<
From version < 114.1 >
edited by Mengting Qiu
on 2025/01/17 10:48
To version < 123.6 >
edited by Xiaoling
on 2025/04/01 16:57
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Xiaoling
Content
... ... @@ -148,7 +148,7 @@
148 148  
149 149  === 1.4.3 Wireless Differential Air Pressure Sensor ===
150 150  
151 -[[image:image-20240511174954-1.png]]
151 +[[image:image-20240511174954-1.png||height="215" width="215"]]
152 152  
153 153  * Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
154 154  * Accuracy: 0.5% F.S, resolution is 0.05%.
... ... @@ -163,7 +163,7 @@
163 163  === 1.5.1 Thread Installation Type ===
164 164  
165 165  
166 -(% style="color:blue" %)**Application:**
166 +Application:
167 167  
168 168  * Hydraulic Pressure
169 169  * Petrochemical Industry
... ... @@ -181,7 +181,7 @@
181 181  === 1.5.2 Immersion Type ===
182 182  
183 183  
184 -(% style="color:blue" %)**Application:**
184 +Application:
185 185  
186 186  Liquid & Water Pressure / Level detect.
187 187  
... ... @@ -200,12 +200,15 @@
200 200  
201 201  [[image:1675071776102-240.png]]
202 202  
203 +Size of immersion type water depth sensor:
203 203  
205 +[[image:image-20250401102131-1.png||height="268" width="707"]]
204 204  
207 +
205 205  === 1.5.3 Wireless Differential Air Pressure Sensor ===
206 206  
207 207  
208 -(% style="color:blue" %)**Application:**
211 +Application:
209 209  
210 210  Indoor Air Control & Filter clogging Detect.
211 211  
... ... @@ -229,28 +229,32 @@
229 229  == 1.6 Sleep mode and working mode ==
230 230  
231 231  
232 -(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
235 +Deep Sleep Mode: Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
233 233  
234 -(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
237 +Working Mode: In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
235 235  
236 236  
237 237  == 1.7 Button & LEDs ==
238 238  
239 239  
240 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]](% style="display:none" %)
243 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
241 241  
242 242  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
243 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
246 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action
244 244  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
245 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
248 +
249 +
250 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once.
246 246  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
247 247  )))
248 248  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
249 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
250 -(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
254 +
255 +
256 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network.
257 +Green led will solidly turn on for 5 seconds after joined in network.
251 251  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
252 252  )))
253 -|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
260 +|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
254 254  
255 255  == 1.8 Pin Mapping ==
256 256  
... ... @@ -278,13 +278,13 @@
278 278  === 1.10.1 for LB version ===
279 279  
280 280  
281 -[[image:image-20240109160800-6.png]]
288 +[[image:image-20250401163530-1.jpeg]]
282 282  
283 283  
284 284  === 1.10.2 for LS version ===
285 285  
286 286  
287 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/WebHome/image-20231231203439-3.png?width=886&height=385&rev=1.1||alt="image-20231231203439-3.png"]]
294 +[[image:image-20250401163539-2.jpeg]]
288 288  
289 289  
290 290  = 2. Configure PS-LB/LS to connect to LoRaWAN network =
... ... @@ -292,7 +292,7 @@
292 292  == 2.1 How it works ==
293 293  
294 294  
295 -The PS-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
302 +The PS-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
296 296  
297 297  
298 298  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -306,7 +306,7 @@
306 306  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
307 307  
308 308  
309 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB/LS.
316 +Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.
310 310  
311 311  Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
312 312  
... ... @@ -316,32 +316,32 @@
316 316  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
317 317  
318 318  
319 -(% style="color:blue" %)**Register the device**
326 +Register the device
320 320  
321 321  [[image:1675144099263-405.png]]
322 322  
323 323  
324 -(% style="color:blue" %)**Add APP EUI and DEV EUI**
331 +Add APP EUI and DEV EUI
325 325  
326 326  [[image:1675144117571-832.png]]
327 327  
328 328  
329 -(% style="color:blue" %)**Add APP EUI in the application**
336 +Add APP EUI in the application
330 330  
331 331  
332 332  [[image:1675144143021-195.png]]
333 333  
334 334  
335 -(% style="color:blue" %)**Add APP KEY**
342 +Add APP KEY
336 336  
337 337  [[image:1675144157838-392.png]]
338 338  
339 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB/LS
346 +Step 2: Activate on PS-LB/LS
340 340  
341 341  
342 342  Press the button for 5 seconds to activate the PS-LB/LS.
343 343  
344 -(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
351 +Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network.
