0.009810726
1311 1311  
... ... @@ -1329,7 +1329,6 @@
1329 1329  = 8. Order Info =
1330 1330  
1331 1331  
1332 -(% style="display:none" %)
1333 1333  
1334 1334  [[image:image-20241021093209-1.png]]
1335 1335  
... ... @@ -1336,11 +1336,11 @@
1336 1336  = 9. ​Packing Info =
1337 1337  
1338 1338  
1339 -(% style="color:#037691" %)**Package Includes**:
1405 +Package Includes:
1340 1340  
1341 1341  * PS-LB or PS-LS LoRaWAN Pressure Sensor
1342 1342  
1343 -(% style="color:#037691" %)**Dimension and weight**:
1409 +Dimension and weight:
1344 1344  
1345 1345  * Device Size: cm
1346 1346  * Device Weight: g
image-20250401102131-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +64.7 KB
Content
image-20250401163530-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +44.9 KB
Content
image-20250401163539-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +31.1 KB
Content
image-20250401163826-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +18.9 KB
Content
image-20250401163906-4.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +181.6 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0