345 345  
346 346  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
347 347  
... ... @@ -356,9 +356,9 @@
356 356  Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
357 357  
358 358  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
359 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
360 -|(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
361 -|(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
366 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)Device Status (FPORT=5)
367 +|(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2
368 +|(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
362 362  
363 363  Example parse in TTNv3
364 364  
... ... @@ -365,11 +365,11 @@
365 365  [[image:1675144504430-490.png]]
366 366  
367 367  
368 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB/LS, this value is 0x16
375 +Sensor Model: For PS-LB/LS, this value is 0x16
369 369  
370 -(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
377 +Firmware Version: 0x0100, Means: v1.0.0 version
371 371  
372 -(% style="color:#037691" %)**Frequency Band**:
379 +Frequency Band:
373 373  
374 374  *0x01: EU868
375 375  
... ... @@ -400,7 +400,7 @@
400 400  *0x0e: MA869
401 401  
402 402  
403 -(% style="color:#037691" %)**Sub-Band**:
410 +Sub-Band:
404 404  
405 405  AU915 and US915:value 0x00 ~~ 0x08
406 406  
... ... @@ -409,7 +409,7 @@
409 409  Other Bands: Always 0x00
410 410  
411 411  
412 -(% style="color:#037691" %)**Battery Info**:
419 +Battery Info:
413 413  
414 414  Check the battery voltage.
415 415  
... ... @@ -424,10 +424,12 @@
424 424  Uplink payload includes in total 9 bytes.
425 425  
426 426  
427 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
434 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
428 428  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
429 -**Size(bytes)**
430 -)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
436 +
437 +
438 +Size(bytes)
439 +)))|(% style="background-color:#4f81bd; color:white; width:50px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
431 431  |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
432 432  
433 433  [[image:1675144608950-310.png]]
... ... @@ -449,10 +449,10 @@
449 449  PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
450 450  
451 451  
452 -**For example.**
461 +For example.
453 453  
454 454  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
455 -|(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
464 +|(% style="background-color:#4f81bd; color:white" %)Part Number|(% style="background-color:#4f81bd; color:white" %)Probe Used|(% style="background-color:#4f81bd; color:white" %)4~~20mA scale|(% style="background-color:#4f81bd; color:white" %)Example: 12mA meaning
456 456  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
457 457  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
458 458  |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
... ... @@ -463,9 +463,9 @@
463 463  === 2.3.5 0~~20mA value (IDC_IN) ===
464 464  
465 465  
466 -The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
475 +The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
467 467  
468 -(% style="color:#037691" %)**Example**:
477 +Example:
469 469  
470 470  27AE(H) = 10158 (D)/1000 = 10.158mA.
471 471  
... ... @@ -480,7 +480,7 @@
480 480  
481 481  Measure the voltage value. The range is 0 to 30V.
482 482  
483 -(% style="color:#037691" %)**Example**:
492 +Example:
484 484  
485 485  138E(H) = 5006(D)/1000= 5.006V
486 486  
... ... @@ -490,7 +490,7 @@
490 490  
491 491  IN1 and IN2 are used as digital input pins.
492 492  
493 -(% style="color:#037691" %)**Example**:
502 +Example:
494 494  
495 495  09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
496 496  
... ... @@ -497,9 +497,9 @@
497 497  09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
498 498  
499 499  
500 -This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
509 +This data field shows if this packet is generated by Interrupt Pin or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
501 501  
502 -(% style="color:#037691" %)**Example:**
511 +Example:
503 503  
504 504  09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
505 505  
... ... @@ -513,9 +513,13 @@
513 513  
514 514  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
515 515  |(% style="background-color:#4f81bd; color:white; width:65px" %)(((
516 -**Size(bytes)**
517 -)))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
525 +
526 +
527 +Size(bytes)
528 +)))|(% style="background-color:#4f81bd; color:white; width:35px" %)2|(% style="background-color:#4f81bd; color:white; width:400px" %)n
518 518  |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
530 +
531 +
519 519  Voltage value, each 2 bytes is a set of voltage values.
520 520  )))
521 521  
... ... @@ -548,9 +548,9 @@
548 548  
549 549  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
550 550  
551 -(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
564 +Step 1: Be sure that your device is programmed and properly connected to the network at this time.
552 552  
553 -(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
566 +Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
554 554  
555 555  [[image:1675144951092-237.png]]
556 556  
... ... @@ -558,9 +558,9 @@
558 558  [[image:1675144960452-126.png]]
559 559  
560 560  
561 -(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
574 +Step 3: Create an account or log in Datacake.
562 562  
563 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB/LS product.
576 +Step 4: Create PS-LB/LS product.
564 564  
565 565  [[image:1675145004465-869.png]]
566 566  
... ... @@ -571,7 +571,7 @@
571 571  [[image:1675145029119-717.png]]
572 572  
573 573  
574 -(% style="color:blue" %)**Step 5: **(%%)add payload decode
587 +Step 5: add payload decode
575 575  
576 576  [[image:1675145051360-659.png]]
577 577  
... ... @@ -595,13 +595,13 @@
595 595  
596 596  PS-LB uses Unix TimeStamp format based on
597 597  
598 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861618065-927.png?width=705&height=109&rev=1.1||alt="1652861618065-927.png" height="109" width="705"]]
611 +[[image:image-20250401163826-3.jpeg]]
599 599  
600 600  Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
601 601  
602 602  Below is the converter example:
603 603  
604 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861637105-371.png?width=732&height=428&rev=1.1||alt="1652861637105-371.png"]]
617 +[[image:image-20250401163906-4.jpeg]]
605 605  
606 606  
607 607  === 2.6.2 Set Device Time ===
... ... @@ -610,16 +610,16 @@
610 610  There are two ways to set the device's time:
611 611  
612 612  
613 -(% style="color:blue" %)**1. Through LoRaWAN MAC Command (Default settings)**
626 +~1. Through LoRaWAN MAC Command (Default settings)
614 614  
615 615  Users need to set SYNCMOD=1 to enable sync time via the MAC command.
616 616  
617 617  Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
618 618  
619 -(% style="color:red" %)**Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.**
632 +Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.
620 620  
621 621  
622 -(% style="color:blue" %)** 2. Manually Set Time**
635 + 2. Manually Set Time
623 623  
624 624  Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
625 625  
... ... @@ -626,32 +626,128 @@
626 626  
627 627  === 2.6.3 Poll sensor value ===
628 628  
629 -
630 630  Users can poll sensor values based on timestamps. Below is the downlink command.
631 631  
632 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
633 -|=(% colspan="4" style="width: 154px;background-color:#4F81BD;color:white" %)**Downlink Command to poll Open/Close status (0x31)**
634 -|(% style="background-color:#f2f2f2; width:70px" %)**1byte**|(% style="background-color:#f2f2f2; width:140px" %)**4bytes**|(% style="background-color:#f2f2f2; width:140px" %)(((
635 -(((
636 -**4bytes**
637 -)))
644 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
645 +|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31)
646 +|(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte
647 +|(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)(((
648 +Timestamp end
649 +)))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval
638 638  
639 -
640 -
641 -)))|(% style="background-color:#f2f2f2; width:150px" %)**1byte**
642 -|(% style="background-color:#f2f2f2; width:70px" %)31|(% style="background-color:#f2f2f2; width:140px" %)Timestamp start|(% style="background-color:#f2f2f2; width:140px" %)Timestamp end|(% style="background-color:#f2f2f2; width:150px" %)Uplink Interval
643 -
644 644  Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
645 645  
646 -For example, downlink command[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
653 +For example, downlink command[[image:image-20250117104812-1.png]]
647 647  
648 -Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
655 +Is to check 2024/12/20 09:34:59 to 2024/12/20 14:34:59's data
649 649  
650 650  Uplink Internal =5s,means PS-LB will send one packet every 5s. range 5~~255s.
651 651  
652 652  
653 -=== 2.6.4 Decoder in TTN V3 ===
660 +=== 2.6.4 Datalog Uplink payload (FPORT~=3) ===
654 654  
662 +
663 +The Datalog uplinks will use below payload format.
664 +
665 +Retrieval data payload:
666 +
667 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
668 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
669 +Size(bytes)
670 +)))|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)2|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)4
671 +|(% style="width:103px" %)Value|(% style="width:68px" %)(((
672 +Probe_mod
673 +)))|(% style="width:104px" %)(((
674 +VDC_intput_V
675 +)))|(% style="width:83px" %)(((
676 +IDC_intput_mA
677 +)))|(% style="width:201px" %)(((
678 +IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status
679 +)))|(% style="width:86px" %)Unix Time Stamp
680 +
681 +
682 +
683 +IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:
684 +
685 +[[image:image-20250117104847-4.png]]
686 +
687 +
688 +No ACK Message:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
689 +
690 +Poll Message Flag: 1: This message is a poll message reply.
691 +
692 +* Poll Message Flag is set to 1.
693 +
694 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
695 +
696 +For example, in US915 band, the max payload for different DR is:
697 +
698 +a) DR0: max is 11 bytes so one entry of data
699 +
700 +b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
701 +
702 +c) DR2: total payload includes 11 entries of data
703 +
704 +d) DR3: total payload includes 22 entries of data.
705 +
706 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
707 +
708 +Example:
709 +
710 +If PS-LB-NA has below data inside Flash:
711 +
712 +[[image:image-20250117104837-3.png]]
713 +
714 +
715 +If user sends below downlink command: 316788D9BF6788DB6305
716 +
717 +Where : Start time: 6788D9BF = time 25/1/16 10:04:47
718 +
719 + Stop time: 6788DB63 = time 25/1/16 10:11:47
720 +
721 +
722 +PA-LB-NA will uplink this payload.
723 +
724 +[[image:image-20250117104827-2.png]]
725 +
726 +
727 +00001B620000406788D9BF  00000D130000406788D9FB  00000D120000406788DA37  00000D110000406788DA73  00000D100000406788DAAF  00000D100000406788DAEB  00000D0F0000406788DB27  00000D100000406788DB63
728 +
729 +
730 +Where the first 11 bytes is for the first entry :
731 +
732 +
733 +0000  0D10  0000  40  6788DB63
734 +
735 +
736 +Probe_mod = 0x0000 = 0000
737 +
738 +
739 +VDC_intput_V = 0x0D10/1000=3.344V
740 +
741 +IDC_intput_mA = 0x0000/1000=0mA
742 +
743 +
744 +IN1_pin_level = (0x40& 0x08)? "High":"Low" = 0(Low)
745 +
746 +IN2_pin_level = (0x40& 0x04)? "High":"Low" = 0(Low)
747 +
748 +Exti_pin_level = (0x40& 0x02)? "High":"Low" = 0(Low)
749 +
750 +Exti_status = (0x40& 0x01)? "True":"False" = 0(False)
751 +
752 +
753 +Unix time is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
754 +
755 +Its data format is:
756 +
757 +[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
758 +
759 +Note: water_deep in the data needs to be converted using decoding to get it.
760 +
761 +
762 +=== 2.6.5 Decoder in TTN V3 ===
763 +
655 655  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
656 656  
657 657  Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
... ... @@ -676,47 +676,47 @@
676 676  
677 677  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
678 678  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
679 -**Size(bytes)**
680 -)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
681 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
788 +Size(bytes)
789 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
790 +|(% style="width:98px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
682 682  [[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag
683 683  )))
684 684  
685 -(% style="color:blue" %)**IN1 &IN2 , Interrupt  flag , ROC_flag:**
794 +IN1 &IN2 , Interrupt  flag , ROC_flag:
686 686  
687 687  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
688 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bit)**|(% style="background-color:#4f81bd; color:white; width:60px" %)**bit7**|(% style="background-color:#4f81bd; color:white; width:62px" %)**bit6**|(% style="background-color:#4f81bd; color:white; width:62px" %)**bit5**|(% style="background-color:#4f81bd; color:white; width:65px" %)**bit4**|(% style="background-color:#4f81bd; color:white; width:56px" %)**bit3**|(% style="background-color:#4f81bd; color:white; width:55px" %)**bit2**|(% style="background-color:#4f81bd; color:white; width:55px" %)**bit1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**bit0**
797 +|(% style="background-color:#4f81bd; color:white; width:50px" %)Size(bit)|(% style="background-color:#4f81bd; color:white; width:60px" %)bit7|(% style="background-color:#4f81bd; color:white; width:62px" %)bit6|(% style="background-color:#4f81bd; color:white; width:62px" %)bit5|(% style="background-color:#4f81bd; color:white; width:65px" %)bit4|(% style="background-color:#4f81bd; color:white; width:56px" %)bit3|(% style="background-color:#4f81bd; color:white; width:55px" %)bit2|(% style="background-color:#4f81bd; color:white; width:55px" %)bit1|(% style="background-color:#4f81bd; color:white; width:50px" %)bit0
689 689  |(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status
690 690  
691 -* (% style="color:#037691" %)**IDC_Roc_flagL**
800 +* IDC_Roc_flagL
692 692  
693 -80 (H): (0x80&0x80)=80(H)=**1**000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
802 +80 (H): (0x80&0x80)=80(H)=1000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
694 694  
695 695  60 (H): (0x60&0x80)=0  bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
696 696  
697 697  
698 -* (% style="color:#037691" %)**IDC_Roc_flagH**
807 +* IDC_Roc_flagH
699 699  
700 -60 (H): (0x60&0x40)=60(H)=0**1**000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
809 +60 (H): (0x60&0x40)=60(H)=01000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
701 701  
702 702  80 (H): (0x80&0x40)=0  bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
703 703  
704 704  
705 -* (% style="color:#037691" %)**VDC_Roc_flagL**
814 +* VDC_Roc_flagL
706 706  
707 -20 (H): (0x20&0x20)=20(H)=00**1**0 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
816 +20 (H): (0x20&0x20)=20(H)=0010 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
708 708  
709 709  90 (H): (0x90&0x20)=0  bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
710 710  
711 711  
712 -* (% style="color:#037691" %)**VDC_Roc_flagH**
821 +* VDC_Roc_flagH
713 713  
714 -90 (H): (0x90&0x10)=10(H)=000**1** 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
823 +90 (H): (0x90&0x10)=10(H)=0001 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
715 715  
716 716  20 (H): (0x20&0x10)=0  bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
717 717  
718 718  
719 -* (% style="color:#037691" %)**IN1_pin_level & IN2_pin_level**
828 +* IN1_pin_level & IN2_pin_level
720 720  
721 721  IN1 and IN2 are used as digital input pins.
722 722  
... ... @@ -725,15 +725,15 @@
725 725  80 (H): (0x09&0x04)=0    IN2 pin is low level.
726 726  
727 727  
728 -* (% style="color:#037691" %)**Exti_pin_level &Exti_status**
837 +* Exti_pin_level &Exti_status
729 729  
730 730  This data field shows whether the packet is generated by an interrupt pin.
731 731  
732 -Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the **GPIO_EXTI** pin.
841 +Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the GPIO_EXTI pin.
733 733  
734 -**Exti_pin_level:**  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
843 +Exti_pin_level:  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
735 735  
736 -**Exti_status: **80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
845 +Exti_status: 80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
737 737  
738 738  
739 739  === 2.8.2 Set the Report on Change ===
... ... @@ -746,14 +746,16 @@
746 746  
747 747  Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed.
748 748  
749 -* (% style="color:#037691" %)**Change value: **(%%)The amount by which the next detection value increases/decreases relative to the previous detection value.
750 -* (% style="color:#037691" %)**Comparison value:**(%%) A parameter to compare with the latest ROC test.
858 +* Change value: The amount by which the next detection value increases/decreases relative to the previous detection value.
859 +* Comparison value: A parameter to compare with the latest ROC test.
751 751  
752 -(% style="color:blue" %)**AT Command: AT+ROC**
861 +AT Command: AT+ROC
753 753  
754 754  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
755 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)**Parameters**|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation**
864 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
756 756  |(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
866 +
867 +
757 757  0,0,0,0(default)
758 758  OK
759 759  )))
... ... @@ -762,6 +762,7 @@
762 762  
763 763  
764 764  
876 +
765 765  AT+ROC=a,b,c,d
766 766  )))|(% style="width:154px" %)(((
767 767  
... ... @@ -770,20 +770,25 @@
770 770  
771 771  
772 772  
773 -**a**: Enable or disable the ROC
885 +
886 +a: Enable or disable the ROC
774 774  )))|(% style="width:197px" %)(((
775 -**0:** off
776 -**1:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
888 +
777 777  
778 -**2: **Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
890 +0: off
891 +1: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
892 +
893 +2: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
779 779  )))
780 -|(% style="width:154px" %)**b**: Set the detection interval|(% style="width:197px" %)(((
895 +|(% style="width:154px" %)b: Set the detection interval|(% style="width:197px" %)(((
896 +
897 +
781 781  Range:  0~~65535s
782 782  )))
783 -|(% style="width:154px" %)**c**: Setting the IDC change value|(% style="width:197px" %)Unit: uA
784 -|(% style="width:154px" %)**d**: Setting the VDC change value|(% style="width:197px" %)Unit: mV
900 +|(% style="width:154px" %)c: Setting the IDC change value|(% style="width:197px" %)Unit: uA
901 +|(% style="width:154px" %)d: Setting the VDC change value|(% style="width:197px" %)Unit: mV
785 785  
786 -**Example:**
903 +Example:
787 787  
788 788  * AT+ROC=0,0,0,0  ~/~/The ROC function is not used.
789 789  * AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed.
... ... @@ -790,25 +790,25 @@
790 790  * AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage.
791 791  * AT+ROC=2,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed.
792 792  
793 -(% style="color:blue" %)**Downlink Command: 0x09 aa bb cc dd**
910 +Downlink Command: 0x09 aa bb cc dd
794 794  
795 795  Format: Function code (0x09) followed by 4 bytes.
796 796  
797 -(% style="color:blue" %)**aa: **(% style="color:#037691" %)**1 byte;**(%%) Set the wave alarm mode.
914 +aa: 1 byte; Set the wave alarm mode.
798 798  
799 -(% style="color:blue" %)**bb: **(% style="color:#037691" %)**2 bytes;**(%%) Set the detection interval. (second)
916 +bb: 2 bytes; Set the detection interval. (second)
800 800  
801 -(% style="color:blue" %)**cc: **(% style="color:#037691" %)**2 bytes;**(%%) Setting the IDC change threshold. (uA)
918 +cc: 2 bytes; Setting the IDC change threshold. (uA)
802 802  
803 -(% style="color:blue" %)**dd: **(% style="color:#037691" %)**2 bytes;**(%%) Setting the VDC change threshold. (mV)
920 +dd: 2 bytes; Setting the VDC change threshold. (mV)
804 804  
805 -**Example:**
922 +Example:
806 806  
807 -* Downlink Payload: **09 01 00 3C 0B B8 01 F4 ** ~/~/Equal to AT+ROC=1,60,3000, 500
808 -* Downlink Payload: **09 01 00 3C 0B B8 00 00 ** ~/~/Equal to AT+ROC=1,60,3000,0
809 -* Downlink Payload: **09 02 00 3C 0B B8 00 00 ** ~/~/Equal to AT+ROC=2,60,3000,0
924 +* Downlink Payload: 09 01 00 3C 0B B8 01 F4  ~/~/Equal to AT+ROC=1,60,3000, 500
925 +* Downlink Payload: 09 01 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=1,60,3000,0
926 +* Downlink Payload: 09 02 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=2,60,3000,0
810 810  
811 -(% style="color:blue" %)**Screenshot of parsing example in TTN:**
928 +Screenshot of parsing example in TTN:
812 812  
813 813  * AT+ROC=1,60,3000, 500.
814 814  
... ... @@ -819,11 +819,13 @@
819 819  
820 820  Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded.
821 821  
822 -(% style="color:blue" %)**AT Command: AT+ROC=3,a,b,c,d,e**
939 +AT Command: AT+ROC=3,a,b,c,d,e
823 823  
824 824  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
825 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)**Parameters**|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation**
942 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
826 826  |(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
944 +
945 +
827 827  0,0,0,0(default)
828 828  OK
829 829  )))
... ... @@ -832,57 +832,70 @@
832 832  
833 833  
834 834  
835 -AT+ROC=(% style="color:blue" %)**3**(%%),a,b,c,d,e
954 +
955 +AT+ROC=3,a,b,c,d,e
836 836  )))|(% style="width:160px" %)(((
837 -**a: **Set the detection interval
957 +
958 +
959 +a: Set the detection interval
838 838  )))|(% style="width:185px" %)(((
961 +
962 +
839 839  Range:  0~~65535s
840 840  )))
841 -|(% style="width:160px" %)**b**: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
842 -**0:** Less than the set IDC threshold, Alarm
965 +|(% style="width:160px" %)b: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
966 +
843 843  
844 -**1:** Greater than the set IDC threshold, Alarm
968 +0: Less than the set IDC threshold, Alarm
969 +
970 +1: Greater than the set IDC threshold, Alarm
845 845  )))
846 846  |(% style="width:160px" %)(((
847 -**c**:  IDC alarm threshold
973 +
974 +
975 +c:  IDC alarm threshold
848 848  )))|(% style="width:185px" %)(((
977 +
978 +
849 849  Unit: uA
850 850  )))
851 -|(% style="width:160px" %)**d**: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
852 -**0:** Less than the set VDC threshold, Alarm
981 +|(% style="width:160px" %)d: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
982 +
853 853  
854 -**1:** Greater than the set VDC threshold, Alarm
984 +0: Less than the set VDC threshold, Alarm
985 +
986 +1: Greater than the set VDC threshold, Alarm
855 855  )))
856 -|(% style="width:160px" %)**e:** VDC alarm threshold|(% style="width:185px" %)Unit: mV
988 +|(% style="width:160px" %)e: VDC alarm threshold|(% style="width:185px" %)Unit: mV
857 857  
858 -**Example:**
990 +Example:
859 859  
860 860  * AT+ROC=3,60,0,3000,0,5000  ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
861 861  * AT+ROC=3,180,1,3000,1,5000  ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
862 862  * AT+ROC=3,300,0,3000,1,5000  ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
863 863  
864 -(% style="color:blue" %)**Downlink Command: 0x09 03 aa bb cc dd ee**
996 +Downlink Command: 0x09 03 aa bb cc dd ee
865 865  
866 866  Format: Function code (0x09) followed by 03 and the remaining 5 bytes.
867 867  
868 -(% style="color:blue" %)**aa: **(% style="color:#037691" %)**2 bytes;**(%%) Set the detection interval.(second)
1000 +aa: 2 bytes; Set the detection interval.(second)
869 869  
870 -(% style="color:blue" %)**bb: **(% style="color:#037691" %)**1 byte; **(%%)Set the IDC alarm trigger condition.
1002 +bb: 1 byte; Set the IDC alarm trigger condition.
871 871  
872 -(% style="color:blue" %)**cc: **(% style="color:#037691" %)**2 bytes;**(%%) IDC alarm threshold.(uA)
1004 +cc: 2 bytes; IDC alarm threshold.(uA)
873 873  
874 874  
875 -(% style="color:blue" %)**dd: **(% style="color:#037691" %)**1 byte;**(%%) Set the VDC alarm trigger condition.
1007 +dd: 1 byte; Set the VDC alarm trigger condition.
876 876  
877 -(% style="color:blue" %)**ee: **(% style="color:#037691" %)**2 bytes; **(%%)VDC alarm threshold.(mV)
1009 +ee: 2 bytes; VDC alarm threshold.(mV)
878 878  
879 -**Example:**
1011 +Example:
880 880  
881 -* Downlink Payload: **09 03 00 3C 00 0B B8 00 13 38** ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
882 -* Downlink Payload: **09 03 00 b4 01 0B B8 01 13 38**  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
883 -* Downlink Payload: **09 03 01 2C 00 0B B8 01 13 38**  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
1013 +* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
1014 +* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
1015 +* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
884 884  
885 -(% style="color:blue" %)**Screenshot of parsing example in TTN:**
1017 +Screenshot of parsing example in TTN:
886 886  
887 887  * AT+ROC=3,60,0,3000,0,5000
888 888  
... ... @@ -892,7 +892,7 @@
892 892  == 2.9 ​Firmware Change Log ==
893 893  
894 894  
895 -**Firmware download link:**
1027 +Firmware download link:
896 896  
897 897  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
898 898  
... ... @@ -904,7 +904,7 @@
904 904  
905 905  PS-LB/LS supports below configure method:
906 906  
907 -* AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1039 +* AT Command via Bluetooth Connection (Recommand Way): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
908 908  * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
909 909  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
910 910  
... ... @@ -932,21 +932,25 @@
932 932  
933 933  Feature: Change LoRaWAN End Node Transmit Interval.
934 934  
935 -(% style="color:blue" %)**AT Command: AT+TDC**
1067 +AT Command: AT+TDC
936 936  
937 937  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
938 -|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Response**
1070 +|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response
939 939  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
1072 +
1073 +
940 940  30000
941 941  OK
942 942  the interval is 30000ms = 30s
943 943  )))
944 944  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
1079 +
1080 +
945 945  OK
946 946  Set transmit interval to 60000ms = 60 seconds
947 947  )))
948 948  
949 -(% style="color:blue" %)**Downlink Command: 0x01**
1085 +Downlink Command: 0x01
950 950  
951 951  Format: Command Code (0x01) followed by 3 bytes time value.
952 952  
... ... @@ -960,16 +960,20 @@
960 960  
961 961  Feature, Set Interrupt mode for GPIO_EXIT.
962 962  
963 -(% style="color:blue" %)**AT Command: AT+INTMOD**
1099 +AT Command: AT+INTMOD
964 964  
965 965  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
966 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Response**
1102 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response
967 967  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
1104 +
1105 +
968 968  0
969 969  OK
970 970  the mode is 0 =Disable Interrupt
971 971  )))
972 972  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
1111 +
1112 +
973 973  Set Transmit Interval
974 974  0. (Disable Interrupt),
975 975  ~1. (Trigger by rising and falling edge)
... ... @@ -977,7 +977,7 @@
977 977  3. (Trigger by rising edge)
978 978  )))|(% style="background-color:#f2f2f2; width:157px" %)OK
979 979  
980 -(% style="color:blue" %)**Downlink Command: 0x06**
1120 +Downlink Command: 0x06
981 981  
982 982  Format: Command Code (0x06) followed by 3 bytes.
983 983  
... ... @@ -991,79 +991,99 @@
991 991  
992 992  Feature, Control the output 3V3 , 5V or 12V.
993 993  
994 -(% style="color:blue" %)**AT Command: AT+3V3T**
1134 +AT Command: AT+3V3T
995 995  
996 996  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
997 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 201px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1137 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
998 998  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
1139 +
1140 +
999 999  0
1000 1000  OK
1001 1001  )))
1002 1002  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1145 +
1146 +
1003 1003  OK
1004 1004  default setting
1005 1005  )))
1006 1006  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
1151 +
1152 +
1007 1007  OK
1008 1008  )))
1009 1009  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1156 +
1157 +
1010 1010  OK
1011 1011  )))
1012 1012  
1013 -(% style="color:blue" %)**AT Command: AT+5VT**
1161 +AT Command: AT+5VT
1014 1014  
1015 1015  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
1016 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1164 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1017 1017  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1166 +
1167 +
1018 1018  0
1019 1019  OK
1020 1020  )))
1021 1021  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1172 +
1173 +
1022 1022  OK
1023 1023  default setting
1024 1024  )))
1025 1025  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
1178 +
1179 +
1026 1026  OK
1027 1027  )))
1028 1028  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1183 +
1184 +
1029 1029  OK
1030 1030  )))
1031 1031  
1032 -(% style="color:blue" %)**AT Command: AT+12VT**
1188 +AT Command: AT+12VT
1033 1033  
1034 1034  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
1035 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 199px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1191 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response
1036 1036  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1193 +
1194 +
1037 1037  0
1038 1038  OK
1039 1039  )))
1040 1040  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
1041 1041  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
1200 +
1201 +
1042 1042  OK
1043 1043  )))
1044 1044  
1045 -(% style="color:blue" %)**Downlink Command: 0x07**
1205 +Downlink Command: 0x07
1046 1046  
1047 1047  Format: Command Code (0x07) followed by 3 bytes.
1048 1048  
1049 1049  The first byte is which power, the second and third bytes are the time to turn on.
1050 1050  
1051 -* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
1052 -* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
1053 -* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
1054 -* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
1055 -* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
1056 -* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
1211 +* Example 1: Downlink Payload: 070101F4  ~-~-->  AT+3V3T=500
1212 +* Example 2: Downlink Payload: 0701FFFF   ~-~-->  AT+3V3T=65535
1213 +* Example 3: Downlink Payload: 070203E8  ~-~-->  AT+5VT=1000
1214 +* Example 4: Downlink Payload: 07020000  ~-~-->  AT+5VT=0
1215 +* Example 5: Downlink Payload: 070301F4  ~-~-->  AT+12VT=500
1216 +* Example 6: Downlink Payload: 07030000  ~-~-->  AT+12VT=0
1057 1057  
1058 -(% style="color:red" %)**Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.**
1218 +Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.
1059 1059  
1060 -(% style="color:red" %)**Therefore, the corresponding downlink command is increased by one byte to five bytes.**
1220 +Therefore, the corresponding downlink command is increased by one byte to five bytes.
1061 1061  
1062 -**Example: **
1222 +Example:
1063 1063  
1064 -* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 **01** 01 D4 C0  **~-~-->**  AT+3V3T=120000
1065 -* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 **02** 01 86 A0  **~-~-->**  AT+5VT=100000
1066 -* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 **03** 01 38 80  **~-~-->**  AT+12VT=80000
1224 +* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 01 01 D4 C0  ~-~-->  AT+3V3T=120000
1225 +* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 02 01 86 A0  ~-~-->  AT+5VT=100000
1226 +* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 03 01 38 80  ~-~-->  AT+12VT=80000
1067 1067  
1068 1068  === 3.3.4 Set the Probe Model ===
1069 1069  
... ... @@ -1070,7 +1070,7 @@
1070 1070  
1071 1071  Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
1072 1072  
1073 -(% style="color:blue" %)**AT Command: AT** **+PROBE**
1233 +AT Command: AT +PROBE
1074 1074  
1075 1075  AT+PROBE=aabb
1076 1076  
... ... @@ -1089,11 +1089,13 @@
1089 1089  (0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C)
1090 1090  
1091 1091  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1092 -|(% style="background-color:#4f81bd; color:white; width:154px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:269px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1252 +|(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1093 1093  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
1094 1094  OK
1095 1095  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
1096 1096  |(% style="background-color:#f2f2f2; width:154px" %)(((
1257 +
1258 +
1097 1097  AT+PROBE=000A
1098 1098  )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
1099 1099  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
... ... @@ -1100,12 +1100,12 @@
1100 1100  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
1101 1101  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
1102 1102  
1103 -(% style="color:blue" %)**Downlink Command: 0x08**
1265 +Downlink Command: 0x08
1104 1104  
1105 1105  Format: Command Code (0x08) followed by 2 bytes.
1106 1106  
1107 -* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
1108 -* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
1269 +* Example 1: Downlink Payload: 080003  ~-~-->  AT+PROBE=0003
1270 +* Example 2: Downlink Payload: 080101  ~-~-->  AT+PROBE=0101
1109 1109  
1110 1110  === 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
1111 1111  
... ... @@ -1112,41 +1112,47 @@
1112 1112  
1113 1113  Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time.
1114 1114  
1115 -(% style="color:blue" %)**AT Command: AT** **+STDC**
1277 +AT Command: AT +STDC
1116 1116  
1117 1117  AT+STDC=aa,bb,bb
1118 1118  
1119 -(% style="color:#037691" %)**aa:**(%%)
1120 -**0:** means disable this function and use TDC to send packets.
1121 -**1:** means that the function is enabled to send packets by collecting VDC data for multiple times.
1122 -**2:** means that the function is enabled to send packets by collecting IDC data for multiple times.
1123 -(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
1124 -(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
1281 +aa:
1282 +0: means disable this function and use TDC to send packets.
1283 +1: means that the function is enabled to send packets by collecting VDC data for multiple times.
1284 +2: means that the function is enabled to send packets by collecting IDC data for multiple times.
1285 +bb: Each collection interval (s), the value is 1~~65535
1286 +cc: the number of collection times, the value is 1~~120
1125 1125  
1126 1126  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1127 -|(% style="background-color:#4f81bd; color:white; width:160px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:215px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1289 +|(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1128 1128  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
1129 1129  OK
1130 1130  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1293 +
1294 +
1131 1131  Attention:Take effect after ATZ
1132 1132  
1133 1133  OK
1134 1134  )))
1135 1135  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
1300 +
1301 +
1136 1136  Use the TDC interval to send packets.(default)
1137 1137  
1138 1138  
1139 1139  )))|(% style="background-color:#f2f2f2" %)(((
1306 +
1307 +
1140 1140  Attention:Take effect after ATZ
1141 1141  
1142 1142  OK
1143 1143  )))
1144 1144  
1145 -(% style="color:blue" %)**Downlink Command: 0xAE**
1313 +Downlink Command: 0xAE
1146 1146  
1147 1147  Format: Command Code (0xAE) followed by 4 bytes.
1148 1148  
1149 -* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
1317 +* Example 1: Downlink Payload: AE 01 02 58 12 ~-~-->  AT+STDC=1,600,18
1150 1150  
1151 1151  = 4. Battery & Power Consumption =
1152 1152  
... ... @@ -1153,7 +1153,7 @@
1153 1153  
1154 1154  PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1155 1155  
1156 -[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1324 +[[Battery Info & Power Consumption Analyze>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1157 1157  
1158 1158  
1159 1159  = 5. OTA firmware update =
... ... @@ -1189,22 +1189,22 @@
1189 1189  Test the current values at the depth of different liquids and convert them to a linear scale.
1190 1190  Replace its ratio with the ratio of water to current in the decoder.
1191 1191  
1192 -**Example:**
1360 +Example:
1193 1193  
1194 1194  Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
1195 1195  
1196 -**Calculate scale factor:**
1364 +Calculate scale factor:
1197 1197  Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
1198 1198  
1199 -**Calculation formula:**
1367 +Calculation formula:
1200 1200  
1201 1201  Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
1202 1202  
1203 -**Actual calculations:**
1371 +Actual calculations:
1204 1204  
1205 1205  Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
1206 1206  
1207 -**Error:**
1375 +Error:
1208 1208  
1209 1209  0.009810726
1210 1210  
... ... @@ -1228,7 +1228,6 @@
1228 1228  = 8. Order Info =
1229 1229  
1230 1230  
1231 -(% style="display:none" %)
1232 1232  
1233 1233  [[image:image-20241021093209-1.png]]
1234 1234  
... ... @@ -1235,11 +1235,11 @@
1235 1235  = 9. ​Packing Info =
1236 1236  
1237 1237  
1238 -(% style="color:#037691" %)**Package Includes**:
1405 +Package Includes:
1239 1239  
1240 1240  * PS-LB or PS-LS LoRaWAN Pressure Sensor
1241 1241  
1242 -(% style="color:#037691" %)**Dimension and weight**:
1409 +Dimension and weight:
1243 1243  
1244 1244  * Device Size: cm
1245 1245  * Device Weight: g
image-20250117104847-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 KB
Content
image-20250401102131-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +64.7 KB
Content
image-20250401163530-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +44.9 KB
Content
image-20250401163539-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +31.1 KB
Content
image-20250401163826-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +18.9 KB
Content
image-20250401163906-4.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +181.6 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0